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McCulloch and Pitts, 1948

“For every [millisecond] there is therefore one proposition
... such that knowledge of its truth or falsity describes the
neuron completely ...”
“... all the significant relations within a nervous net can be
expressed as propositional relations which only involve
truth values.”
-> Perceptrons (Minsky and Papert, 1969)
-> RAM networks (Aleksander, 1977)
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Bishop, 1995

“... a network which has a feedforward architecture in
which each hidden unit generates a nonlinear function of
the weighted sum of its inputs.”
“... a neural network model can be regarded simply as a
particular choice for the set of functions...”
“ ... biological realism would impose entirely unnecessary
constraints.”
-> Bayesian inference
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Murray, 1987

“The incoming excitatory and inhibitory pulse stream inputs
to the neuron are integrated to give a postsynaptic potential
that varies smoothly from 0 to 5V. ... The resultant periodic
waveform is then converted to a series of voltage spikes.”
-> Smith
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Paun, 2000

“The objects evolve by means of spiking rules, which are of
the form E/ac → a; d , where E is a regular expression
over a and c,d are natural numbers, c ≥ 1,d ≥ 0. The
meaning is that a neuron containing k spikes such that
ak ∈ L(E), k ≥ c, can consume c spikes and produce one
spike, after a delay of d steps. This spike is sent to all
neurons to which a synapse exists outgoing from the
neuron where the rule was applied.”
-> Frisco
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Minsky, 1988

“The nerve cells in an animal’s brain can’t always move
aside to make room for extra ones. So those new layers
might indeed have to be located elsewhere, attached by
bundles of connection wires. Indeed, no aspect of the
brain’s anatomy is more striking that its huge masses of
connection bundles.”
-> small world models of the brain
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Healthy old person’s default brain network
[Achard and Bullmore, 2007]

oscillations in the basal ganglia and cortex [29–33]. Our data
suggest more specifically that dopaminergic afferentation
may normally contribute to optimising the economical
performance of small-world brain functional networks, and
pharmacological antagonism of this modulatory input im-
pairs network efficiency by an effect most clearly localised to
dorsal cingulate and lateral temporal cortical hubs.

Since increasing age has been consistently associated with
loss of dopamine cell bodies and decreased density of
dopamine projections to striatum and cortex, contributing
to age-related cognitive decline [34–36], it is conceivable that
the effects of age on economical network performance might
be mimicked by the effects of dopamine receptor antago-

nism. This was true in the broad sense that the D2 receptor
blockade, like older age, reduced global and local network
efficiency: both factors degraded the relatively optimal
network performance demonstrated by young people follow-
ing placebo. More locally, both age and sulpiride impaired
regional efficiency of dorsal cingulate gyrus, which is known
to receive a major dopaminergic input and to be vulnerable
to regressive changes in normal aging. However, the effects of
age were generally more salient and extensive, involving
several frontal and limbic/paralimbic regions that were not
significantly affected by sulpiride. We conclude that attenu-
ated dopamine transmission may contribute to age-related
impairments in functional network efficiency, but it seems
likely that additional mechanisms must be invoked to account
for the topological marginalisation of medial temporal and
frontal regions in older people. For example, this functional
observation might be related to structural neuroimaging
evidence for grey and white matter deficits of frontal and
temporal regions due to normal aging [37,38].

Low-Frequency Oscillations and Correlations in fMRI
Many previous studies of fMRI data acquired in a no-task

or ‘‘resting’’ state have demonstrated significant inter-
regional correlations subtended by very-low-frequency os-
cillations, less than 0.1 Hz [4,20–22,39]. Various possible
causes have been considered for these observations includ-
ing instrumental, vasomotor [40], and neuronal mechanisms.
fMRI studies using rapid sampling rates, i.e., short repetition
times (TR), have shown that low-frequency power or
coherence is unlikely to represent (possibly aliased) signals
related to the cardiac or respiratory cycles [22,24]. On the
other hand, multisecond periodicities or infraslow oscilla-
tions have been reported in both local field potential
recordings from rat basal ganglia and monkey cortex
[31,41,42] and the surface EEG in humans [43]. These
electrophysiological data, unconfounded by the vascular or
systemic cardiorespiratory effects that can complicate
interpretation of blood-oxygen-level-dependent (BOLD)
signals, suggest that coherent neuronal oscillations exist at
very low frequencies and could represent a plausible
substrate for the low-frequency oscillations and correlations
observed using fMRI. The cognitive implications of these so-
called ‘‘resting state networks,’’ and their relationships to
large-scale brain systems coherently oscillating at higher
frequencies [44], remain to be elucidated. One important
limitation of the existing fMRI literature on low-frequency
connectivity is that it has focused predominantly on data
acquired in resting or no-task states, which are experimen-
tally uncontrolled and are not well-designed to clarify the
significance of low-frequency correlations for cognitive
function.
An additional caveat in interpretation of these results is

that dopaminergic drugs may have effects on BOLD signals
that are mediated by dopamine receptors on the small
arterial walls of the cerebral vasculature [45] rather than by
neuronal receptors (see Honey and Bullmore [46] for a review
of issues in pharmacological studies using fMRI). This
interpretation of our fMRI data is difficult to rule out
completely without access to complementary electrophysio-
logical data showing similar effects of sulpiride on low-
frequency brain networks. However, we have previously
reported that the effects of sulpiride on parameters of

