
On Genetic Algorithms and Lindenmayer Systems

Gabriela Ochoa

COGS – School of Cognitive and Computing Sciences
The University of Sussex

Falmer, Brighton BN1 9QH, UK

Abstract. This paper describes a system for simulating the evolution of artificial
2D plant morphologies. Virtual plant genotypes are inspired by the mathemati-
cal formalism known as Lindenmayer systems (L-systems). The phenotypes are
the branching structures resulting from the derivation and graphic interpretation
of the genotypes. Evolution is simulated using a genetic algorithm with a fitness
function inspired by current evolutionary hypotheses concerning the factors that
have had the greatest effect on plant evolution. The system also provides inter-
active selection, allowing the user to direct simulated evolution towards pre-
ferred phenotypes. Simulation results demonstrate many interesting structures,
suggesting that artificial evolution constitutes a powerful tool for (1) exploring
the large, complex space of branching structures found in nature, and (2) gen-
erating novel ones. Finally, we emphasize that Lindenmayer systems constitute
a highly suitable encoding for artificial evolution studies.

0. Introduction

Natural computation techniques can play a vital role in computer graphics, anima-
tion, and virtual reality. Several models have been developed that realistically emu-
late a broad variety of living beings, from lower organisms all the way up the evolu-
tionary ladder to humans (Dawkins, 1986; Oppenheimer, 1986; Sims 1991, 1994;
Reynolds 1987). In Particular, the work of Karl Sims (1991) ill ustrates the potential
of artificial evolution as a tool for the creation of procedurally generated structures,
textures and motions. Evolution turns out to be a method for exploring and creating
complexity that does not require human understanding of the very last details of the
process involved.

Little work has been done in computer-simulated evolution of plants. Among the
few is the work of the botanist Karl J. Niklas (1985, 1988, 1997). Niklas' model aims
to simulate the evolution of branching patterns in early land plants. Firstly, he stated
some specific hypotheses concerning plant evolution, then developed mathematical
techniques for quantifying the hypothesized competitive advantages offered by vari-
ous features. To encode a plant branching pattern, three parameters or characteristics
were used: (1) probabilit y of branching, (2) branching angle and (3) rotation angle.
Using these characteristics, plant growth is simulated through several branching
cycles. For modeling evolution, a deterministic scheme for searching among the

nearest neighbors in the tree-parameter space is employed. The fittest of the explored
neighbors becomes the starting point for the next search cycle. This process is reiter-
ated until the computer has identified a set of morphological characteristics that is
more eff icient than any immediate neighbor in the search space. Niklas' simula-
tion model has some limitations. Clearly, the three parameters are an oversimpli fica-
tion of plant geometry. Many more factors may influence plant shape. Other limita-
tions concern the way evolution is simulated. The search method proposed can easily
get stuck in local minima. Furthermore, a single organism instead of a population is
maintained, and sexual reproduction is not considered.

In this paper we describe a novel use of genetic algorithms and Lindenmayer sys-
tems with the aim of evolving artificial plant morphologies. The model described
simulates the evolution of 2D plant morphologies. Virtual plant genotypes are in-
spired by the mathematical formalism known as Lindenmayer systems (L-systems).
The phenotypes are the branching structures resulting from the derivation and
graphic interpretation of the genotypes. The system allows for two types of artificial
evolution. Interactive selection, based on human perception of the plant-like struc-
tures, allows the user to direct simulated evolution towards preferred forms. Alterna-
tively, automated evolution is simulated using a genetic algorithm with a fitness
function inspired by current evolutionary hypotheses concerning the factors that have
had the greatest effect on plant evolution.

Previous work has been done in combining artificial evolution and L-systems. Ja-
cob (1994) presents the “Genetic L-systems Programming” (GLP) paradigm, a gen-
eral framework for evolutionary creation and development of parallel rewriting sys-
tems, which demonstrates that these systems can be designed by evolutionary proc-
esses. However, Jacob’s example targets a somewhat simple problem: generate L-
systems that form space constrained structures with a predefined number of branches.
Here, we suggest a more complex fitness function with the aim of evolving structures
that resemble natural plants.

Next section describes the formalism of L-systems and their graphic interpreta-
tion. Section 2 describes the proposed model: how L-systems are used as genetic
encoding, the characteristics of the genetic algorithm employed, the genetic operators
designed, and the fitness function's inspiration and design. Section 3 shows simula-
tion results. Finally, section 4 discusses conclusions and suggests future work.

