

Modelling network performance with a spatial stochastic process algebra

Vashti Galpin Laboratory for Foundations of Computer Science University of Edinburgh

17 June 2010

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

ð

Introduction	Motivation	Syntax and semantics	Other approaches	Conclusion

model network performance

Introduction	Motivation	Syntax and semantics	Other approaches	Conclusion

- model network performance
- introduce spatial concepts to a stochastic process algebra

- model network performance
- introduce spatial concepts to a stochastic process algebra
- analysis using continuous time Markov chains (CTMCs)

- model network performance
- introduce spatial concepts to a stochastic process algebra
- analysis using continuous time Markov chains (CTMCs)
- demonstrate through an example

- model network performance
- introduce spatial concepts to a stochastic process algebra
- analysis using continuous time Markov chains (CTMCs)
- demonstrate through an example
- other approaches to network modelling

- model network performance
- introduce spatial concepts to a stochastic process algebra
- analysis using continuous time Markov chains (CTMCs)
- demonstrate through an example
- other approaches to network modelling
 - using the same spatial stochastic process algebra

ð

- model network performance
- introduce spatial concepts to a stochastic process algebra
- analysis using continuous time Markov chains (CTMCs)
- demonstrate through an example
- other approaches to network modelling
 - using the same spatial stochastic process algebra
 - using a process algebra with stochastic, continuous and discrete aspects

- model network performance
- introduce spatial concepts to a stochastic process algebra
- analysis using continuous time Markov chains (CTMCs)
- demonstrate through an example
- other approaches to network modelling
 - using the same spatial stochastic process algebra
 - using a process algebra with stochastic, continuous and discrete aspects
- conclusions and further work

Motivation	Syntax and semantics	Other approaches	Conclusion

▶ PEPA [Hillston 1996]

Motivation	Syntax and semantics	Other approaches	Conclusion

- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

Motivation	Syntax and semantics	Other approaches	Conclusion

- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

• transitions labelled with $(\alpha, r) \in \mathcal{A} \times \mathbb{R}^+$

Motivation	Syntax and semantics	Other approaches	Conclusion

- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

- transitions labelled with $(\alpha, r) \in \mathcal{A} imes \mathbb{R}^+$
- interpret as continuous time Markov chain or ODEs

Motivation	Syntax and semantics	Other approaches	Conclusion

- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

- transitions labelled with $(\alpha, r) \in \mathcal{A} imes \mathbb{R}^+$
- interpret as continuous time Markov chain or ODEs
- various analyses to understand performance

Motivation	Syntax and semantics	Other approaches	Conclusion

- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

- transitions labelled with $(\alpha, r) \in \mathcal{A} imes \mathbb{R}^+$
- interpret as continuous time Markov chain or ODEs
- various analyses to understand performance
- add a general notion of location

Motivation	Syntax and semantics	Other approaches	Conclusion

- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

- transitions labelled with $(\alpha, r) \in \mathcal{A} imes \mathbb{R}^+$
- interpret as continuous time Markov chain or ODEs
- various analyses to understand performance
- add a general notion of location
 - location names, cities

Motivation	Syntax and semantics	Other approaches	Conclusion

- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

- transitions labelled with $(\alpha, r) \in \mathcal{A} imes \mathbb{R}^+$
- interpret as continuous time Markov chain or ODEs
- various analyses to understand performance
- add a general notion of location
 - location names, cities
 - points in *n*-dimensional space

 \blacktriangleright locations, ${\cal L}$ and collections of locations, ${\cal P}_{\cal L}$

ð

Motivation	Syntax and semantics	Other approaches	Conclusion

- \blacktriangleright locations, ${\cal L}$ and collections of locations, ${\cal P}_{\!{\cal L}}$
- ▶ structure over $\mathcal{P}_{\mathcal{L}}$, weighted graph $G = (\mathcal{L}, E, w)$

Motivation	Syntax and semantics	Other approaches	Conclusion

- \blacktriangleright locations, ${\cal L}$ and collections of locations, ${\cal P}_{{\cal L}}$
- ▶ structure over $\mathcal{P}_{\mathcal{L}}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph

Motivation	Syntax and semantics	Other approaches	Conclusion

- \blacktriangleright locations, ${\cal L}$ and collections of locations, ${\cal P}_{{\cal L}}$
- ▶ structure over $\mathcal{P}_{\mathcal{L}}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_{\mathcal{L}}$ and $w : E \to \mathbb{R}$

Motivation	Syntax and semantics	Other approaches	Conclusion

- \blacktriangleright locations, ${\cal L}$ and collections of locations, ${\cal P}_{{\cal L}}$
- ▶ structure over $\mathcal{P}_{\mathcal{L}}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_{\mathcal{L}}$ and $w : E \to \mathbb{R}$
 - weights modify rates on actions between locations

Motivation	Syntax and semantics	Other approaches	Conclusion

- \blacktriangleright locations, ${\cal L}$ and collections of locations, ${\cal P}_{\!{\cal L}}$
- ▶ structure over $\mathcal{P}_{\mathcal{L}}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_{\mathcal{L}}$ and $w : E \to \mathbb{R}$
 - weights modify rates on actions between locations
- $\blacktriangleright \ L \in \mathcal{P}_{\mathcal{L}} \quad \alpha \in \mathcal{A} \quad M \subseteq \mathcal{A} \quad r > 0$

Motivation	Syntax and semantics	Other approaches	Conclusion

- \blacktriangleright locations, ${\cal L}$ and collections of locations, ${\cal P}_{\!{\cal L}}$
- ▶ structure over $\mathcal{P}_{\mathcal{L}}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_{\mathcal{L}}$ and $w : E \to \mathbb{R}$
 - weights modify rates on actions between locations
- $\blacktriangleright \ L \in \mathcal{P}_{\mathcal{L}} \quad \alpha \in \mathcal{A} \quad M \subseteq \mathcal{A} \quad r > 0$

sequential components

$$S ::= (\alpha @L, r) . S | S + S | C_s @L$$

向

Motivation	Syntax and semantics	Other approaches	Conclusion

- \blacktriangleright locations, ${\cal L}$ and collections of locations, ${\cal P}_{\!{\cal L}}$
- ▶ structure over $\mathcal{P}_{\mathcal{L}}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_{\mathcal{L}}$ and $w : E \to \mathbb{R}$
 - weights modify rates on actions between locations
- $\blacktriangleright \ L \in \mathcal{P}_{\mathcal{L}} \quad \alpha \in \mathcal{A} \quad M \subseteq \mathcal{A} \quad r > 0$

sequential components

 $S ::= (\alpha @L, r) \cdot S \mid S + S \mid C_s @L$

Motivation	Syntax and semantics	Other approaches	Conclusion

- \blacktriangleright locations, ${\cal L}$ and collections of locations, ${\cal P}_{\!{\cal L}}$
- ▶ structure over $\mathcal{P}_{\mathcal{L}}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_{\mathcal{L}}$ and $w : E \to \mathbb{R}$
 - weights modify rates on actions between locations
- $\blacktriangleright \ L \in \mathcal{P}_{\mathcal{L}} \quad \alpha \in \mathcal{A} \quad M \subseteq \mathcal{A} \quad r > 0$
- sequential components

 $S ::= (\alpha @L, r).S \mid S + S \mid C_s @L$

Iocations defined at sequential level only

向

Motivation	Syntax and semantics	Other approaches	Conclusion

- \blacktriangleright locations, ${\cal L}$ and collections of locations, ${\cal P}_{\cal L}$
- ▶ structure over $\mathcal{P}_{\mathcal{L}}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_{\mathcal{L}}$ and $w : E \to \mathbb{R}$
 - weights modify rates on actions between locations
- $\blacktriangleright \ L \in \mathcal{P}_{\mathcal{L}} \quad \alpha \in \mathcal{A} \quad M \subseteq \mathcal{A} \quad r > 0$
- sequential components

$$S ::= (\alpha @L, r) . S | S + S | C_s @L$$

- Iocations defined at sequential level only
- model components

$$P ::= P \bowtie_M P \mid P/M \mid C$$

向

 define abstract process algebra parameterised by three functions

- define abstract process algebra parameterised by three functions
- transitions labelled with $\mathcal{A} \times \mathcal{P}_{\mathcal{L}} \times \mathbb{R}^+$

