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Abstract
The error threshold of replication is an important notion of the quasispecies evolution
model; it is a critical mutation rate (error rate) beyond which structures obtained by
an evolutionary process are destroyed more frequently than selection can reproduce
them. With mutation rates above this critical value, an error catastrophe occurs and
the genomic information is irretrievably lost. Therefore, studying the factors that alter
this magnitude has important implications in the study of evolution. Here we use
a genetic algorithm, instead of the quasispecies model, as the underlying model of
evolution, and explore the existence of error thresholds on complex landscapes. We
also study the effect of modifying the most prominent evolutionary parameters on the
magnitude of this critical value. Error thresholds were found to depend mainly on the
selection pressure and genotype length. Our empirical study verifies the occurrence of
error thresholds in evolving populations of bit strings using a genetic algorithm. In this
way, the notion of error threshold is brought from molecular evolution to evolutionary
computation.
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1 Introduction

Quasispecies theory was derived by Eigen and Schuster (1979) to describe the dynam-
ics of replicating nucleic acid molecules under the influence of mutation and selection.
The theory was originally developed in the context of pre-biotic evolution (studies of
the origin of life), but in a wider sense it describes any population of reproducing organ-
isms. The Quasispecies model has been acknowledged as extremely useful in studying
the behavior of populations evolving on a given landscape (Peliti, 2002), and has be-
come a standard model to describe molecular and viral evolution (Kamp et al., 2003). A
quasispecies is defined as the stationary population distribution of replicating macro-
molecules under mutation and selection. The most prominent feature of quasispecies
is the existence of an error threshold of replication. If replication were error free, no
mutants would arise and evolution would stop. On the other hand, evolution would
also be impossible if the error rate of replication were too high (since selection would
not be able to maintain the genetic information in the population). The notion of error
threshold imposes an upper bound for the mutation rate, beyond this critical value an
error catastrophe occurs and the genetic information is irrecoverably lost.

The notion of error threshold is intuitively related to the idea of an optimal balance
between exploitation and exploration in genetic search. Too low a mutation rate implies
too little exploration; in the limit of zero mutation, no new individuals would arise
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and the search process would stagnate. On the other hand, with an excessively high
mutation rate, the evolutionary process would degenerate into random search with no
exploitation of the information acquired in preceding generations. Any optimal mu-
tation rate must lie between these two extremes, but its precise position will depend
on the other evolutionary parameters and the characteristics of the problem at hand.
It can, however, be postulated that a mutation rate close to the error threshold would
be optimal for the problem under study, because it would maximize the search done
through mutation subject to the constraint of not losing information already gained.
Some biological evidence supports the idea that evolution is effective close to the error
threshold; certain viruses (such as the HIV virus), which are very efficient evolving en-
tities, seem to operate very close to their error threshold (Nowak and Schuster, 1992;
Bonhoeffer and Stadler, 1993). Moreover, the existence of a relationship between error
thresholds and optimal mutation rates has been suggested before in the evolutionary
computation community (Hesser and Männer, 1991; Kauffman, 1993). Also, this idea
is implicitly suggested by Harvey (1991) , who presents a GA framework (SAGA) spe-
cially designed for evolving genetically converged populations of variable length geno-
types. Finally, in (Ochoa et al., 1999) we explicitly tested, using an empirical approach,
the hypothesized relationship between error threshold, our results suggested that these
notions are indeed correlated.

In (Ochoa and Harvey, 1998) we demonstrated empirically the existence of error
thresholds on two simple landscapes (isolated peak, and plateau) using a standard
GA; it was also shown that recombination, in those landscapes, shifted error thresh-
olds toward lower values. The present study extends those findings by studying more
complex landscapes. The division between simple and complex is somewhat arbitrary.
The isolated peak landscape is an extreme uncorrelated landscape, the plateau is less
extreme but still highly uncorrelated. This work, on the other hand, explores corre-
lated landscapes, and study the effect of modifying the most prominent evolutionary
parameters on the magnitude of error thresholds. This study complements a previous
contribution where consensus sequence plots (see section 3) and error thresholds were
presented as tools for visualizing the structure of fitness landscapes (Ochoa, 2000)

Section 2 describes the test problems used: both abstract landscapes and real-world
applications. Section 3 describes the consensus sequence plots. These plots, borrowed
and adapted from theoretical biology, constitute an empirical approach for locating
error thresholds on general landscapes. Section 4 uses consensus sequence plots, on
two fixed abstract problems, to explore the effect of changing various evolutionary
parameters on the magnitude of error thresholds. The closing empirical section (section
5), explores whether error thresholds may be identified on real-world applications.

