

Optimisation problems

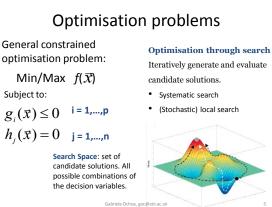
- Wide variety of applications across industry, commerce, science and government
- Optimisation occurs in the minimisation of time, cost and risk, or the maximisation of profit, quality, and efficiency
- Examples
 - Finding shortest round trips in graphs (TSP)
 - Finding models of propositional formulae (SAT)
 - Determining the 3D-structure of proteins
 - Planning, scheduling, cutting & packing, logistics, transportation, communications, timetabling, resource allocation, genome sequencing
 - Software engineering: test case minimisation and prioritisation, requirements analysis, code design and repair, etc.

Gabriela Ochoa, goc@stir.ac.uk

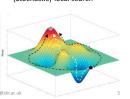
Computer networks and Telecommunications Gabriela Ochoa, goc@stir.ac.u

Cutting & packing

Software - SBSE



Iteratively generate and evaluate



Search in Computing Science

At least 4 meanings of the word *search* in CS

1. Search for stored data	2. Search for web documents
 Finding information stored in disc or memory. Examples: Sequential search, Binary search 	 Finding information on the world wide web Results are presented as a list of results
 Search for paths or routes Finding a set of actions that will bring us from an initial stat to a goal stat Relevant to AI Examples: depth first search, breath first search, branch and bound, A*, Monte Carlo tree search. 	 Search for solutions Find a solution in a large space of candidate solutions Relevant to Al, Optimisation, OR Examples: evolutionary algorithms, Tabu search, simulated annealing, ant colony optimisation, etc.

Search and optimisation in practice Many challenging applications in science and industry can be formulated as optimisation problems! Problem Model Real-world Problem representation (SE) problem Constraints A fitness function Formulation **Optimisation/search Algorithm** Exact methods

Optimisation problems: two categories

Continuous Continuous variables

Objective function has a

Special cases studied in

mathematical expression

mathematics and OR: Convex,

Linear, Dynamic programming

- Combinatorial
 - Discrete variables
- Looking for a set (vector) of real Looking for an object from a numbers [45.78, 8.91, 3.36] finite set
 - Binary digits [1011101010]
 - [1, 53, 4, 67, 39] Integer
 - Permutation [3,5,1,2,4]
 - Graph

· Generally have quite different flavours and methods for solving them Have become divergent

Gabriela Ochoa, goc@stir.ac.uk

Classic mathematical models

Linear Programs (LP)

A single objective

- The objective and constraints are linear
- Decision variables, allowed to have *any* values
- Easy to solve numerically (simplex method)

Importance

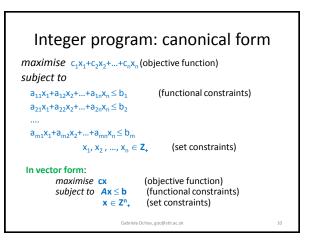
Many applications

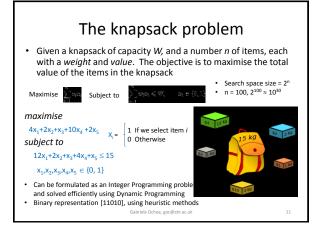
Integer Programs (IP)

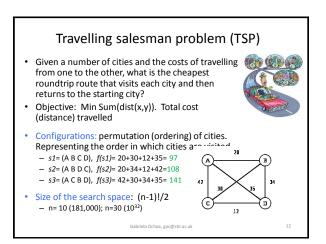
- LP in which some or all variables are constrained to take on *integer* values
- Harder to solve. Software packages: Excel, LINGO/LINDO and MPL/CPLEX,

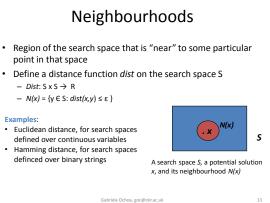
Importance

- problems in which variables required to be integer
- many decisions are essentially discrete (yes/no, go/no-go)
 Gabriela Ochoa, goc@str.ac.uk
 9

