Exploring the Stratified Shortest-Paths Problem

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

> University of Stirling SICSA Workshop 17 June 2010

A (10) > A (10) > A (10)

This Talk

Motivation

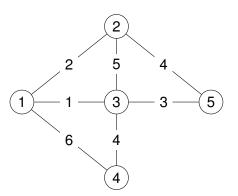
- There is a long history of algebraic approaches to solving path problems in graphs.
- Question : Can BGP be cast in a way that falls within this tradition?

Sources

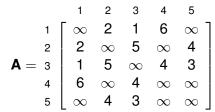
- [Gri10] The Stratified Shortest-Paths Problem COMSNETS (January, 2010) TGG
- [SG10] Routing in Equilibrium Math. Theory of Networks and Systems (July, 2010) João Luís Sobrinho and TGG

A (10) > A (10) > A (10)

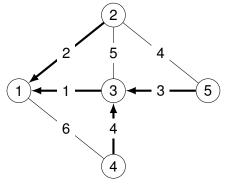
Shortest paths example, $sp = (\mathbb{N}^{\infty}, \min, +)$



The adjacency matrix

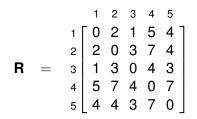


Shortest paths example, continued



Bold arrows indicate the shortest-path tree rooted at 1.

The routing matrix



Matrix **R** solves this global optimality problem:

$$\mathbf{R}(i, j) = \min_{\boldsymbol{p} \in P(i, j)} w(\boldsymbol{p}),$$

where P(i, j) is the set of all paths from *i* to *j*.

Semirings

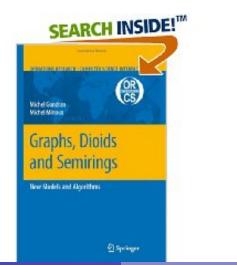
A few examples

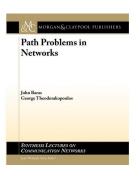
name	S	\oplus ,	\otimes	$\overline{0}$	1	possible routing use
sp	\mathbb{N}^{∞}	min	+	∞	0	minimum-weight routing
bw	\mathbb{N}^{∞}	max	min	0	∞	greatest-capacity routing
rel	[0, 1]	max	×	0	1	most-reliable routing
use	$\{0, 1\}$	max	min	0	1	usable-path routing
	2 ^{<i>W</i>}	\cup	\cap	{}	W	shared link attributes?
	2 ^{<i>W</i>}	\cap	U	W	{}	shared path attributes?

Path problems focus on global optimality

$$\mathbf{A}^*(i, j) = \bigoplus_{\boldsymbol{p} \in \boldsymbol{P}(i, j)} \boldsymbol{w}(\boldsymbol{p})$$

Recomended Reading





T. Griffin (cl.cam.ac.uk)

э June 2010 6/33

What algebraic properties are associated with global optimality?

Distributivity

L.D :
$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$
,
R.D : $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$.

What is this in $sp = (\mathbb{N}^{\infty}, \min, +)$?

L.DIST :
$$a + (b \min c) = (a + b) \min (a + c)$$
,
R.DIST : $(a \min b) + c = (a + c) \min (b + c)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

(Left) Local Optimality

Say that L is a left-locally optimal solution when

$$\mathsf{L} = (\mathsf{A} \otimes \mathsf{L}) \oplus \mathsf{I}.$$

That is, for $i \neq j$ we have

$$\mathbf{L}(i, j) = \bigoplus_{q \in V} \mathbf{A}(i, q) \otimes \mathbf{L}(q, j) = \bigoplus_{(i, q) \in E} w(i, q) \otimes \mathbf{L}(q, j),$$

In other words, L(i, j) is the best possible value given the values L(q, j), for all out-neighbors q of source i.

(Right) Local Optimality

Say that **R** is a left-locally optimal solution when

 $\mathbf{R} = (\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I}.$

That is, for $i \neq j$ we have

$$\mathbf{R}(i, j) = \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j) = \bigoplus_{(q, j) \in E} \mathbf{R}(i, q) \otimes w(q, j),$$

In other words, $\mathbf{R}(i, j)$ is the best possible value given the values $\mathbf{R}(q, j)$, for all in-neighbors q of destination j.