Figure 6. Anatomical Representation of Brain Functional Networks

Highlighting Regional Effects of Age and Dopamine Receptor Antago-

nism

Brain functional networks for one young person following placebo (top
row) and one old person following placebo (bottom row). These
networks were constructed by thresholding the individual wavelet
correlation matrices to derive sparse networks with equal cost, K ; 0.1:
regional nodes are shown as dots or circles in a sagittal view of the right
side of the brain; strong functional connections are shown as undirected
edges between nodes. The size of regional nodes is proportional to the
significance of age-related or drug-related reductions in regional
efficiency: red nodes, efficiency reduced by older age; blue nodes,
efficiency reduced by sulpiride; purple nodes, efficiency reduced by both
older age and sulpiride. See Table 2 for anatomical detail concerning
locations of significant difference in regional efficiency.
doi:10.1371/journal.pcbi.0030017.g006

PLoS Computational Biology | www.ploscompbiol.org February 2007 | Volume 3 | Issue 2 | e170180

Economical Brain Networks
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Penrose, 1989

“... there is an essential non-algorithmic ingredient to
thought processes.”
“... something of significance is actually calculated before
the one-graviton level is reached.”
-> quantum computing
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A Low-level View [Allen and Barres, 2009]
How do glia differ from 
neurons?
The defining characteristic  
of a neuron is its ability 
to transmit rapid electrical  
signals in the form of action 
potentials. All other 
neural cells that lack this  
property are catego
rized into a broad 
class termed glia. 
Neurons are arranged 
in networks (circuits), 
and communicate with each 
other via specialized intercellular 
adhesion sites called synapses. 
Neuronal signalling involves the 
propagation of an action poten
tial down a neuron’s axonal pro
cess to a presynaptic terminal; 
the depolarization of the terminal 
and release of neuro transmitters; 
binding of the released neuro
transmitters to receptors on the 
post synaptic membrane of another 
neuron; and the sub sequent 
de polari zation of this second neu
ron, propagating the signal further. 
Glia do not fire action potentials, 
but instead surround and ensheath 
neuronal cell bodies, axons and 
synapses throughout the nervous 
system.

Are all glia the same?
No. On the basis of morphology, 
function and location in the nervous system, 
there are several classes of glia. In mammals, 
for example, glia are classified as microglia, 
astrocytes and the related Schwann cells and 
oligodendrocytes (Fig. 1).

Where do they originate from?
Glia and neurons mainly share a common  
origin — precursor cells derived from the embry
onic germ layer known as the neuro ectoderm. 
A notable exception is microglia, which  
are part of the immune system and enter the 

brain from the blood circulation early in an 
organism’s development.
 
What is known about the evolution  
of glia?
Glia are evolutionarily conserved, being present  
in one form or another in most species 
examined, from the simplest invertebrates to 
humans. The proportion of glia seems to be 
correlated with an animal’s size: the tiny nema
tode worm has only a few glia; some 25% of the 
fruitfly brain consists of glia; the mouse brain 

has roughly 65% of these cells;  
the human brain has about 90%; 
and the elephant brain consists of 
some 97% glia. As animals have 
evolved, glia have become not only 
more diverse and specialized, but 
also essential: without them neu
rons die. Furthermore, astrocytes 
in the human cerebral cortex are 
much more complex than those of 
other mammals, and are thought 
to be involved in information 
processing.

So what exactly do glia do?
Lots of things. The traditional 
view has been that glia look after 
neurons and maintain their proper 
functioning, having a somewhat 
passive role themselves. Estab
lished functions of glia include 
supporting neurotransmission, 
maintaining ionic balance in the 
extracellular space, and insulat
ing axons to speed up electrical 
communication. But emerging 
research suggests that glia, par
ticularly astrocytes, also have 
an active role in brain function 
and information processing — 
both during development and in  
adulthood. 

What is the specific function  
of microglia?
These resident immune cells 

of the nervous system survey the brain 
for damage and infection, engulfing dead  
cells and debris. Microglia have also been 
implicated in synaptic remodelling during  
the development of the nervous system,  
when they are proposed to remove in appro
priate synaptic connections through the  
process of phagocytosis. More over, they 
are activated in many neurodegenera
tive diseases, but whether they are helpful 
or harmful in these conditions is a matter  
of debate. 