2 Test Problems

Two groups of test problems were considered. First, two families of abstract fitness
landscapes: Royal Staircase functions, and NK landscapes. This selection is consistent
with our belief that ruggedness and neutrality are two important landscape features
found in real-world applications. The Royal Staircase family of functions is a very
simple class of functions that allows neutrality to be modelled and tuned. The NK
family of landscapes is a problem-independent model for constructing landscapes that
can gradually be tuned from smooth to rugged.

Second, in order to study whether the issues explored here carried over from ab-
stract landscapes to real-world applications, two real-world domains were selected: a
combinatorial optimization problem — the Multiple Knapsack problem, and an en-

2 Evolutionary Computation Volume x, Number x



Error Thresholds in Genetic Algorithms

gineering problem — the design of an optimal aircraft Wing-Box. This selection was
somewhat arbitrary, but again is consistent with the following criteria. First, both are
complex problems: the Wing-Box is an engineering design problem based on real data
and constraints, and the Multiple Knapsack is a highly constrained combinatorial op-
timization problem known to be NP -hard. Second, both problems were available and
relatively easy to implement, and third, both have a natural bit string encoding which
was a requirement for the study of error thresholds.

2.1 Royal Staircase Functions

The Royal Staircase 1 class of functions was proposed by Nimwegen and Crutchfield
for analyzing epochal evolutionary search. They justify their particular choice of fit-
ness function both in terms of biological motivations and artificial evolution issues.
Although simple, Royal Staircase functions capture some essential elements found on
complex problems, namely, highly degenerate genotype-to-phenotype maps, and the
existence of extended neutral networks (i.e. sets of equal-fitness sequences that can
reach each other via elementary genetic variation steps such as point mutation). The
working hypothesis is that many real search problems have genotype search spaces
which decompose into a number of such neutral networks. This idea is supported
by observations in problem domains as diverse as molecular folding (Schuster, 1994),
evolvable hardware (Harvey and Thompson, 1996; Vassilev et al., 1999), and evolution-
ary robotics (Harvey et al., 1997). One symptom of evolutionary search in the presence
of neutral networks is the existence of long periods of fitness stasis (search along a
neutral network) punctuated by occasional fitness leaps (transitions to a higher neutral
network). The Royal Staircase class of fitness functions capture these essential elements
in a simplified form (van Nimwegen and Crutchfield, 1998). A formal definition of the
Royal Staircase class of functions is given below.

1. Genotypes are specified by binary strings s = s1s2 . . . sL, si ∈ {0, 1}, of length
L = NK, where N is the number of blocks and K the number of bits per block.

2. Starting from the first position, the number I(s) of consecutive 1s in a string is
counted.

3. The fitness f(s) of string s with I(s) consecutive ones, followed by a zero, is f(s) =
1+ bI(s)/Kc. The fitness is thus an integer between 1 and N +1, corresponding to
1 plus the number of consecutive fully-set blocks starting from the left.

4. The single global optimum is s = 1L; namely, the string of all 1s.

Fixing N and K determines a particular problem or fitness landscape.

2.2 NK Landscapes

The NK family of landscapes was introduced by Kauffman (1989) in order to have a
problem-independent model for constructing fitness landscapes that can gradually be
tuned from smooth to rugged. In the NK model, N refers to the number of genes in
the genotype (i.e. the string length) and K, to the number of genes that influence a
particular gene 2. In other words, the fitness contribution of each gene is determined
by the gene itself plus K other genes in the genotype. According to Kauffman, most

1These functions are related to the more familiar Royal Road functions (Mitchell et al., 1992).
2Notice that the meaning of parameters N and K differs from their meaning on the Royal Staircase class

of functions.
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properties of this model are independent of the alphabet size A, hence the simplest case
of A = 2 (i.e. bit strings) is considered here.

By increasing the value of K from 0 to N − 1, NK landscapes can be tuned from
smooth to rugged. When K is small, neighboring strings will have small differences in
fitness, because the bits that are different in the two strings will influence the contribu-
tion of only few bits in each string. The extreme case of K = 0 yields a single-peaked
and smooth ‘Fujiyama’ landscape. When K is large, on the other hand, neighboring
strings will have large differences in fitness, because the differing bits of the two strings
will influence the fitness of a large number of bits in each string. When K assumes its
largest possible value (K = N − 1), the fitness landscape will be completely random or
“uncorrelated”, because changing the value of only one bit changes the fitness contri-
bution of all bits in the string, so the overall fitness of neighboring strings will be totally
different. The NK landscape, however, was invented not to explore the two extreme
landscapes, but to have a model which allows the construction of an ordered family of
tunable correlated landscapes.