A (10) > A (10) > A (10)

With and Without Distributivity

With

For (well behaved) Semirings, the three optimality problems are essentially the same — locally optimal solutions are globally optimal solutions.

$$\mathbf{A}^* = \mathbf{L} = \mathbf{R}$$

Without

Suppose that we drop distributivity and A^* , L, R exist. It may be the case they they are all distinct.

A (10) > A (10) > A (10)

A World Without Distributivity

Global Optimality

This has been studied, for example [LT91b, LT91a] in the context of circuit layout. See Chapter 5 of [BT10]. This approach does not play well with (loop-free) hop-by-hop forwarding (need tunnels!)

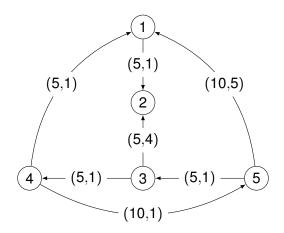
Left Local Optimality

At a very high level, this is the type of problem that BGP attempts to solve!!

Right Local Optimality

This approach does not play well with (loop-free) hop-by-hop forwarding (need tunnels!)

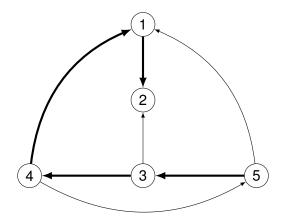
Example



(bandwidth, distance) with lexicographic order (bandwidth first).

A

Left-locally optimal paths to node 2

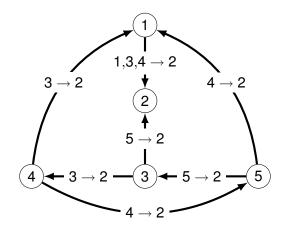


T. Griffin (cl.cam.ac.uk)

Exploring the Stratified Shortest-Paths Proble

▶ ▲ Ē ▶ Ē ∽ Q () June 2010 13 / 33

Right-locally optimal paths to node 2



ъ

A (10) A (10)

Functions on arcs

From $(S, \oplus, \otimes, \overline{0}, \overline{1})$ to $(S, \oplus, F, \overline{0}, \overline{1})$

• Replace
$$\otimes$$
 with $F \subseteq S \rightarrow S$,

Replace

$$\mathsf{L}.\mathsf{D} : \mathbf{a} \otimes (\mathbf{b} \oplus \mathbf{c}) = (\mathbf{a} \otimes \mathbf{b}) \oplus (\mathbf{a} \otimes \mathbf{c})$$

with

$$\mathsf{D} : f(b \oplus c) = f(b) \oplus f(c)$$

Path weight is now

$$\begin{split} w(p) &= g_{(v_0, v_1)}(g_{(v_1, v_2)} \cdots (g_{(v_{k-1}, v_k)}(\overline{1}) \cdots)) \\ &= (g_{(v_0, v_1)} \circ g_{(v_1, v_2)} \circ \cdots \circ g_{(v_{k-1}, v_k)})(\overline{1}) \end{split}$$

What accounts for loss of distributivity?

- Algebras can be constructed from component algebras, and we must be careful. EIGRP is an example [GS03].
- Link weights may be a function of path weight. From

$$w(v_0, v_1, \cdots, v_k) = w(v_0, v_1) \otimes w(v_1, \cdots, v_k)$$

to

$$w(v_0, v_1, \cdots, v_k) = g_{(v_0, v_1)}(w(v_1, \cdots, v_k)) \otimes w(v_1, \cdots, v_k).$$

This makes distributivity harder to maintain (especially given the kinds of *g*'s natural in a routing context).

4 3 5 4 3

What are the conditions needed to guarantee existence of local optima?

For a non-distributed structure $S = (S, \oplus, F, \overline{0}, \overline{1})$, can be used to find local optima when the following property holds.

Strictly Inflationary

S.INFL :
$$\forall a, \ b \in S$$
 : $a \neq \overline{0} \implies a < b \otimes a$

where $a \leq b$ means $a = a \oplus b$.

