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Abstract. Recent literature suggests that local optima in fitness land-
scapes are clustered, which offers an explanation of why perturbation-
based metaheuristics often fail to find the global optimum: they become
trapped in a sub-optimal cluster. We introduce a method to extract and
visualize the global organization of these clusters in form of a barrier tree.
Barrier trees have been used to visualize the barriers between local op-
tima basins in fitness landscapes. Our method computes a more coarsely
grained tree to reveal the barriers between clusters of local optima. The
core element is a new variant of the flooding algorithm, applicable to
local optima networks. We use local optima networks as a compressed
representation of fitness landscapes. To identify the clusters, we apply a
community detection algorithm. A sample of 200 NK fitness landscapes
suggests that the depth of their coarse-grained barrier tree is related to
their search difficulty for perturbation-based metaheuristics.
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1 Introduction

To overcome the problem of getting stuck in a local optimum, many metaheuris-
tics based on local search apply a perturbation operator. The perturbation is sup-
posed to “kick” an algorithm away from the current region of the search space.
This principle is known as iterated local search (ILS) [1], e.g. as implemented
in the Chained Lin & Kernighan Heuristic [2,3]. The “big valley” hypothesis [4]
states that the local optima in many fitness landscapes are not randomly dis-
tributed, but clustered and surrounding the global optimum. Consequently, one
might assume that once a local optimum has been reached, ILS-based algorithms
should easily find the global optimum after a limited number of perturbations.
However, we know that this is by no means the case in practice. An approach
to explain this observation is given in the most recent literature [4,5,6,7]: it is
conjectured that instead of one big valley, fitness landscapes consist of multiple



clusters (often referred to as a multi-funnel structure). The existence of such a
structure offers a new explanation for the search difficulty of landscapes: since
the connections between clusters are sparse, perturbation steps fail to escape
from sub-optimal clusters to the cluster of the global optimum.

The objective of this paper is to complement the recent literature on the
multi-cluster structure of landscapes with a new approach to study this structure,
and to draw conclusions on search difficulty. A method that has been used to
characterize the structure of fitness landscapes are barrier trees [8]. A barrier
tree shows in a hierarchical structure how the local optima basins are connected
in the landscape. The leaf nodes are the local optima and the branching nodes
are the saddle points connecting the basins [9]. Due to the ability of ILS to easily
move from local optimum to local optimum, we are primarily not interested in
the barriers between their basins. The core issue for ILS is that local optima are
clustered. Thus, we need to study which barriers exist between these clusters.
The method we introduce here addresses this purpose. It allows us to compute
a coarse-grained barrier tree and to characterize the landscape on the level of
clusters. To reveal the clustering structure of landscapes, local optima networks
(LONs) [10] have been used. A LON is a compressed representation of a fitness
landscape. In a LON, each node is a local optimum, and the edges represent
the transitions of an algorithm between the basins around the local optima. A
problem with LONs is that it can be difficult to visualize their structure when
they consist of a large number of nodes and edges. To identify clusters in fitness
landscapes, statistical measures have been applied to LONs, e.g. counting the
network graph’s connected components [5] or community detection [7].

The contribution of this paper is to present a modified version of the “flooding
algorithm” which accepts as an input (i) a LON of a fitness landscape and
(ii) a pre-computed clustering structure of the LON. The output is a coarse-
grained picture of the landscape which retains the global structure and allows
the eventual visualization of larger landscapes. We demonstrate our method with
instances of the Kauffman NK model. For each instance, we computed the LON
and the clusters. We obtained the clusters by community detection with the
Markov cluster algorithm [11], as proposed in an earlier study [7]. We analyze
the resulting barrier trees by visual inspection and a statistical approach. We
provide an indication how the structure of the barrier tree is related to the search
difficulty of a landscape.

The article is structured as follows: Section 2 introduces the concept of fit-
ness landscapes for the study of problems and heuristic search. In section 3, we
explain how to construct a standard barrier tree for fitness landscape analysis.
In order to construct a coarse-grained barrier tree (based on the local optima
clusters), we need a method to identify the clustering structure. In section 4, we
introduce local optima networks as a compressed representation of fitness land-
scapes, and the Markov cluster algorithm to reveal the clustering structure of a
fitness landscape. In section 5, we present the algorithm to calculate the coarse-
grained barrier tree of a fitness landscape. We visualize instances and examine
the search difficulty. A brief summary and conclusions are in section 6.