- define abstract process algebra parameterised by three functions
- transitions labelled with $\mathcal{A} \times \mathcal{P}_{\mathcal{L}} \times \mathbb{R}^+$
- Prefix

$$\overline{(\alpha @L, r).S \xrightarrow{(\alpha @L', r)} S}$$

$$L' = apref((\alpha @L, r).S)$$

- define abstract process algebra parameterised by three functions
- transitions labelled with $\mathcal{A} \times \mathcal{P}_{\mathcal{L}} \times \mathbb{R}^+$
- Prefix

$$\frac{1}{(\alpha @L, r).S \xrightarrow{(\alpha @L', r)} S} \quad L' = apref((\alpha @L, r).S)$$

$$\bullet \text{ Cooperation } \frac{P_1 \xrightarrow{(\alpha @L_1, r_1)} P'_1 \quad P_2 \xrightarrow{(\alpha @L_2, r_2)} P'_2}{P_1 \bowtie P_2 \xrightarrow{(\alpha @L, R)} P'_1 \bowtie P'_2} \quad \alpha \in M$$

$$L = async(P_1, P_2, L_1, L_2) \quad R = rsync(P_1, P_2, L_1, L_2, r_1, r_2)$$

Modelling network performance with a spatial stochastic process algebra

- define abstract process algebra parameterised by three functions
- transitions labelled with $\mathcal{A} \times \mathcal{P}_{\mathcal{L}} \times \mathbb{R}^+$
- Prefix

$$\frac{1}{(\alpha @L, r).S \xrightarrow{(\alpha @L', r)} S} \quad L' = apref((\alpha @L, r).S)$$

$$\blacktriangleright \text{ Cooperation } \frac{P_1 \xrightarrow{(\alpha @L_1, r_1)} P'_1 \quad P_2 \xrightarrow{(\alpha @L_2, r_2)} P'_2}{P_1 \bowtie P_2 \xrightarrow{(\alpha @L, R)} P'_1 \bowtie P'_2} \quad \alpha \in M$$

$$L = async(P_1, P_2, L_1, L_2) \quad R = rsync(P_1, P_2, L_1, L_2, r_1, r_2)$$

other rules defined in the obvious manner

- define abstract process algebra parameterised by three functions
- transitions labelled with $\mathcal{A} \times \mathcal{P}_{\mathcal{L}} \times \mathbb{R}^+$
- Prefix

$$\overline{(\alpha @L, r).S \xrightarrow{(\alpha @L', r)} S} \quad L' = apref((\alpha @L, r).S)$$

$$\blacktriangleright \text{ Cooperation } \frac{P_1 \xrightarrow{(\alpha @L_1, r_1)} P'_1 \quad P_2 \xrightarrow{(\alpha @L_2, r_2)} P'_2}{P_1 \bigotimes_M P_2 \xrightarrow{(\alpha @L, R)} P'_1 \bigotimes_M P'_2} \quad \alpha \in M$$

 $L = async(P_1, P_2, L_1, L_2)$ $R = rsync(P_1, P_2, L_1, L_2, r_1, r_2)$

- other rules defined in the obvious manner
- instantiate functions to obtain concrete process algebra

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

Motivation	Syntax and semantics	Example	Other approaches	Conclusion

Concrete process algebra for modelling networks

networking performance

Motivation	Syntax and semantics	Example	Other approaches	Conclusion

Concrete process algebra for modelling networks

- networking performance
- scenario

Motivation	Syntax and semantics	Example	Other approaches	Conclusion

Concrete process algebra for modelling networks

- networking performance
- scenario
 - arbitrary topology
| Motivation | Syntax and semantics | Example | Other approaches | Conclusion |
|------------|----------------------|---------|------------------|------------|
| | | | | |
| | | | | |

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network

Introduction M	lotivation	Syntax and semantics	Example	Other approaches	Conclusion