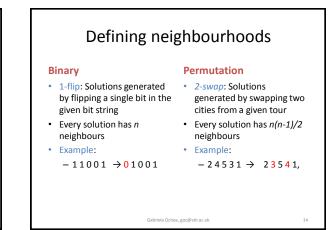


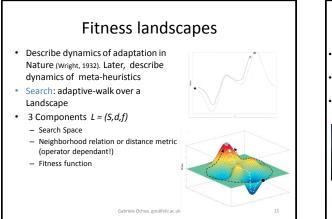




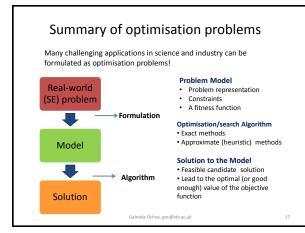


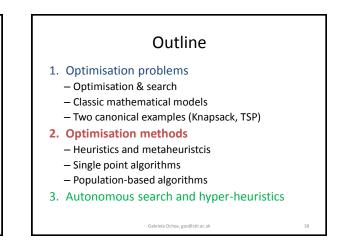
Gabriela Ocrioa, goces

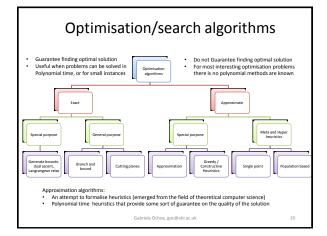


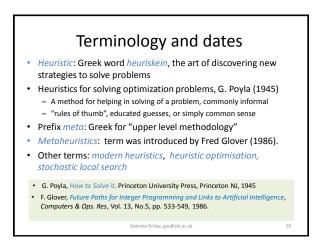


 Presence and structure of *plateaus*, *neutral networks* (terrains with equal fitness)









What is a heuristic?

 An optimisation method that tries to exploit problem-specific knowledge, for which we have no guarantee to find the optimal solution

Construction

• Search space: complete

- Search space: partial candidate solutions
- Search step: extension with one or more solution components
- Example in TSP: nearest neighbour
- Search step: modification of one or more solution components
 Example in TSP: 2-opt

candidate solutions

Gabriela Ochoa, goc@stir.ac.uk

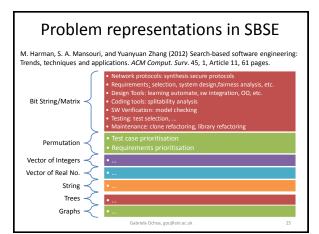
What is a metaheuristic?

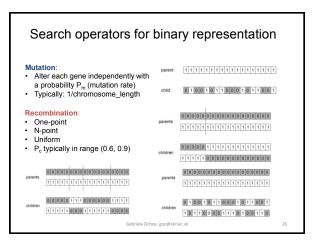
- Extended variants of improvement heuristics
- General-purpose solvers, usually applicable to a large variety of problems
- Use two phases during search
 - Intensification (exploitation): focus the applications of operators on high-quality solutions
 - Diversification (exploration): systematically modifies existing solutions such as new areas of the search space are explored

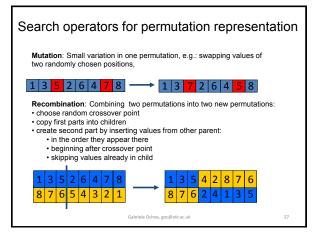
Gabriela Ochoa, goc@stir.ac.uk

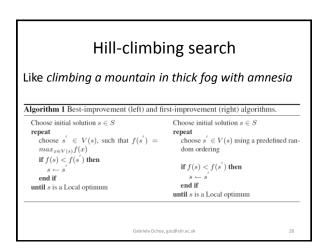
Genealogy of metaheuristics The Simplex Algorithm (G. Dantzig, 1947) LS (47) 1947 1962 1965 GA (62) (J.Edmonds, 1971) c (71) 197: 197 SS (77) SA (83) 198 S (86) SM (86) 198 AIC (86) (89) CEA (9 199 GP 1992 ACO (9 1993 GDA (93) NM (93) EDA. CA (94) DE (94) GLS (95) 199 (95) CMA-ES (96) BC (96) FIGURE 1.8 Genealogy of metaheuristics. The application to optimization and/or machine learning is taken into account as the original date. Metaheuristics: From Design to Implementation By El-Ghazali Talbi (2009) Gabriela Ochoa, goc@stir.ac.uk

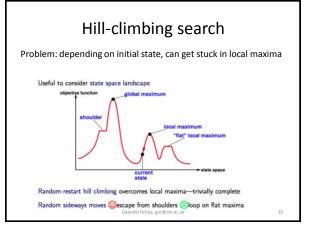
Key components of metaheuristics	
Problem Representation	 Describes encoding of solutions Application of search operators
Fitness Function	 Often same as the objective function Extensions might be necessary (e.g Infeasible solutions)
Search/Variation Operators	Closely related to the representation Mutation, recombination, ruin-recreate
Initial Solution(s)	Created randomly Seeding with higher quality or biased solutions
Search Strategy	Defines intensification/diversification mechanisms Many possibilities and alternatives!
	Gabriela Ochoa, goc@stir.ac.uk 24