2 Fitness Landscapes

The concept Fitness Landscapes was introduced to study the reproductive suc-
cess of genotypes in theoretical biology [12]. Fitness landscapes have been adopted
in combinatorial optimization to study the structure of problems and the dy-
namics of heuristic search. A fitness landscape is defined as a triplet of the search
space S, the fitness function f , and the neighborhood structure N(S). The search
space S contains all valid solutions. The fitness function f : S → R≥0 assigns a
fitness value to each s ∈ S (we assume non-negative values and a maximization
problem). The neighborhood function N : S → P(S) assigns a set of neighbors
N(s) to every s ∈ S. Two solutions are neighbors if they are mutually reachable
by one step of local search.

A local optimum is a solution that has a higher fitness than its neighbors [13].
A higher number of local optima (modality) leads to a landscape that is more
“rugged”, which increases the search difficulty for local search-based algorithms
[14]. A local optimum is surrounded by a basin of attraction. The basin around
an optimum is the set of solutions from which the optimum attracts a local
search algorithm. We define a function for the basin around a local optimum lo
as B : lo → P(S\LO). B assigns an element from the set of all subsets (power
set P) of solutions over the search space to each local optimum lo ∈ LO (the set
of all local optima).

The Kauffman NK model of landscapes [15] is frequently used for the study of
fitness landscapes. The NK model is a combinatorial optimization problem from
the class of pseudo-Boolean functions. An instance is defined by the two parame-
ters N and K, where N is the number of binary variables. The size of the search
space S is |S| = 2N . K is the number of variables interacting with each other
(epistasis). To instantiate the model, the co-variables are randomly selected. A
higher value of K leads to a higher search difficulty [14]. The distance between
two solutions x, y ∈ S is the number of differing bits (Hamming-distance).

3 Barrier Trees of Fitness Landscapes

Barrier trees were introduced in computational chemistry to study the structure
of potential energy landscapes [16,17], i.e. to examine the barriers that exist
between the optima basins. Barrier trees are sometimes referred to as disconnec-
tivity graphs [18,19]. Even though Barrier trees have been used to study heuristic
search [8,9], the literature on this topic is rather sparse. To construct the bar-
rier tree of a fitness landscape, a database of the local optima (we assume local
maxima in this paper), and the transition states connecting at least two basins
around different local optima, is required. The transition states are also called
saddle points. In a 2-dimensional landscape, a saddle point is a local minimum.
In a higher dimensional landscape, multiple of local minima, connecting two
basins, may exist. In such a case, the saddle point is the local minimum with



maximal fitness. Since the fitness of the saddle point is lower than the fitness of
the two connected local optima, it can be interpreted as a barrier between them:
to move from one of the local optima to the other, an algorithm has to accept
a fitness deterioration down to the level of the local minimum. To visualize the
barrier tree, local optima are identified with leaves, while the branching nodes
represent saddle points separating groups of local optima.

A method to compute the barrier tree of a fitness landscape is the so-called
“flooding algorithm” [9]. We think that a comprehensive understanding of this
method is essential; hence we depict the mechanism in figure 1. For a maximiza-
tion problem, the algorithm iterates over all solutions in the search space in a
descending order (in terms of fitness): the landscape is “flooded”. When a local
optimum is found, a node is added to the barrier tree (steps 1 and 2). When
a saddle point is found, a branching node is added to the tree, and edges are
added to connect the saddle point to the adjacent local optima. From here, the
saddle point now represents the basins of all adjacent local optima (step 3, the
basins are merged by the flooding). This procedure is repeated until the last
local optimum or saddle point has been found (step 4).

Since we are interested in the barriers that exist between the clusters of local
optima in a landscape, we present a variant of the flooding algorithm suitable for
this purpose in section 5. Before, we need to explain how to characterize funnels
in fitness landscapes. For this purpose, we introduce a special representation of
fitness landscapes known as local optima networks (LONs) and a method using
this representation to characterize funnels in the next section (4).