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated

Motivation	Syntax and semantics	Example	Other approaches	Conclusion

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different topologies and traffic

Motivation	Syntax and semantics	Example	Other approaches	Conclusion

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different topologies and traffic
- choose functions to create process algebra

Introduction	Motivation	Syntax and semantics	Example	Other approaches	Conclusion

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different topologies and traffic
- choose functions to create process algebra
 - each sequential component must have single fixed location

Motivation	Syntax and semantics	Example	Other approaches	Conclusion

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different topologies and traffic
- choose functions to create process algebra
 - each sequential component must have single fixed location
 - communication must be pairwise and directional

Motivation	Syntax and semantics	Example	Other approaches	Conclusion

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different topologies and traffic
- choose functions to create process algebra
 - each sequential component must have single fixed location
 - communication must be pairwise and directional
- ▶ let $\mathcal{P}_{\mathcal{L}} = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs

Functions for concrete process algebra

functions

Introduction Motivation Syntax and semantics **Example** Other approaches Conclusion

Functions for concrete process algebra

functions

$$apref(S) = egin{cases} \ell & ext{ if } ploc(S) = \{\ell\} \ ot & ext{ otherwise } \end{cases}$$

Modelling network performance with a spatial stochastic process algebra

Introduction Motivation Syntax and semantics Example Other approaches Conclusion Functions for concrete process algebra

functions

$$apref(S) = \begin{cases} \ell & \text{if } ploc(S) = \{\ell\} \\ \bot & \text{otherwise} \end{cases}$$
$$async(P_1, P_2, L_1, L_2) = \begin{cases} (\ell_1, \ell_2) & \text{if } L_1 = \{\ell_1\}, L_2 = \{\ell_2\}, (\ell_1, \ell_2) \in E \\ \bot & \text{otherwise} \end{cases}$$

$$async(P_1, P_2, L_1, L_2) = \begin{cases} (\ell_1, \ell_2) & \text{if } L_1 = \{\ell_1\}, L_2 = \{\ell_2\}, (\ell_1, \ell_2) \in E \\ \bot & \text{otherwise} \end{cases}$$

$$rsync(P_{1}, P_{2}, L_{1}, L_{2}, r_{1}, r_{2}) = \begin{cases} \frac{r_{1}}{r_{\alpha}(P_{1})} \frac{r_{2}}{r_{\alpha}(P_{2})} \min(r_{\alpha}(P_{1}), r_{\alpha}(P_{2})) \cdot w((\ell_{1}, \ell_{2})) \\ & \text{if } L_{1} = \{\ell_{1}\}, L_{2} = \{\ell_{2}\}, (\ell_{1}, \ell_{2}) \in E \\ \bot & \text{otherwise} \end{cases}$$

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

			Example	
Example	network C	A Sende $B P1$ $P2 + P3$ $E P5$		
		F Receive	er	

Example

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

Introduction	Motivation	Syntax and semantics	Example	Other approaches	Conclusion
PEPA mo	odel				
Sendel Sending	$r@A \stackrel{d}{=}$	$\stackrel{\scriptscriptstyle{ef}}{=} (prepare, ho).Sendir$ $\stackrel{\scriptscriptstyle{ef}}{=} \sum_{i=1}^{6} (c_{Si}, r_S).(ack)$	ng@A r, r _{ack}).Sen	der@A	
Receive Receiving	r@F = g@F =	$\stackrel{\scriptscriptstyle{ef}}{=} \sum_{i=1}^6 (c_{iR}, r_6).Rece$	eiving@F , r _{ack}).Reco	eiver@F	

$$\begin{array}{ll} P_i @\ell_i & \stackrel{\text{def}}{=} & (c_{Si}, \top). Q_i @\ell_i + \sum_{j=1, j \neq i}^6 (c_{ji}, r). Q_i @\ell_i \\ Q_i @\ell_i & \stackrel{\text{def}}{=} & (c_{iR}, \top). P_i @\ell_i + \sum_{j=1, j \neq i}^6 (c_{ij}, r). P_i @\ell_i \end{array}$$