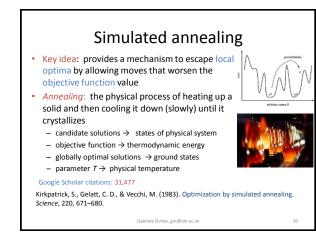












Simulated Annealing – Algorithm

- 1. Start with a random solution s
- 2. Choose some "nearby" solution s'
- If the new solution is better (i.e. $f(s') \le f(s)$), take it as the 3. current solution (= accept it)
- If it is worse, accept it with a probability that depends on the 4. deterioration f(s)-f(s') and a global parameter T (the temperature) Cooling schedule: a

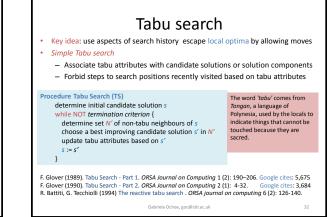
mechanism for reducing the temperature

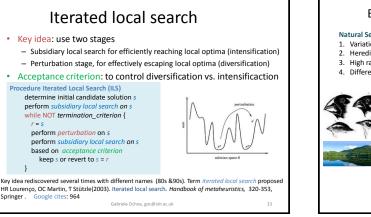
31

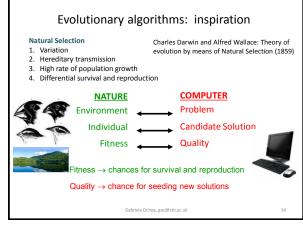
Metropolis acceptance criterion if $f(s') \leq f(s)$ ∫ 1 Paccept(T, s, s') =

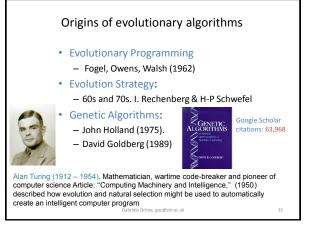
 $exp(\frac{f(s)-f(s')}{T})$

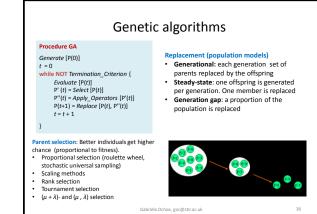
otherwise Gabriela Ochoa, goc@stir.ac.uk

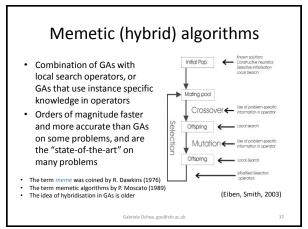


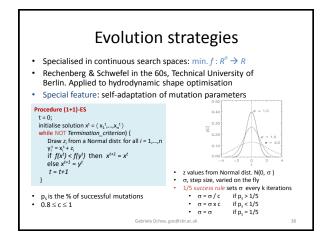












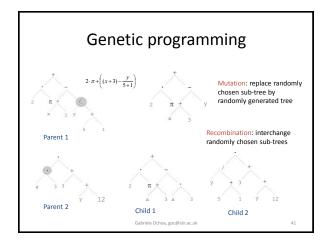
Modern evolution strategies

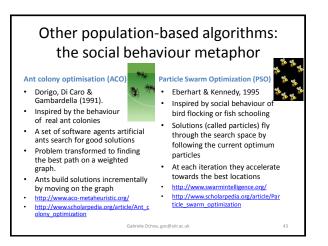
- Use a population: μ parents, λ offspring
- $(\mu + \lambda)$ -ES: next generation crated from the *union* of parents and offspring
- (μ, λ) -ES: the best μ solutions from the offspring are chosen
- Recombination used for exchanging information
- Self-adaptation: Incorporate strategy parameter (o, std. dev mutation strength) into the search process
- CMA-ES: (Covariance Matrix Adaptation ES, N. Hansen, A. Ostermeier, 1996) – State-of-the-art ES, unconstrained or bounded constraint, 3 – 100 dim.
- Source code: <u>https://www.lri.fr/~hansen/cmaes_inmatlab.html</u>
- Differential Evolution (K. Price and R. Storn, 1996)
 - Recent and powerful EA for continuous optimisation, elegant and simple
 - Key idea: using vector differences for perturbing the vector population
 - Source code: <u>http://www1.icsi.berkeley.edu/~storn/code.html</u>
 Gabriela Ochoa, goc@stirac.uk