Useful properties

 $(S, \oplus, F, \overline{0}, \overline{1})$

property	definition
D	$\forall a, b \in S, \ f \in F : \ f(a \oplus b) = f(a) \oplus f(b)$
INFL	$\forall a \in S, f \in F : a \leq f(a)$
S.INFL	$\forall a \in S, \ F \in F \ : \ a eq \overline{0} \implies a < f(a)$
$K_{\overline{0}}$	$\forall a, b \in S, \ f \in F \ : \ f(a) = f(b) \implies (a = b \lor f(a) = \overline{0})$
$C_{\overline{0}}$	$ \forall a, b \in S, \ f \in F : \ f(a \oplus b) = f(a) \oplus f(b) $ $ \forall a \in S, \ f \in F : \ a \leq f(a) $ $ \forall a \in S, \ F \in F : \ a \neq \overline{0} \implies a < f(a) $ $ \forall a, b \in S, \ f \in F : \ f(a) = f(b) \implies (a = b \lor f(a) = \overline{0}) $ $ \forall a, b \in S, \ f \in F : \ f(a) \neq f(b) \implies (f(a) = \overline{0} \lor f(b) = \overline{0}) $

イロト イヨト イヨト イヨト

Stratified Shortest-Paths Metrics

Metrics

- (s, d) or ∞
- $s \neq \infty$ is a stratum level in $\{0, 1, 2, \dots, m-1\}$,
- *d* is a "shortest-paths" distance,
- Routing metrics are compared lexicographically

$$(s_1, d_1) < (s_2, d_2) \iff (s_1 < s_2) \lor (s_1 = s_2 \land d_1 < d_2)$$

A (1) > A (2) > A

Stratified Shortest-Paths Policies

Policy has form (f, d)(f, d)(s, d')

$$egin{array}{rcl} (f,\ d)(s,\ d')&=&\langle f(s),\ d+d'
angle\ (f,\ d)(\infty)&=&\infty \end{array}$$

where

$$\langle \boldsymbol{s}, t
angle = \left\{ egin{array}{cc} \infty & (ext{if } \boldsymbol{s} = \infty) \ (\boldsymbol{s}, t) & (ext{otherwise}) \end{array}
ight.$$

T. Griffin (cl.cam.ac.uk)

Exploring the Stratified Shortest-Paths Proble

Constraint on Policies

(f, d)

- Either *f* is inflationary and 0 < d,
- or *f* is strictly inflationary and $0 \le d$.

Why?

 $(S.INFL(S) \lor (INFL(S) \land S.INFL(T))) \implies S.INFL(S \times_{\overline{0}} T).$

< 6 k

All Inflationary Policy Functions for Three Strata

	0	1	2	D	K_∞	C_{∞}		0	1	2	D	K_∞	C_∞
а	0	1	2	*	*		m	2	1	2			
b	0	1	∞	*	*		n	2	1	∞		*	
С	0	2	2	*			ο	2	2	2	*		*
d	0	2	∞	*	*		р	2	2	∞	*		*
е	0	∞	2		*		q	2	∞	2			*
f	0	∞	∞	*	*	*	r	2	∞	∞	*	*	*
g	1	1	2	*			S	∞	1	2		*	
h	1	1	∞	*		*	t	∞	1	∞		*	*
i	1	2	2	*			u	∞	2	2			*
j	1	2	∞	*	*		v	∞	2	∞		*	*
k	1	∞	2		*		w	∞	∞	2		*	*
I	1	∞	∞	*	*	*	x	∞	∞	∞	*	*	*

T. Griffin (cl.cam.ac.uk)

Exploring the Stratified Shortest-Paths Proble

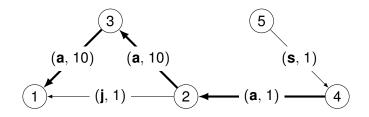
A (1) > A (2) > A

Almost shortest paths

	0	1	2	D	K_∞	interpretation		
а	0	1	2	*	*	+0		
j	1	2	∞	*	*	+1		
r	2	∞	∞	*	*	+2		
Х	∞	∞	∞	*	*	+3		
b	0	1	∞	*	*	filter 2		
е	0	∞	2		*	filter 1		
f	0	∞	∞	*	*	filter 1, 2		
S	∞	1	2		*	filter 0		
t	∞	1	∞		*	filter 0, 2		
W	∞	∞	2		*	filter 0, 1		

イロト イヨト イヨト イヨト

Shortest paths with filters, over INF₃



Note that the path 5, 4, 2, 1 with weight (1, 3) would be the globally best path from node 5 to node 1. But in this case, poor node 5 is left with no path! The locally optimal solution has $\mathbf{R}(5, 1) = \infty$.