2.3 Multiple Knapsack

The combinatorial optimization problem described here, called the 1/0 multiple knap-
sack problem, follows the specifications given by Khuri et al.(Khuri et al., 1994). This
problem is a generalization of the 0/1 simple Knapsack problem where a single knap-
sack of capacity C, and n objects are given. Each object has a weight wi and a profit
pi. The objective is to fill the knapsack with objects producing the maximum profit
P . In other words, to find a vector x = (x1, x2, . . . , xn) where xi ∈ {0, 1}, such
that

∑n
i=1 wixi ≤ C and for which P (x) =

∑n
i=1 pixi is maximized. The multiple

version consists of m knapsacks of capacities c1, c2, . . . , cm and n objects with profits
p1, p2, . . . , pn. Each object has m possible weights: object i weighs wij when consid-
ered for inclusion in knapsack j (1 ≤ j ≤ m). Again, the objective is to find a vector
x = (x1, x2, . . . , xn) that guarantees that no knapsack is overfilled:

∑n
i=1 wijxi ≤ cj for

j = 1, 2, . . . ,m; and that yields maximum profit P (x) =
∑n

i=1 pixi. This problem leads
naturally to a binary encoding. Each string x1x2 . . . xn represents a potential solution. If
the ith position has the value 1 then the ith object is in all knapsacks; otherwise, it is not.
Notice that a string may represent an infeasible solution. A vector x = (x1, x2, . . . , xn)
that overfills at least one of the knapsacks; i.e., for which

∑n
i=1 wijxi > cj for some

1 ≤ j ≤ m, is an infeasible string. Rather than discarding infeasible strings, the ap-
proach suggested by Khuri et al. (Khuri et al., 1994) is to allow infeasible strings to join
the population. A penalty term reduces the fitness of infeasible strings. The farther
away from feasibility, the higher the penalty term of a string.

The multiple-knapsack problem instance selected here contains 30 sacks and 60 ob-
jects (that is a string length of 60); its known optimum is 7772. This instance is available
online from the OR-library (Beasley, 1990), where it is identified as “Sento 1”.

2.4 Wing-Box Problem

For the Wing-Box problem (McIlhagga et al., 1996) an industrial partner, British
Aerospace, provided data from a real Airbus wing box. A common problem when
designing aircraft structures, is to define structures of minimum weight that can with-
stand a given load. Figure 1 sketches the elements of a wing relevant to this problem.
The wing is supported at regular intervals by slid ribs which run parallel to the air-
craft’s fuselage. On the upper part of the wing, thin metal panels cover the gap sep-
arating adjacent ribs. The objective is to find the number of panels and the thickness
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of each of these panels while minimizing the mass of the wing and ensuring that none
of the panels buckle under maximum operational stresses. For the experiments in this
paper, the number of panels was set to 50. For encoding an individual, 13 bits were re-
quired for the first panel, and 3 for each of the others 49 panels, that is 13+3×49 = 160
bits.

Fuselage

Top panel

Cavity

Ribs

Rib pitch

Figure 1: Relevant elements of a wing. Wing dimensions are fixed. The variable elements are
the number of ribs and the thickness of the top panels.

3 Consensus Sequence Plots

The work of Bonhoeffer and Stadler (1993) studied the evolution of quasispecies on two
correlated fitness landscapes, the Sherrington Kirkpatrick spin glass and the Graph
Bipartitioning landscape. The authors described an empirical approach for locating
thresholds on complex landscapes. In this section, this approach is borrowed and
adapted. Instead of the quasispecies model, a GA is used as the underlying model
of evolution. The resulting method can be applied for identifying error thresholds in
GAs running on general complex landscapes. The approach is to calculate and plot
the consensus sequence at equilibrium for a range of mutation rates. The consensus
sequence in a population is defined as the sequence of predominant symbols (bits) in
each position; it is plotted as follows: if the majority of individuals has a ‘1’ or ‘0’ in
a position i the field is plotted white or black, respectively. The field is plotted grey if
the position is undecided. Figure 2, shows an hypothetical population and calculates
its consensus sequence. The plot shown in Figure 2 will correspond to a single line
in a full consensus sequence plot where the per bit mutation rate is varied (see Figure
?? for an example of a full plot). The equilibrium state is reached when the proportion
of different sequences in the population is stationary. This happens when evolution
is simulated for a large enough number of generations. In practice, it is considered
that the equilibrium is reached when several parameters of the population (e.g. the
maximal and average fitness) reach equilibrium. According to Bonhoeffer and Stadler
(1993) the error threshold may be approached from below or above, with both methods
producing similar results.