 $Network \stackrel{\text{def}}{=} (Sender@A \Join (P1@B \Join (P2@C \Join (P3@C \Join (P4@D \Join (P5@E \Join (P6@F \Join Receiver@F)))))))$

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

Motivation	Syntax and semantics	Example	Other approaches	Conclusion

Graphs

▶ rates:
$$r = r_R = r_S = 10$$

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

	М				and semant		Exam	ole Other	approaches	Conclusion
Graphs										
► ra	ates	: r =	r _R =	= rs =	= 10					
► tl	ne v	veight	ted g	raph (G desc	ribes	s the to	opology A	Sender +	
		Α	В	С	D	Ε	F		·	
	A	1	1							
	В			1	1			C P2	→ <u>P3</u>	P4
	С		1	1		1		*	<u> </u>	/
	D		1			1	1		E¦[P5]¦/	
	Ε			1	1		1		P6	

1

1

1

F

1

Modelling network performance with a spatial stochastic process algebra

ð

F

Receiver

Introduction	Motivation	Syntax and semantics	Example	Other approaches	Conclusion
Graphs					
► G ₁	represents	heavy traffic betwe	en C and E	Ē	
				A Sender	

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

	Μ				and semai		Exam	ple Other approaches	Conclusion
Graphs									
► G	2 re	eprese	ents i	no cor	nnecti	vity b	oetwee	n C and E	
								ASender	•••••••
		Α	В	С	D	Ε	F		
	A	1	1						
	В			1	1			$C P2 \rightarrow P3 L$	P4
	С		1	1		0			
	D		1			1	1	E[P5]	

1

1

Vashti Galpin

Ε

F

1

Modelling network performance with a spatial stochastic process algebra

0

1

1

1

*P*6

Receiver

F

	Motivation	Syntax and semantics	Example	Other approaches	Conclusion
Graphs					

► G₃ represents high connectivity between colocated processes

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

cumulative density function of passage time

Comparison of different network models

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

uniform description for each node in the network

- uniform description for each node in the network
- network topology captured by graph

- uniform description for each node in the network
- network topology captured by graph
- graph modifications capture network variations

- uniform description for each node in the network
- network topology captured by graph
- graph modifications capture network variations
- existing analysis framework

- uniform description for each node in the network
 - network topology captured by graph
 - graph modifications capture network variations
 - existing analysis framework
 - abstract process algebra is flexible

multiple packets

Motivation	Syntax and semantics	Other approaches	Conclusion

multiple packets

each located node in network is one or more buffers

Motivation	Syntax and semantics	Other approaches	Conclusion

- multiple packets
 - each located node in network is one or more buffers
 - similar approach

Motivation	Syntax and semantics	Other approaches	Conclusion

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates

Motivation	Syntax and semantics	Other approaches	Conclusion

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates
- wireless sensor networks

Motivation	Syntax and semantics	Other approaches	Conclusion

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates
- wireless sensor networks
 - actual physical location

Motivation	Syntax and semantics	Other approaches	Conclusion

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates
- wireless sensor networks
 - actual physical location
 - weights capture performance characteristics over distance

Motivation	Syntax and semantics	Other approaches	Conclusion

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates
- wireless sensor networks
 - actual physical location
 - weights capture performance characteristics over distance
- scope for many other scenarios

Motivation	Syntax and semantics	Other approaches	Conclusion

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates
- wireless sensor networks
 - actual physical location
 - weights capture performance characteristics over distance
- scope for many other scenarios
 - different types of networks

Motivation	Syntax and semantics	Other approaches	Conclusion

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates
- wireless sensor networks
 - actual physical location
 - weights capture performance characteristics over distance
- scope for many other scenarios
 - different types of networks
 - virus transmission in vineyards

And now for something slightly different

Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi

And now for something slightly different

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata

ð

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata
- delay-tolerant networks

ð

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata
- delay-tolerant networks
 - packets modelled as a continuous flow

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata
- delay-tolerant networks
 - packets modelled as a continuous flow
 - periods of connectivity modelled stochastically

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata
- delay-tolerant networks
 - packets modelled as a continuous flow
 - periods of connectivity modelled stochastically
 - full buffers modelled discretely