Both D and $K_{\overline{0}}$

This makes combined algebra distributive!

	0	1	2	
а	0	1	2	
b	0	1	∞	
d	0	2	∞	
f	0	∞	∞	
j	1	2	∞	
Ι	1	∞	∞	
r	2	∞	∞	
Х	∞	∞	∞	

Why?

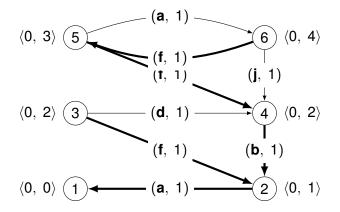
$$(\mathsf{D}(S) \land \mathsf{D}(T) \land \mathsf{K}_{\overline{0}}(S)) \implies \mathsf{D}(S \times_{\overline{0}} T)$$

T. Griffin (cl.cam.ac.uk)

Exploring the Stratified Shortest-Paths Proble

・ ▲ ≣ ▶ ■ ∽ � ⊂ June 2010 25 / 33

Example 1

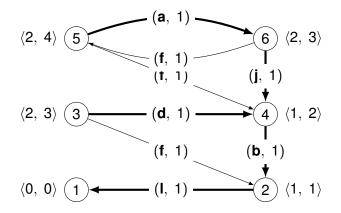


Exploring the Stratified Shortest-Paths Proble

-

• • • • • • • • • • • • •

Example 2

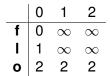


Exploring the Stratified Shortest-Paths Proble

ъ

BGP : standard view

- 0 is the type of a *downstream* route,
- 1 is the type of a peer route, and
- 2 is the type of an *upstream* route.



"Autonomous" policies

	0	1	2	D	K_∞
f	0	∞	∞	*	*
h	1	1	∞	*	
I	1	∞	∞	*	*
ο	2	2	2	*	
р	2	2	∞	*	
	2	∞	2		
q r	2	∞	∞	*	*
t	∞	1	∞		*
u	∞	2	∞ 2		
v	∞	2	∞		*
w	∞	∞	2		*
X	∞	∞	∞	*	*

イロト イヨト イヨト イヨト

Putting BGP in context, summary

Two main differences over previous work on algebraic path problems in graphs.

- Natural to think that link weights are not fixed but are instead a function of the path (route) itself.
 - Very difficult to perserve distributivity with "dependent" link weights.
- When distributivity fails, look for local optimal solutions.
 - This required some new theory.

4 E 5 4

Open Problems

- Complexity of solving for left-local solutions?
 - Recent result by Sobrinho and Griffin [SG10] : O(V³) with a greedy algorithm.
 - We know that "path vectoring" will find a solution, but still no known bounds.
- How could the > *m*! policies be expressed/implemented in BGP? Can this be done without giving up some autonomy?
- Other applications of local optimality.

4 3 5 4 3

Bibliography I

[BT10] John S. Baras and George Theodorakopoulos. Path problems in networks. Morgan & Claypool, 2010.

[Gri10] T. G. Griffin.

The stratified shortest-paths problem.

In The third International Conference on COMmunication Systems and NETworkS (COMSNETS), January 2010.

[GS03] Mohamed G. Gouda and Marco Schneider. Maximizable routing metrics. *IEEE/ACM Trans. Netw.*, 11(4):663–675, 2003.

[LT91a] T. Lengauer and D. Theune. Efficient algorithms for path problems with general cost criteria.

Lecture Notes in Computer Science, 510:314–326, 1991.

Bibliography II

[LT91b] T. Lengauer and D. Theune.

Unstructured path problems and the making of semirings. *Lecture Notes in Computer Science*, 519:189–200, 1991.

[SG10] João Luís Sobrinho and Timothy G. Griffin. Routing in equilibrium.

In 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010), July 2010. To appear.