4 Clusters of Local Optima in Fitness Landscapes

Local Optima Networks (LONs) are a novel approach to study the structure of
fitness landscapes [10] and have recently been used to reveal the structure of
multiple clusters [5,7,6,20]. LONs were originally inspired by the study of energy
landscapes [21]. A LON is a complex network in which the nodes represent
the local optima in a landscape (and their basins, resp.). The edges reflect an
algorithm’s transition between the basins. The concept of LONs allows the study
of fitness landscapes from a network perspective and has the potential to deepen
our understanding of metaheuristics and problems.

A network is a graph G = (V,E) with the set of vertices V and the set of
edges E. In a LON, the vertex set V contains the local optima of the fitness
landscape. There exists an edge between two local optima if their basins are
in some way connected, leading to a potential transition between the two local
optima. An escape edge [22] is defined by the distance function of the fitness
landscape d (minimal number of moves between two solutions): there exists a
directed edge exy from local optimum lox to loy if there is a solution s such that
d(s, lox) ≤ D ∧ s ∈ B(loy). The weight wxy of edge exy is the probability that a
search algorithm can escape from the local optimum lox into the basin around
loy. The constant D > 0 determines the maximum distance that an algorithm
uses during a perturbation step.



(1) (2)

(3) (4)

Fig. 1. Four steps of the flooding algorithm, creating the barrier tree of a fitness land-
scape. The vertical axis is the fitness, the horizontal axis is the landscape. Since we use
a maximization problem, the space is “flooded” from the top to the bottom.

To reveal the clustering structure of fitness landscapes, we proposed to apply
“community detection” to local optima networks [7]. Community detection is an
exploratory variant of graph partitioning [23]. The objective of this method is
to partition the network graph in a discipline-related, meaningful way. A very
general definition of a community is a group of nodes that have more links
among each other than to nodes in other communities. However, the definition
of a community depends on the discipline applied and there exists a variety of
algorithms that have been validated for different purposes [24,25].

Community detection in LONs has been done in earlier studies [26,27]. How-
ever, we [7] found that in particular, the Markov Cluster Algorithm (MCL, [11])
is an appropriate method of community detection to detect clusters in LONs
and characterize the clustering structure of fitness landscapes. An explanation
for this is that MCL is based on stochastic flows. LONs model the stochastic
process of an algorithm in a fitness landscape. For this reason, the application
of MCL matches the network model and produces meaningful results.

5 Coarse-Grained Barrier Trees of Fitness Landscapes

In order to escape from a cluster of local optima to another cluster, ILS needs
to pass a barrier by a deterioration of the fitness. To visualize the structure
of the barriers between the clusters in the landscape, we present a variant of



the flooding algorithm [9] as introduced in section 3 and fig. 1. The pseudo
code can be obtained from algorithm 1. As an input, the algorithm accepts

Algorithm 1 Flooding Algorithm for LONs (Maximization Problem)

Require: Local Optima Network G = (V,E), Partition P over V (the cluster sets)
1: Let R be an empty set
2: for all p ∈ P do
3: Add the local optimum of p with max. fitness to R
4: end for{R contains one representing local optimum per cluster in P}
5: Let T = (VTree, ETree) be the empty Barrier Tree
6: Order V by f in descending order
7: for all v ∈ V do
8: if v ∈ R then
9: Add Node v to Barrier Tree VTree

10: else
11: C = {p ∈ P | ∃n ∈ p | ((v, n) ∈ E ∨ (n, v) ∈ E)}
12: {Select those partition sets (clusters) which contain a local

optimum adjacent to v in the LON graph}
13: if |B| > 1 then {v connects at least two clusters, i.e. v is a saddle point}
14: Add Node v to Barrier Tree VTree

15: for all c ∈ C do {For each cluster set c connected to saddle point v}
16: r = c ∧R {Choose node r representing connected cluster set c}
17: Add Edge (v, r) to ETree

18: Update P : Merge Partition set containing v and c
19: Remove r from R {Flood the connected cluster}
20: end for
21: end if
22: end if
23: end for
24: return T

a LON and a partition of the LON’s vertex set, i.e. a set with the clustering
structure of the landscape. To obtain the clusters, we propose to apply the
Markov cluster algorithm to the LON. As a first step, the algorithm selects the
best local optimum for each cluster (set R). Then, the set of local optima nodes
V is ordered by fitness in descending order. The algorithm iterates over each
node. If the node is a representing node (in R), it is added to the barrier tree.
Else, the algorithm determines the number of clusters adjacent to the current
node in the LON. If the number is higher than one, the node is a saddle point
and is also added to the tree. Then, the algorithm connects the saddle point to
the nodes representing the adjacent clusters in the tree. From here, the saddle
point represents all adjacent clusters (“flooding”): the clusters of the current
and all the adjacent nodes are merged in the partition set, and the representers
of the adjacent clusters are removed from R. This process is repeated until the
whole LON is flooded (merged into one partition).