3.1 Approaching the error threshold from below

To approach the error threshold from below, the simulation starts with a homogeneous
population at the global optimum. This approach requires knowing the optimal string
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Figure 2: Calculating and plotting the consensus sequence of a population.

beforehand. Then, the population is allowed to reach equilibrium at a constant muta-
tion rate of 0.0. Afterwards, the mutation rate is increased by a fixed, small step and the
computation is continued with the current population. This process is repeated until a
predefined maximum for the mutation rate is reached. The plot summarizes a single
run, there is no averaging of multiple runs.

3.2 Approaching the error threshold from above

To approach the error threshold from above, the simulation starts with a random pop-
ulation. Then the population is allowed to reach equilibrium at a constant predefined
maximum for the mutation rate3. Afterwards, the mutation rate is decreased by a fixed
small step and the computation continues with the current population. This process
is repeated until the mutation rate is 0.0. Notice that, in this case, it is not necessary
to know the optimal string. Hence, in principle, this approach can be used for locating
the error threshold on any complex landscape. Again the plot summarizes a single run,
there is no averaging of multiple runs.

For both approaches, the consensus sequence in the population is calculated and
plotted at the end of each simulation cycle for each mutation step. The error threshold
is characterized by the loss of the consensus sequence, i.e. the genetic information of the
population. Beyond the error threshold the consensus sequence is no longer constant
in time (see Figure 4).

4 Error Thresholds and Evolutionary Parameters

This section uses consensus sequence plots to explore the effect of modifying the values
of various evolutionary parameters on the magnitude of error thresholds. Unless oth-
erwise stated, experiments use a generational GA with fitness proportional selection,
a population of 100 members, and no recombination, i.e., asexual reproduction. Table
1 summarizes these default settings. Two instances of landscapes were selected as de-
fault test problems: a Royal Staircase function with number of blocks N = 3, and block
size K = 10; and a NK landscape with string length N = 24, and degree of epistatic
interaction K = 10. Table 2 summarizes the default test problems used in most experi-
ments. Further details on the experiments and departures from the default setting are
given in the respective subsections.

3This value has to be high enough to be above the error threshold for the landscape under study.
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Population replacement Generational
Selection Scheme Proportional
Population size 100
Recombination rate 0.0 (Asexual)
Generations (per mutation rate) 10,000

Table 1: GA default parameters used in the experiments.

Landscape Setting String length
NK N = 24, K = 10 24
Royal Staircase N = 3, K = 10 30

Table 2: Default test problems used in the experiments.

A group of preliminary studies carried out in (?), confirmed that: (i) error thresh-
olds approached from below and above produce similar results, (ii) the error threshold
magnitude is independent of the particular initial population; and (iii) the error thresh-
old is similar for different instances of an NK landscape with fixed N and K. Hence,
the approach followed here for estimating error thresholds is to approach them from
above, that is from a random population, and using a fixed random seed for gener-
ating the initial population in all cases; and for the NK landscape, selecting a single
landscape instance. Notice approaching error thresholds from above is a more general
method, given that it does not require knowing the optimal string beforehand.

4.1 Genotype Length

The analytical expression of the error threshold on a single peak landscape: p = ln(σ)
L

suggests that it decreases in proportion to the string length (L). The following exper-
iments explore whether this is also the case on correlated landscapes. On both test
problems, the plots shown below illustrate the existence of a stable consensus sequence
for mutation rates below the error threshold. The consensus sequence is the string of
all 1’s for the Royal Staircase, and one particular local optima for the NK Landscape.
Moreover, for the Royal Staircase different error thresholds for each fitness level or step
can also be observed. Figure 3 compares error thresholds on Royal Staircase functions
of increasing length. The number of blocks N = 3 is kept constant, while the block size
is increased from 10 to 12 and 14. Results on the Royal Staircase function suggest that
error thresholds (for all fitness levels or steps) decrease as a function of the genotype
length. In other words, the longer the genotype the lower the error threshold. This
effect is more noticeable for the first and second step transitions.