1. Lindenmayer Systems

L-systems are a mathematical formalism proposed by the biologist Aristid Linden-
mayer in 1968 as a foundation for an axiomatic theory of biological development.
More recently, L-systems have found several applications in computer graphics
(Smith, 1987; Prusinkiewicz and Lindenmayer, 1990). Two principal areas include
generation of fractals and realistic modeling of plants.

Central to L-systems, is the notion of rewriting, where the basic idea is to define
complex objects by successively replacing parts of a simple object using a set of

rewriting rules or productions. The rewriting can be carried out recursively. The most
extensively studied and the best understood rewriting systems operate on character
strings. Aristid Lindenmayer’s work introduced a new type of string rewriting
mechanism, subsequently termed L-systems. The essential difference between the
most known Chomsky grammars and L-systems lies in the method of applying pro-
ductions. In Chomsky grammars productions are applied sequentially, whereas in L-
systems they are applied in parallel, replacing simultaneously all l etters in a given
word. This difference reflects the biological motivation of L-systems. Productions
are intended to capture cell divisions in multicellular organisms, where many divi-
sions may occur at the same time.

1.1. D0L-systems

In this section, we introduce the simplest class of L-systems, termed D0L-systems
(Deterministic and context free). To provide an intuitive understanding of the main
idea, let us consider the example given by Prusinkiewicz et al. (1990). See Fig. 1.

Lets us consider strings built of two letters a and b (they may occur many times
in a string). For each letter we specify a rewriting rule. The rule a → ab means
that the letter a is to be replaced by the string ab, and the rule b → a means that
the letter b is to be replaced by a. The rewriting process starts from a distin-
guished string called the axiom. Let us assume that it consist of a single letter b.
In the first derivation step (the first step of rewriting) the axiom b is replaced by
a using production b → a. In the second step a is replaced by ab using the pro-
duction a → ab. The word ab consist of two letters, both of which are simulta-
neously replaced in the next derivation step. Thus, a is replaced by ab , b is re-
placed by a, and the string aba results. In a similar way (by the simultaneous
replacement of all l etters), the string aba yields abaab which in turn yields
abaababa, then abaababaabaab, and so on.

b
|
a
_|

a b
_| |

a b a
 __| | |__

a b a a b
_| / __| |__ \

 a b a a b a b a

Fig. 1. Example of a derivation in a D0L-system.

1.2. Graphic interpretation of strings

Lindenmayer systems were conceived as a mathematical theory of development.
Thus, geometric aspects were beyond the scope of the theory. Subsequently, several

geometric interpretations of L-systems were proposed in order to turn them into a
versatile tool for fractal and plant modeling. An interpretation based on turtle geome-
try, was proposed by Prusinkiewics et al. (1990). The basic idea of turtle interpreta-
tion is given below.

A state of the turtle is defined as a triplet (x, y, α), where the Cartesian coordinates
(x, y) represent the turtle's position, and the angle α, called the heading, is interpreted
as the direction in which the turtle is facing. Given the step size d and the angle in-
crement δ, the turtle can respond to the commands represented by the following
symbols:

F Move forward a step of length d. The state of the turtle changes to (x’ , y’ , α),
where x’ = x + d cos α and y’ = y + d sin α. . A line segment between points
(x, y) and (x, y’) is drawn.

f Move forwards a step of length d without drawing a line. The state of the tur-
tle changes as above.

+ Turn left by angle δ. The next state of the turtle is (x, y,α +δ).
- Turn left by angle δ. The next state of the turtle is (x, y,α -δ).

To represent branching structures, the L-system alphabet is extended with two
new symbols, ‘[‘ and ‘]’ , to delimit a branch. They are interpreted by the turtle as
follows:

[Push the current state of the turtle onto a pushdown stack.

] Pop a state from the stack and make it the current state of the turtle.

Given a string v, the initial state of the turtle (x
0
, y

0
, α

0
), and fixed parameters d and

δ, the turtle interpretation of v is the figure (set of lines) drawn by the turtle in re-
sponse to the string v. This description gives us a rigorous method for mapping
strings to pictures, which may be applied to interpret strings generated by L-systems.