Fig. 2. Local optima network (left) and the coarse-grained barrier tree (right) of an
NK landscape (N = 20, K = 5) with low search difficulty (success rate of ILS: 0.76).
The color of the nodes represents the cluster (global optimum cluster is red in both
graph types). In the tree, the branching nodes are black. In the local optima network,
the size of the node represents the fitness, whereas the node size in the tree is the size
of the cluster by the number of local optima. In the tree, the fitness is visualized by the
node height (higher distance to the root means higher fitness). The layout of the local
optima network is based on the ForceAtlas2 algorithm [28]. The local optima network
shows only the best 20% of nodes (all clusters still visible).

Fig. 3. LON and Coarse-Grained Barrier Tree of an NK landscape (N20, K = 5) with
high search difficulty (success rate of ILS: 0.22). Please cf. fig. 2 for further explanations.

To demonstrate our method, we selected an easy and a hard instance of
the Kauffman NK model (N = 20, K = 5). To determine their difficulty, we
performed 1000 independent runs of ILS per instance and measured the success
rates (0.76 and 0.22). The ILS stopped after a limited number of fitness function



evaluations (1/5th of the search space), or when the global optimum was found.
We extracted the LONs and computed the clusters in both LONs with MCL.
We used the LONs and the clusters to construct the coarse-grained barrier trees
with our variant of the flooding algorithm. Figures 2 and 3 plot the LON and
the corresponding tree. Visual inspection of the LONs (left) confirms that the
clustering as obtained by MCL is meaningful: nodes of the same color have
a higher proximity to their own cluster than to those of a different cluster.
Comparing both barrier trees (right), we observe a much deeper tree and thus a
higher number of barriers in the case of the hard instance.

Even though a deeper study on the search difficulty is out of the scope of this
paper, we conducted a first systematic approach towards this observation. We
generated 200 instances of NK landscapes (N = 20, K = 5). We grouped the
landscapes by the depth of the coarse-grained barrier tree and compared their
difficulties for ILS. The results can be obtained from figure 4. For landscapes
with a very short tree, we observe that the difficulty has a high variety, even
though the median indicates a low difficulty (≈ 0.6). The median success rates
get lower with a deeper tree, which means that their difficulty increases. This
is not surprising: a higher number of barriers should in general lead to a higher
difficulty. This finding is consistent with the previous literature on regular barrier
trees [9], however the observation that many landscapes with a low number of
barriers can be difficult is counter-intuitive. We suggest that in these cases,
additional factors, like the cluster size of the global optimum [7] need to be
considered. We plan to conduct more research towards this direction.

Fig. 4. Success Rate of ILS (difficulty) for different values of tree depth. The median
success rate declines (search difficulty increases) with a higher depth of the tree.



6 Summary & Conclusion

As our main contribution, we presented a new method to visualize fitness land-
scapes and characterize them by the barriers that exist between clusters of local
optima in fitness landscapes. The existence of a multiple-cluster structure has
recently emerged [6,7] as a refinement of the big valley hypothesis. We applied
our method to a limited set of instances of the NK model. Our results suggest
that the number of barriers might be related to the search difficulty of the land-
scapes. This is consistent with previous findings on difficulty in the literature
[9]. A possible explanation is that the existence of barriers prevents ILS from
escaping local optima clusters. This finding is rather preliminary and needs fur-
ther investigation. Other structural properties of the landscapes must be taken
into consideration, too. For further research, it would be interesting to see how
the coarse-grained trees looks for NK landscapes with higher levels of epistasis.
It is also unclear whether or not there are differences between the NK model
with random and adjacent co-variables. The adjacent NK model is in general
considered to be solved with less effort. It would be worthwhile to examine if the
number of barriers is different between both models. We think that the method
introduced here points to a new direction in studies of fitness landscapes.
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