Figure 4 compares consensus sequence plots on NK landscapes of increasing
genotype length. The parameter K = 10 (degree of epistatic interactions) is kept con-
stant, while the string length is varied from 24 to 20 and 28. Results on the NK land-
scape confirm that even small increases in genotype length, decrease the magnitude of
the error threshold. The effect is more noticeable when increasing the genotype length
from 20 to 24 than from 24 to 28. It should be noticed that the error threshold, if ex-
pressed as mutations per string, slightly decreases with each increase in string length,
being 0.6 for L = 20, 0.5 for L = 24, and 0.4 for L = 28. These differences may be due
to differences in the overall landscape ruggedness. In other words, although K is the
same for all landscapes, the string length (N ) varies, which in turns modifies the over-
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Figure 3: Error thresholds and genotype length. Consensus sequence plots on Royal Staircase
functions with N = 3 and K = 10, 12, and 14 (i.e. string lengths of 30, 36 and 42). The vertical
axis shows per bit mutation rates (m/b).

all NK landscape structure. This is just a suggested explanation, these results deserve
further investigation.
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Figure 4: threshold and genotype length. Consensus sequence plots on NK landscapes
with K = 10 and N = L = 20, 24, and 28. The vertical axis shows per bit mutation rates
(m/b).

From now on, given that error thresholds were shown to depend on the length of
genotypes, mutation rates will be expressed as mutations per genotype (m/L where
L is the string length) instead of as mutations per bit. Expressing mutation rates per
genotype will be more informative when looking for general principles about parame-
ter interactions, since heuristic such as a mutation rate of 1/L can be identified.

4.2 Selection Pressure

The analytical expression of the error threshold on a single peak landscape (Equation
??), suggests that it increases in direct proportion to the strength of selection. The fol-
lowing set of experiments explores whether this is also the case on correlated land-
scapes. These experiments use tournament selection because this selection scheme al-
lows explicit control over the selection pressure. A common tournament size is 2, but
selection pressure increases steadily for growing tournament sizes. Figure 5 shows the
effect of increasing tournament sizes on the error threshold on both the Royal Staircase
and NK landscapes. For both landscapes, the plot using fitness proportional selection
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is also included for the sake of comparison.
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Figure 5: Error thresholds and selection pressure. Consensus sequence plots on the selected
test problems for tournament sizes of 2, 4, and 6. The plots using proportional selection are also
included for the sake of comparison. The vertical axis shows mutation rates per genotype (m/L).

Results on both landscapes show that the strength of selection has a pronounced
effect on the error threshold. For increasing tournament sizes (increasing selection pres-
sures) there is a noticeable increase in the magnitude of the error threshold. On the
Royal Staircase, the effect is more noticeable for the first and second step transitions.
Notice that on the NK landscape (Figure 5, bottom), the error threshold for propor-
tional selection is much lower than for tournament selection.

4.3 Population Size

This section explores the effect of modifying the population size on the magnitude of
error thresholds. The work by Nowak and Schuster (1989) , extended the calculations
of the error threshold on a single peak landscape from infinite to finite populations. In
(Ochoa and Harvey, 1998) we show a reformulation of Nowak and Schuster’s analyt-
ical expression, which explicitly approximates the extent of the reduction in the error
threshold as we move from infinite to finite populations. The expression is an infinite
series in which successive terms get smaller; here, only the first few are shown (pM is
the critical rate for a population of size M ):

pM =
ln(σ)

L
− 2

√
σ − 1

L
√

M
+

2ln(σ)
√

σ − 1
L2
√

M
(1)

Thus, according to the expression, the error threshold increases with the size of the
population given that the second term (the 2nd. greatest of the series) is subtracting
and the population size appears in the denominator.

4.3.1 Preliminary Study
As a preliminary study, we compared theoretical error thresholds on a single peak land-
scape (calculated using Equation 1), with empirical error thresholds estimated using
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consensus sequence plots, on the same landscape for various population sizes. Fig-
ure 6 shows results of this comparison. The empirical error thresholds were estimated
using consensus sequence plots starting from below on a single run. The GA was al-
lowed to run 10,000 generations for each mutation rate (that is, each line of the plot).
An acceptable agreement between theory and practice was found. It can be noticed,
however, that the difference increases with the size of the population. This may be
due to difficulties in reaching the steady-state distribution of the population for higher
population sizes. In other words, reaching the steady-state for large populations may
require an impractically large number of generations. Differences may also be due to
distinct models of evolution. That is, Equation 1 was derived using the quasispecies
model, whereas empirical error thresholds were estimated using a GA as the underly-
ing model of evolution.

Error Thresholds on Single Peak Landsape
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Figure 6: Comparing empirical vs. theoretical error thresholds on a single peak landscape for
various population sizes.