An example of a bracketed L-system and its turtle interpretation, obtained in deri-
vations of length n = 1 - 4, is shown in Fig. 2. These figures were obtained by inter-
preting strings generated by the following L-system:

{ w: F, p: F → F[-F]F[+F][F]}.

n = 1 n = 2 n = 3 n = 4

Fig. 2. Generating a plant-like structure.

2. The Model

Bracketed D0L-systems are used for encoding virtual organisms. A chromosome is
constituted by a D0L-system with a single rewriting rule whose axiom (starting sym-
bol) is always the symbol F. More precisely, the chromosome is the successor of the
rule, there is no need to store the predecessor because it is always the symbol F. For
example, the D0L-system showed in Fig. 2 is encoded as: F[-F]F[+F][F]. The phe-
notypes are the structures produced after deriving and interpreting the L-systems
following the turtle graphic method.

2.1. Genetic Operations

When using a special genetic encoding for organisms, one must define special repro-
duction operations as well . These operations are often more elaborated than those in
the canonical Genetic Algorithm. Our chromosomes have a well -defined syntactic
structure stemming from the L-Systems formalism. To allow for a proper derivation
and interpretation of genotypes, our genetic operations must produce offspring with
valid syntactic structures. Three main operators were designed: crossover and two
types of mutation.

• Crossover: The designed crossover is inspired by the Genetic Programming
crossover operation (Koza, 1992). Koza’s Lisp subtrees can be considered analo-
gous to correctly bracketed substrings within an L-system. Fig. 3 shows an ex-
ample of crossover. The hierarchical representation of the parents can be ill us-
trated as:

F | + | - FF | F | + | - FF | | |
-FF FFF -F-F +F -F-F +F -F F

where the underlined substrings are to be interchanged.
Parents Offspring

 F[-FF]+[FFF]-FF[-F-F] F[+F]+[-F-F]-FF[+F][-F][F] F[-FF]+[FFF]-FF[+F] F[+F]+[-F-F]-FF[-F-F][-F][F]

Fig. 3. Parents and offspring of a crossover. The underlined substrings are interchanged.

• Mutation: The mutation operation introduces random variations in structures of
the population. Two types of mutation were designed. Each one acting on distinct
parts of chromosomes (Fig. 4).

− Symbol Mutation: A randomly selected symbol of the chromosome in the set
{F, +, -} is substituted by a random but syntactically correct string.

− Block Mutation: A randomly selected block in the chromosome is substituted
by a random syntactically correct string.

Symbol Mutation Block Mutation

F[+F]+[+F-F-F]-FF[-F-F] F[+F]+[+F-F-F]-F[-F][-F-F] FF[+FF][-F+F][FFF]F FF[+FF][-F+F][-F]F

Fig. 4. Parent and offspring of the two types of mutation. The mutated segments are indicated
in bold font.

2.2. The Genetic Algorithm

The implemented GA differs from the canonical GA (Goldberg, 1989) in several
ways. Firstly, rather than binary fixed length string encoding, our genotypes are
based on L-systems. They are of variable lengths and have a defined syntactic struc-
ture. Moreover, steady-state selection (Mitchell , 1996) is employed; only 1/5 of the
population, the least fit individuals, are replaced in each generation. Given that sev-
eral genetic operations were designed, a scheme of selecting operators for each re-
productive event, according to given proportions, was also employed (Davis, 1991).

2.3. Fitness Function

Several researches modeling the evolution of morphological aspects in artificial or-
ganisms (Dawkins, 1986; Oppenheimer, 1986; Sims, 1991) have pointed out the
diff iculty of automatically measuring the aesthetic or functional success of simulated
objects. It is trivial to select organisms according to a particular formula if you have
access to all their genes. However, natural selection doesn’ t act directly upon genes,
but rather upon their effects on organism bodies or phenotypes. The human eye is
good at selecting phenotypic effects, but to construct computer programs that directly
select phenotypic patterns is a diff icult and sophisticated task. So, the usual practice
is to rely on human perception as the selective pressure to evolve preferred forms.

Here, we pursue a higher degree of automation. So, the design of an adequate fit-
ness function is necessary. In order to have a fitness function that indeed guides the

simulated evolution towards structures resembling natural plants, we have to formu-
late hypotheses concerning the factors that have had the greatest effect on plant evo-
lution. The hypotheses employed in our model are those formulated by Karl Niklas
in his work (Niklas, 1985):

[...] the majority of plants can be seen as structural solutions to constraints im-
posed by the biochemical process of photosynthesis. Plants with branching pat-
terns that gather the most light can then be predicted to be the most successful.
Consequently changes in the plant’s shape or internal structure that increase its
ability to gather light should confer competitive advantages.