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata
- delay-tolerant networks
 - packets modelled as a continuous flow
 - periods of connectivity modelled stochastically
 - full buffers modelled discretely
 - determine storage required at nodes

► conclusion

conclusion

stochastic process algebra with location

conclusion

- stochastic process algebra with location
- designed to be flexible

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance
- further research

ð

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance
- further research
 - explore how it can be applied in modelling networks

ð

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance
- further research
 - explore how it can be applied in modelling networks
 - explore how it can be applied elsewhere

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance
- further research
 - explore how it can be applied in modelling networks
 - explore how it can be applied elsewhere
 - comparison with other location-based formalism

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance
- further research
 - explore how it can be applied in modelling networks
 - explore how it can be applied elsewhere
 - comparison with other location-based formalism
 - theoretical results for abstract process algebra

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance
- further research
 - explore how it can be applied in modelling networks
 - explore how it can be applied elsewhere
 - comparison with other location-based formalism
 - theoretical results for abstract process algebra
 - behavioural equivalences

Motivation	Syntax and semantics	Other approaches	Conclusion

Thank you

This research was funded by the EPSRC SIGNAL Project

Vashti Galpin

Modelling network performance with a spatial stochastic process algebra

Motivation	Syntax and semantics	Other approaches	Conclusion

related research

	Motivation	Syntax and semantics	Other approaches	Conclusion
More co	omments			

- related research
 - PEPA nets (Gilmore et al)

Motivation	Syntax and semantics	Other approaches	Conclusion

- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola *et al*)

- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola *et al*)
 - biological models BioAmbients, attributed π -calculus

- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola *et al*)
 - biological models BioAmbients, attributed π -calculus
- locations and collections of location

ð

Motivation	Syntax and semantics	Other approaches	Conclusion

- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola et al)
 - ▶ biological models BioAmbients, attributed π -calculus
- locations and collections of location
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset

Motivation	Syntax and semantics	Other approaches	Conclusion

- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola et al)
 - ▶ biological models BioAmbients, attributed π -calculus
- locations and collections of location
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs

Motivation	Syntax and semantics	Other approaches	Conclusion

- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola et al)
 - ▶ biological models BioAmbients, attributed π -calculus
- locations and collections of location
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs
- \blacktriangleright different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics

Motivation	Syntax and semantics	Other approaches	Conclusion

- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola et al)
 - ▶ biological models BioAmbients, attributed π -calculus
- locations and collections of location
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs
- different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics
 - locations associated with processes and/or actions

Motivation	Syntax and semantics	Other approaches	Conclusion

- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola et al)
 - biological models BioAmbients, attributed π -calculus
- locations and collections of location
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs
- \blacktriangleright different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics
 - locations associated with processes and/or actions
 - singleton locations versus multiple locations

Motivation	Syntax and semantics	Other approaches	Conclusion

- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola et al)
 - biological models BioAmbients, attributed π -calculus
- locations and collections of location
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs
- different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics
 - Iocations associated with processes and/or actions
 - singleton locations versus multiple locations
- Ionger terms aims

Motivation	Syntax and semantics	Other approaches	Conclusion

- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola et al)
 - biological models BioAmbients, attributed π -calculus
- locations and collections of location
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs
- different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics
 - Iocations associated with processes and/or actions
 - singleton locations versus multiple locations
- Ionger terms aims
 - prove results for parametric process algebra

Motivation	Syntax and semantics	Other approaches	Conclusion

- related research
 - PEPA nets (Gilmore *et al*)
 - STOKLAIM (de Nicola et al)
 - biological models BioAmbients, attributed π -calculus
- locations and collections of location
 - $\mathcal{P}_{\mathcal{L}} = 2^{\mathcal{L}}$, powerset
 - $\mathcal{P}_{\mathcal{L}} = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs
- different choices for $\mathcal{P}_{\mathcal{L}}$ give different semantics
 - locations associated with processes and/or actions
 - singleton locations versus multiple locations
- Ionger terms aims
 - prove results for parametric process algebra
 - then apply to concrete process algebra