4.3.2 Main Study
The preliminary study discussed above suggests that the error threshold increases with
increasing population size on a single peak landscape. The next step would be, then, to
explore whether the same effect is observed on correlated landscapes. Figure 7 shows
the consensus sequence plots for population sizes of 10, 20, 50, and 100; on the two
default test problems.

Results on the Royal Staircase function show that error thresholds (for all fitness
levels or steps) increase with increasing population size. The effect is more marked on
small populations (sizes 10 and 20), and on error thresholds for the first and second
step. Results on the NK landscape confirm the increase on error thresholds with in-
creasing population size. Again differences are more noticeable for small populations,
and tend to stabilize for larger populations (sizes 50 and 100).

4.4 Steady State Population Replacement

This set of experiments compares error thresholds using generational and steady-state
population replacement. In both cases tournament selection (with tournament size of
2) was used. Three types of steady-state GAs were implemented:
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Figure 7: Error thresholds and population size. Consensus sequence plots on the selected test
problems for population sizes of 10, 20, 50, and 100. The vertical axis shows mutation rates per
genotype (m/L).

1. Using tournament selection for parents, and random selection for individuals that
are to be replaced

2. Using random selection for parents, and inverse tournament selection for individ-
uals that are to be replaced

3. Using tournament selection for parents, and inverse tournament selection for in-
dividuals that are to be replaced

Figure 8 shows the consensus sequence plots for generational replacement and the
three types of steady-state replacement discussed above, on the two default test prob-
lems. Results on both test problems suggest that error thresholds depend upon the type
of steady-state GA used. For type 1, the error threshold is similar to that of generational
replacement, although slightly lower. On the other hand, for the other two types of re-
placement, which include inverse tournament selection for individuals that are to be
replaced, the error threshold is noticeably higher (being highest for type 3). This last
result is to be expected given that this method imposes the highest selection pressure
of the three, since there is selection on parents and individuals that are to be replaced
(recall from Section 4.2 that error thresholds are higher for higher selection pressures).
Following this line of reasoning, results suggest that inverse tournament selection on
individuals that are to be replaced, imposes a higher selection pressure than tourna-
ment selection on parents. This suggestion is supported by results in evolutionary
strategies (Bäck, 1996), which points out that extinctive selection (i.e. a selection scheme
that definitely excludes some individuals from being selected) imposes a much higher
selection pressure as compared to preservative selection (i.e. a selection scheme that al-
ways assign selection probabilities greater than zero to all individuals). The presence
of implicit elitism on steady-state replacement of types 2 and 3, may also accounts for
the observed differences on the error thresholds.
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Figure 8: Error thresholds and population replacement. Consensus sequence plots on the se-
lected test problems for generational and steady-state population replacement. Three types of
steady-state replacement were tested: (1) applying tournament selection on parents and select-
ing individuals that are to be replaced at random, (2) selecting parents at random and applying
inverse tournament selection on individuals that are to be replaced, (3) applying tournament se-
lection on both parents and individuals that are to be replaced. The vertical axis shows mutation
rates per genotype (m/L).

4.5 Recombination

The work of Bonhoeffer and Stadler (1996), and our replication of this work using GAs
(Ochoa and Harvey, 1998), suggest that recombination shifts the error threshold toward
lower values on the single peak and plateau landscapes. The following set of experi-
ments explores whether this is also the case on correlated landscapes. Two types of
recombination were considered: 2-point and uniform, both with a rate of 1.0. Figure
9 shows the effect of recombination on the Royal Staircase (top) and NK landscape
(bottom) using 2-point and uniform crossover. For both landscapes the consensus se-
quence plot without recombination (i.e. crossover rate = 0.0) is included for the sake of
comparison.

On the Royal Staircase function (Figure 9, top) error thresholds for all the steps
are lower when recombination is used. The plots with no recombination and 2-point
recombination are qualitatively similar, whereas the plot using uniform recombination
is different in that the transitions for the three steps are closer to one another. On the
NK landscape with K = 10 (Figure 9, bottom), there is no noticeable difference in the
magnitude of the error threshold with and without recombination. Results from (Ochoa
and Harvey, 1998) suggest that the effect of recombination on the error threshold is
related to the ruggedness of the landscape. Hence, an extra set of experiments explores
the effect of recombination on a NK landscape with increased ruggedness (N = 24 and
K = 12). On this new NK landscape (Figure 10) the error threshold is lower when
recombination is used. Results are similar for 2-point and uniform recombination.
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Figure 9: Error thresholds and recombination. Consensus sequence plots on the selected test
problems with and without recombination. Both two-point and uniform recombination (with a
rate of 1.0) were tested. The vertical axis shows mutation rates per genotype (m/L).
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Figure 10: Error thresholds and recombination. Consensus sequence plots on a NK landscape
with increased ruggedness (K = 12). Both two-point and uniform recombination (with a rate of
1.0) are tested. The vertical axis shows mutation rates per genotype (m/L).

