

A Temporal Model and Distance Metrics for Network Analysis

John Tang

Computer Lab, University Of Cambridge

Work with: Vito Latora, Cecilia Mascolo, Mirco Musolesi, Salvatore Scellato

SICSA Workshop on Modelling and Analysis of Networked and Distributed Systems 17th June 2010, University of Stirling

Some Real Networks

•Static

Shortest path (A,G) = [A,B,D,E,G]
Shortest path length (A,G) = 4 hops

•Static

•Shortest path (A,G) = [A,B,D,E,G]

•Shortest path length (A,G) = 4 hops

•Temporal

•Shortest path (A,G) = [A,C,B,D,E,F,G]

•Shortest path length (A,G) = 6 hops

•Time=3 seconds

Temporal Metrics

• d_{ij} Shortest Temporal Path Length

• d^*_{ij} Shortest Path with temporal constraints

•
$$E_{ij} = \frac{1}{d_{ij}}$$
 Temporal Efficiency

Temporal Metrics

• Average Temporal $L = \frac{1}{N(N-1)} \sum_{ij} d_{ij}$

• Average Temporal
$$L^* = \frac{1}{N(N-1)} \sum_{ij} d^*_{ij}$$

• Average Efficiency $E_{glob} = \frac{1}{N(N-1)} \sum_{ij} E_{ij}$

Does it really matter?

- Infocom 2005 conference environment
- Bluetooth colocation scans
- 5 Minute Windows
- Measure 24 hours starting 12am

					Static		Temporal		
Day	Ν	<k></k>	Activity	Contacts	L	Eglob	L*	L	Eglob
1	37	25.73	6pm-12pm	3668	1.291	0.856	4.090	19h 39m	0.003
2	39	28.31	12am-12pm	8357	1.269	0.870	4.556	9h 6m	0.024
3	38	22.32	12am-12pm	4217	1.420	0.798	4.003	10h 32m	0.018
4	39	21.44	12am-5pm	3024	1.444	0.781	4.705	9h 55m	0.013

Temporal Small World

- Investigate speed of evolution of temporal graphs vs. communication efficiency
- Intuition: Slowly evolving graphs should be slow for data communication

Static SW Model

- Static
 - High local clustering
 - Some nodes provide short cut links

Static Clustering Coefficient

$$C = \frac{\sum_{i} C_{i}}{N} \quad C_{i} = \frac{2\sum_{j,k} a_{jk}}{[(\sum_{j} a_{ij}) * ((\sum_{j} a_{ij}) - 1)]}$$

For all j, k such as $a_{i,j} = 1$ and $a_{j,k} = 1$

Static Small World

- Graphs which both are locally clustered but with small average delay
 - High local clustering => Lattice
 - Small average delay => Random

Temporal SW Model

• N Random Walkers with Prob Jumping P_i

Temporal SW Model

• N Random Walkers with Prob Jumping P_i

Temporal SW Model

• N Random Walkers with Prob Jumping P_i

Temporal Correlation Coefficient

Temporal Small World

- Graphs which evolve slowly over time can still exhibit high communication efficiency
 - Highly temporal-clustering => non-jumping model
 - Low temporal-delay => fully-jumping model

Small-world Behaviour in Real Data

		C	C^{rand}	L	L^{rand}	E	E^{rand}
	α	0.44	0.18	3.9~(100%)	4.2 (98%)	0.50	0.48
	eta	0.40	0.17	6.0~(94%)	3.6~(92%)	0.41	0.45
Brain network	γ	0.48	0.13	12.2~(86%)	8.7~(89%)	0.39	0.37
	δ	0.44	0.17	2.2~(100%)	2.4 (92%)	0.57	0.56
	d1	0.80	0.44	8.84 (61%)	6.00 (65%)	0.192	0.209
	d2	0.78	0.35	5.04~(87%)	4.01 (88%)	0.293	0.298
Bluetooth contacts	d3	0.81	0.38	9.06~(57%)	6.76 (59%)	0.134	0.141
	d4	0.83	0.39	21.42~(15%)	15.55(22%)	0.019	0.028
	Mar	0.044	0.007	456	451	0.000183	0.000210
facebook.	Jun	0.046	0.006	380	361	0.000047	0.000057
(London network)	Sep	0.046	0.006	414	415	0.000058	0.000074
	Dec	0.049	0.006	403	395	0.000047	0.000059

Summary of Talk

- Temporal Graphs & Distance Metrics
 - Static shortest paths overestimate available hops and hence underestimate shortest path length
- Temporal Small World:
 - Contrary to intuition, slowly evolving graphs can be very efficient for data dissemination
- Future Work
 - Identifying important nodes
 - Malware propogation
 - Best nodes for patching
 - Spectral Analysis

Questions?

John Tang

email jkt27@cam.ac.uk
homepage www.cl.cam.ac.uk/~jkt27
twitter @johnkittang
project http://www.cl.cam.ac.uk/research/srg/netos/spatialtemporalnetworks

Further Reading

Small World Behavior in Time-Varying Graphs, J. Tang, S. Scellato, M. Musolesi, C. Mascolo, V. Latora, Physical Review E, Vol. 81 (5), 055101, May 2010.

Characterising Temporal Distance and Reachability in Mobile and Online Social Networks, J. Tang, M. Musolesi, C. Mascolo, V. Latora, ACM SIGCOMM Computer Communication Review (CCR). Vol. 40 (1), pp. 118-124. Jan 2010.

Temporal Distance Metrics for Social Network Analysis, J. Tang, M. Musolesi, C. Mascolo, V. Latora, In Proceedings of the 2nd ACM SIGCOMM Workshop on Online Social Networks (WOSN09). Aug 2009.