NEUROSCIENCE 

Glia — more than just brain glue
Nicola J. Allen and Ben A. Barres 

Glia make up most of the cells in the brain, yet until recently they were believed to have only a 
passive, supporting role. It is now becoming increasingly clear that these cells have other functions: 
they make crucial contributions to the formation, operation and adaptation of neural circuitry. 

Figure 1 | Glia–neuron interactions. Different types of glia interact with 
neurons and the surrounding blood vessels. Oligodendrocytes wrap myelin 
around axons to speed up neuronal transmission. Astrocytes extend 
processes that ensheath blood vessels and synapses. Microglia keep the 
brain under surveillance for damage or infection. 

675

Vol 457|5 February 2009

Q&A

© 2009 Macmillan Publishers Limited. All rights reserved
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Three Types of Nodes

Neurons: integrate-and-fire neuron with noisy membrane
potential. State: membrane potential, -100 mV to 0 mV.
Dynamics modelled by several stochastic ordinary
differential equations per neuron
Astrocytes: control synapse function and vascular tone.
State: Ca2+ concentration, 10 µmol to 100 µmol, not
directly measured.
Capillary junctions: non-Bernoulli flow of erythrocytes.
State: diameter of upstream capillary (or arteriole), 5 µm to
500 µm.

Philippe De Wilde Modelling Interacting Networks in the Brain



Existing Modelling and Analysis Techniques
Interacting Networks in the Brain

Three Types of Nodes

Neurons: integrate-and-fire neuron with noisy membrane
potential. State: membrane potential, -100 mV to 0 mV.
Dynamics modelled by several stochastic ordinary
differential equations per neuron
Astrocytes: control synapse function and vascular tone.
State: Ca2+ concentration, 10 µmol to 100 µmol, not
directly measured.
Capillary junctions: non-Bernoulli flow of erythrocytes.
State: diameter of upstream capillary (or arteriole), 5 µm to
500 µm.

Philippe De Wilde Modelling Interacting Networks in the Brain



Existing Modelling and Analysis Techniques
Interacting Networks in the Brain

Three Types of Nodes

Neurons: integrate-and-fire neuron with noisy membrane
potential. State: membrane potential, -100 mV to 0 mV.
Dynamics modelled by several stochastic ordinary
differential equations per neuron
Astrocytes: control synapse function and vascular tone.
State: Ca2+ concentration, 10 µmol to 100 µmol, not
directly measured.
Capillary junctions: non-Bernoulli flow of erythrocytes.
State: diameter of upstream capillary (or arteriole), 5 µm to
500 µm.

Philippe De Wilde Modelling Interacting Networks in the Brain



Existing Modelling and Analysis Techniques
Interacting Networks in the Brain

Three Types of Networks

N Neurons: random directed graph with out-degree ΘN,
Θ ∈ [0.05,0.9].
Astrocytes: random directed graph with edge probability
inversely proportional with distance between astrocytes.
Microvascular: a single binary tree.
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Example: Firing Patterns of Neurons and Astrocytes
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With astrocytes, more neurons fire at higher frequency.
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Summary

Computer Science has inspired brain models.
There are three networks in the brain: neurons, astrocytes,
and capillaries.

Next
Blue Brain, using Blue Gene
neuroeconomics
systems biology -> systems neuroscience
stroke: software for revalidation
dementia: software for care
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Further Reading and Picture Credits I

Chris M. Bishop.
Neural Networks for Pattern Recognition.
OUP, 1995.

Pierluigi Frisco.
Computing with Cells: Advances in Membrane Computing.
OUP, 2009.

Marvin Minsky.
The Society of Mind.
Picador, 1988.

Marvin Minsky and Seymour Papert.
Perceptrons: An Introduction to Computational Geometry.
MIT Press, 1969.
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OUP, 1989.
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Efficiency and Cost of Economical Brain Functional
Networks.
PLoS Comput. Biol. 3(2):e17, 2007.
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Glia - more than just brain glue.
Nature 457(5 Feb):675–677, 2009.
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A.F. Murray and A.V.W. Smith.
Asynchronous Arithmetic for VLSI Neural Systems.
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S. Shahid, J. Walker, and L. S. Smith.
A New Spike Detection Algorithm for Extracellular Neural
Recordings.
IEEE Trans. on Biomedical Engineering, 57(4):853–866,
2010.

Xi Shen and Philippe De Wilde.
Long-term neuronal behavior caused by two synaptic
modification mechanisms.
Neurocomputing, 70(7–9):1482–1488, 2007.
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populations.
BioSystems, 88(1–2):127–136, 2007.
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Further Reading and Picture Credits V

Xi Shen, Xiaobin Lin and Philippe De Wilde.
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