4.6 Discussion

This section explored the effect of changing the values of various evolutionary param-
eters on the magnitude of error thresholds. A few instances of Royal Staircase and
NK landscapes were used as test problems. The effect of these various evolutionary
parameters are summarized below:

• Genotype length: Results suggest that error thresholds decrease as a function of
the genotype length. In other words, the longer the genotype the lower the error
threshold.
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• Selection Pressure: Results suggest that the strength of selection has a pronounced
effect on the error threshold. For increasing selection pressures there is a noticeable
increase in the magnitude of error thresholds. Depending on the fitness function,
the use of proportional selection may produce much smaller error thresholds as
compared to tournament selection.

• Population Size: Results show that error thresholds increase with increasing pop-
ulation size. This effect is more marked on small populations (smaller than 50).
Differences on the error thresholds stabilize for larger populations; error thresh-
olds for population sizes of 50, 100 and larger are quite similar.

• Steady State Population Replacement: Results suggest that error thresholds de-
pend upon the type of steady-state GA used. When using tournament selection
for parents and random selection for individuals that are to be replaced, the er-
ror threshold is similar to that of generational replacement. On the other hand,
when the steady-state GA includes inverse tournament selection for individuals
that are to be replaced (which is known to impose a higher selection pressure),
the error threshold is noticeably higher. These results suggest that the magnitude
of the error thresholds depend more on the selection pressure than on the type
of replacement. That is, inverse tournament selection on individuals that are to be
replaced, imposes a higher selection pressure, which in turn explains the higher er-
ror threshold. Also the implicit elitism on some types of steady-state GA accounts
for the differences observed on the error threshold magnitudes.

• Recombination: For discontinuous functions (Royal Staircase), and very rugged
landscapes (NK landscapes with K > 10) error thresholds are slightly lower when
recombination is used, of the order of 0.2 mutations per genotype. Similar results
were obtained for uniform and two-point recombination. However, this effect of
recombination was not observed on less rugged landscapes and real-world do-
mains ((Ochoa, 2000) and Section 5).

5 Error Thresholds in Real-World Domains

This closing empirical section explores whether error thresholds can be observed in
real-world applications. All the experiments used a generational GA with tournament
selection (tournament size of 2), and a population of size 100. The GA was run in two
modes: (i) using mutation only (Asexual), and (ii) using both mutation and recombi-
nation (Sexual). The recombination operator used was two-point recombination with a
rate of 1.0. The mutation rate range explored was from 0.0 to 5.0 mutations per geno-
type with a step of 0.1. Each simulation cycle lasted 15,000 generations. Error thresh-
olds were approached from above, that is, starting from a random population and a
high mutation rate.

5.1 Wing-Box Problem

Figure 11 shows results on the Wing-Box problem for asexual and sexual GAs. The
plots show the existence of a stable consensus sequence for mutation rates below the
error threshold. The error threshold is visualized as the transition from a stable consen-
sus sequence to a random sequence of bits. For most of the bits, the transition occurs
around 1.5 mutations per genotype. An exception is the portion of bits from 11 to 16,
which are randomized even for low mutation rates. These bits correspond to the less
significant digits of the thickness of the first panel, and the relative thickness of the

14 Evolutionary Computation Volume x, Number x



Error Thresholds in Genetic Algorithms

second panel. Given the characteristics of the problem, these bits are neutral in that
changes to them are not reflected in the overall fitness of the wing-structure. Also,
there is a region from bit 75 to bit 125 where the consensus sequence seems more stable
for higher mutation rates. Finally, there are no clear differences between the asexual
and sexual GA regarding the magnitude of error thresholds.
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Figure 11: Error thresholds on the Wing-Box problem for both asexual and sexual GAs. The
vertical axis shows mutation rates per genotype (m/L).

5.2 Multiple Knapsack Problem

Four multiple-knapsack instances, taken from the literature, were selected as test prob-
lems. Problem sizes ranged from 50 to 105 objects and from 2 to 30 knapsacks. Table
3 summarizes the problem instances tested. These (and several other) problems are
available online from the OR-library (Beasley, 1990).

Instance Objects Sacks
Weish 12 50 5
Sento 1 60 30
Weing 7 105 2
Weish 30 90 5

Table 3: Multiple Knapsack problem instances tested.