To be effective competitors for light and space, plants must perform certain
other tasks. In particular they must be able to stay erect: to sustain the mechani-
cal stresses involved in vertical growth. A second hypothesis, then, might be
that evolution of plants was driven by the need to reconcile the abilit y to support
vertical branching structures.

Thus, the designed fitness function is based on these hypotheses. To model the
features there mentioned: light gathering abilit y, and structure stabilit y, in an explicit
analytic procedure, we constructed a function made of the following components: (a)
phototropism (growth movement of plants in response to stimulus of light), (b) bilat-
eral symmetry, (c) light gathering abilit y, (d) structural stabilit y and (e) proportion of
branching points. Simple algorithmic techniques have been developed for quantify-
ing the competitive advantages offered by these features.

Selective pressures act upon phenotypes. So, before we can evaluate an organism,
its encoding L-system must be derived and geometrically interpreted. Each compo-
nent of the fitness function is quantified by a procedure that uses as input the geo-
metric information produced while drawing the figure; and returns a real number
between 0 and 1. A brief description of the procedures, is given below.

Let us consider a 2D Cartesian coordinate system, the origin of this system is the
figure starting point. Each vertex in a figure will be represented as a pair (x, y). The
five features mentioned are quantified as follows:
• Positive phototropism (a): High fitness is given to structures whose maximum y

coordinate is ‘high’ . While low fitness s given to structures whose maximum y
coordinate is ‘ low’ . This is intended to force the “growth” of structures toward
light. Furthermore tall structures are supposed to be better at disseminating seeds.

• Bilateral Symmetry (b): The ‘weight’ balance of the structure is estimated. The
absolute values of vertices’ x coordinates at left and at right of the vertical axis
are added up. Higher fitness is given to structures whose left to right ratio is
closer to one, in other words, to better balanced structures.

• Light gathering ability (c): The abilit y to gather light is estimated by quantifying
the surface area of the plant ‘ leaves’ --- ending segments --- exposed to light. The
leaves exposed to light are those that are not shadowed by other leaves when we
assume that the light rays are vertical lines from top to bottom.

• Structural stability (d): The branches starting from each branching point in the
structure are counted. It is assumed that branching points possessing too many
branches are unstable. Thus, plants possessing a high proportion of this type of

nodes are rated low, while plants possessing a majority of ‘ stable’ branching
points are rated high.

• Proportion of branching points (e): The total number of branching points with
more than one branch leaving is calculated. This number is in direct proportion to
the total number of branches in a structure. It is assumed that plants with a high
number of branches are better at gathering light and disseminating seeds.

Weight parameters (wa , wb , wc , wd , we) are then used for tuning the effect of each
component on the final fitness function:

This fitness function takes us one step further in automating the selection of phe-
notypic traits. However, the human participation has not been eliminated altogether.
Our model maintains the user determination of the fitness function weights.

3. Simulation Results

Many experiments were carried out. A typical experiment consisted of running the
GA starting from a random generated population. The values used for GA parameters
are: population size = 50, number of generations = 100, generation gap = 20 %, and
chromosome length range = 7-30.

Distinct plant-like morphologies were obtained depending on the selected fitness
function weights. Figures 5 and 6 show some of the fittest structures for different
fitness function weights.

Fig. 5. Fitness function with weight values of 50 for all components

F Phenotype
aw a bwb cwcc dw d ewe

w a wb wc w d we
() =

+ + + +

+ + + +

Fig. 6. Fitness function with component weights of: a = 100, b = 90, c = 40, d = 20, e = 30.

Finally, structures that resemble animals were also obtained with a fitness function
favoring bilateral symmetric organisms (Fig. 7).

Fig. 7. Organisms obtained with fitness function favoring bilateral symmetric structures.