Figure 12 shows the consensus sequence plots on the four Knapsack instances se-
lected, asexual (top) and sexual (bottom). Results on the four instances confirm the ex-
istence of error thresholds on this real-world application. The error threshold is again
visualized as the transition from a stable consensus sequence to a more randomized
sequence of bits. The transition in all the instances occurs at approximately 1.0 – 1.2
mutations per genotype. Notice that in all instances there are some regions of the geno-
type where the consensus sequence is more stable for mutation rates beyond the error
threshold. There are no clear differences between the GA with and without recom-
bination regarding the magnitude of error thresholds. However, the transitions looks
sharper, and thus the consensus sequences less stable, for the GA without recombina-
tion (asexual). This may be due to the use of two-point recombination. It is known that
two-point recombination is a less disruptive operator than mutation alone or uniform
recombination.
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Figure 12: Error thresholds on four instances of the Multiple Knapsack problem. Results for
asexual (top) and sexual (bottom) GAs are presented. The vertical axis shows mutation rates per
genotype (m/L).

5.3 Discussion

This closing empirical section explored error thresholds on real-world domains. Re-
sults show that error thresholds can also be found on these two complex real-world
applications. It should be noticed, however, that other real-world applications might
have very different characteristics. No major differences were noticed in the magnitude
of error thresholds on GAs with and without recombination. In all scenarios, for the
particular GA selected: tournament selection (tournament size of 2), population size of
100, and generational replacement, the error threshold was located at approximately
1.0 – 1.5 mutations per genotype.

6 Conclusions

This study verifies the occurrence of error thresholds in evolving populations of bit
strings using a GA (with and without recombination). Error thresholds were observed
on several landscapes, including real-world domains. In this way, the notion of error
threshold, (already introduced for very simple landscapes in (Ochoa and Harvey, 1998))
is brought to evolutionary computation.

We also described the consensus sequence plots, firstly introduced in (Ochoa, 2000).
These plots, borrowed and adapted from theoretical biology (Bonhoeffer and Stadler,
1993), are new to the evolutionary computation community. They represent a novel
way to visualize the structure of fitness landscapes, since features such as the presence
of steps or discontinuities can be noticed. Moreover, the degree of ruggedness in a land-
scape was revealed by these plots. Consensus sequence plots may also serve as a tool
to differentiate critical (and less critical) areas in the genotype, which may have prac-
tical implications when tackling real-world problems. First, it may be possible to infer
important knowledge about an applied problem. Second, it may be possible to refine
the genotype representations and optimal schedules for mutation rates. This may be
possible on some classes of problems, as for instance the Wing-Box and Knapsack prob-
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lems, where producing the consensus sequence plot took few hours (on a standard Sun
SPARC Station). However, consensus sequence plots are computationally expensive
and may be infeasible for other present-day challenging problems.

The major lesson learned from this study is that error thresholds depend mainly
on the selection pressure and the genotype length, regardless of the landscape under
study, as long as the landscape is rugged. This knowledge may suggest useful heuris-
tics for setting near-optimal mutation rates. In particular, the suggestion of setting a
mutation rate of 1/L (one mutation per genotype), is supported by the experiments in
this study, but only on rugged landscapes, population sizes greater than 50, and selec-
tion schemes imposing a selection pressure similar to that of tournament selection with
a tournament size of 2. This figure (a mutation rate of 1/L) has appeared several times
in the evolutionary computation literature. The earliest appearance we can trace back
was due to Bremerman (1966) as quoted by Bäck” (1996) . Also, De Jong (1975) sug-
gested this value as quoted by Hesser and Männer (1991) . The work of Mühlenbein
(1992) states that pm = 1/L is optimal for general unimodal functions. This setting has
also produced good results for several NP-hard combinatorial optimization problems
such as the multiple knapsack problem (Khuri et al., 1994), the minimum vertex cover
problem (Khuri and Bäck, 1994), and the maximum independent set problem (Bäck and
Khuri, 1994). The work of Smith and Fogarty found 1/L as the best fixed setting for
the mutation rate, giving results comparable to their best self-adaptive method. Other
authors have found a dependence of effective mutation rates upon the string length
L, although they had not explicitly suggested pm = 1/L (Schaffer et al., 1989; Hesser
and Männer, 1991; Bäck, 1992; Bäck, 1993). Finally, The 1/L heuristic is most proba-
bly applicable on landscapes with little or no redundancy. As suggested by Harvey
and Thompson (1996) , in the presence of redundancy or ‘junk’ this heuristic should be
adjusted so as to give an expected 1 mutation per non-redundant part of the genotype.
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