4. Discussion

A model has been described that can generate complex 2D branching structures
without requiring cumbersome user specifications, design efforts, or knowledge of
algorithmic details. We argue that L-Systems constitute an adequate genetic repre-
sentation for studies which simulate natural morphological evolution. They allow the
necessary, and very convenient, distinction between genotype and phenotype, and
provide a well -defined process (morphogenesis) to generate the latter from the for-
mer. Moreover, they satisfy most of the important properties identified by Jefferson
et al. (1991) for genetic encodings in biologically motivated studies. Among them:
(a) L-systems provide a simple, uniform model of computation, because derivation
and turtle interpretation of strings constitute a well defined way to go from genotypes
to phenotypes; (b) they are syntactically closed under the designed genetic opera-
tions; and (c) they are well conditioned under genetic operators. This last requirement
is not formally defined. Essentially, it requires that “small ” mutational changes
should (usually) cause “small ” phenotypic changes, and that crossover usually pro-
duces offspring whose phenotypes are in some sense a “mixture” of the parents’
phenotypes, with occasional jumps and discontinuities.

The model has employed the simplest type of L-systems (D0L-systems). Further
studies may be done using complex ones, considering, for example, genotypes with
several rules, context sensitive L-systems, and inclusion of 3D morphologies

(Prusinkiewicz and Lindenmayer, 1990). Simulation results indicate that L-systems
constitute a suitable encoding for artificial evolution studies. Thus, the evolution of
other biological structures may be modeled using L-systems as genotypes. Finally,
the model shows considerable creative power in generating novel and unexpected
morphologies.
Acknowledgments. Thanks are due to J. A. Moreno for useful guiding and support.
Many thanks, also, to A. Meier, H. Buxton and I. Harvey for valuable suggestions
and critical reading.

References

1. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, (1991)
2. Dawkins, R.: The Blind Watchmaker. Harlow Longman, (1986)
3. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-

Wesley, Reading (1989)
4. Jacob, C.: Genetic L-system Programming. Parallel Problem Solving from Nature III

(PPSN'III) , Lecture Notes in Computer Science, Vol. 866, Ed. Y. Davidor and P. Schwefel.
Springer-Verlag, Berlin (1994) 334 - 343

5. Jefferson, D., Colli ns, R., Cooper, C., Dyer, M., Flowers, M., Korf, R., Taylor, C., Wang, A.:
Evolution as a Theme in Artificial Life: The Genesys / Tracker System. In: Artificial Life II :
Proceedings of the second workshop on the synthesis and simulation of li ving systems, Vol.
X, SFI Studies in the Sciences of Complexity, Ed. C. Langton, C. Tylor, J. D. Farmer, and
S. Rasmussen. Addison-Wesley, Redwood City (1991)

6. Koza, J.: Genetic Programming: on the Programming of Computers by Means of Natural
Selectio. MIT Press, (1992)

7. Lindenmayer, A.: Mathematical models for cellular interaction in development. Parts I and
II . Journal of Theoretical Biology, 18 (1968) 280-315.

8. Mitchell, M. 1996. An Introduction to Genetic Algorithms. MIT Press, (1996)
9. Niklas, K.: Computer Simulated Plant Evolution. Scientific American (May 1985), (1985)
10.Niklas, K.: Biophysical limitations on plant form and evolution. Plant Evolutionary Biology,

Ed. L. D. Gottlieb and S. K. Jain. Chapman and Hall Ltd, (1988)
11.Niklas, K.: The Evolutionary Biology of Plants. The university of Chicago Press, Chicago

(1997)
12.Oppenheimer, P.: Real Time Design and Animation of Fractal Plants and Trees. Proceed-

ings of SIGGRAPH ‘86, in Computer Graphics. ACM SIGGRAPH, 20(4) (1986) 55-62
13.Prusinkiewics, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer-Verlag,

(1990)
14.Reynolds, C.: Flocks, Herds, and Schools: A Distributed Behavioral Model. Proceedings of

SIGGRAPH ’87, in Computer Graphics. ACM SIGGRAPH, 21(4) (1987) 25-34
15.Sims, K.: Artificial Evolution for Computer Graphics. Proceedings of SIGGRAPH ’91, in

Computer Graphics. ACM SIGGRAPH, 25(4) (1991) 319-328
16.Sims, K.: Evolving Virtual Creatures. Proceedings of SIGGRAPH ’94, in Computer

Graphics. ACM SIGGRAPH, 28(4) (1994) 15-22
17.Smith, A.: Plants, Fractals, and Formal Languages. Proceedings of SIGGRAPH ’84, in

Computer Graphics. ACM SIGGRAPH, 18(4) (1984) 1-10