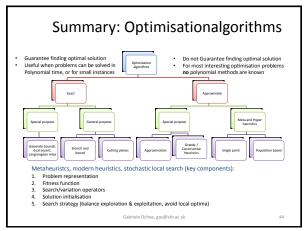
Genetic programming

- Evolve a population of computer programs
- Applied to: machine learning tasks (prediction, classification...)
- Representation
 - Non-linear genomes: trees, graphs
 - Linear genomes: grammatical evolution (Ryan, 1999)
- Main difference with GAs:
 - Search space of tree structures different sizes
 - Solutions are *parse-trees*, syntactic structure according to some grammar
 Nodes in the parse tree are either:
 - Terminal set T (leaf nodes): independent variables of the problem, zero argument
 - functions, random constants, terminals with side effects (eg. "turn left")
 - Function set S (interior nodes): arithmetic (+,-,*)/logic operations (^,V)

Gabriela Ochoa, goc@stir.ac.uk







Outline

1. Optimisation problems

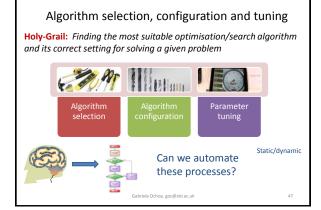
- Optimisation & search
- Classic mathematical models
- Two canonical examples (Knapsack, TSP)
- 2. Optimisation methods
 - Heuristics and metaheuristcis
 - Single point algorithms
 - Population-based algorithms
- 3. Autonomous search and hyper-heuristics

Gabriela Ochoa, goc@stir.ac.uk

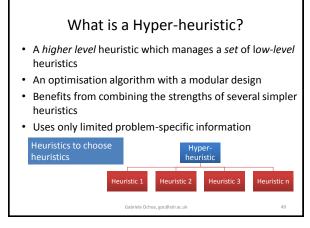
45

- Select the algorithm components/operators and/or set their parameters

Gabriela Ochoa, goc@stir.ac.uk



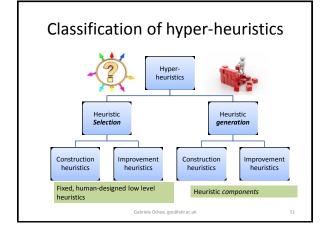
Gabriela Ochoa, goc@stir.ac.uk

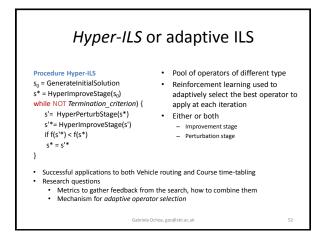


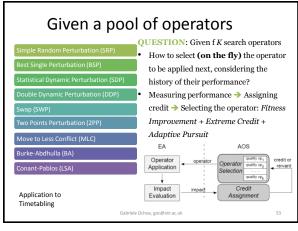
What Motivates Hyper-Heuristic Research?

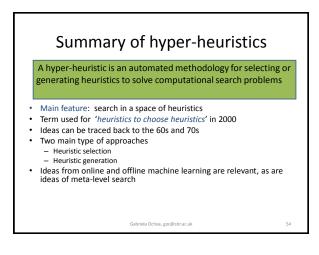
- Decision support systems that are off the peg vs. Taylor made
- Develop the ability to automatically work well on different problems
- Increase the generality and applicability of these methods to solve complex real-world problems

Gabriela Ochoa, goc@stir.ac.uk









References: Books

- Burke , E. K; Kendall, G., (Eds.) (2005) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Springer.
- A.E. Eiben and J.E. Smith (2003), Introduction to Evolutionary Computing, Springer,
- Hoos, H; Stutzle, T. (2004) Stochastic Local Search Foundations and Applications, Elsevier.
- Z. Michalewicz, D.B. Fogel (2000) How to Solve It: Modern Heuristics, Springer.
- Rothlauf, F. (2011) Design of Modern Heuristics Principles and Application. Natural Computing Series, Springer
- S. Russell, P. Norvig (2009) Artificial Intelligence: A Modern Approach (3rd Edition) Prentice Hall.
- Talbi, E-G (2009), Metaheuristics: From Design to Implementation, Wiley.

Gabriela Ochoa, goc@stir.ac.uk

References: Hyper-heuristics E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan and R. Qu (2013) Hyper-heuristics: A Survey of the State of the Art, Journal of the Operational Research Society. 206(1): 241-264 E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. Woodward (2010). A Classification of Hyper-heuristics Approaches, Handbook of Metaheuristics, International Series in Operations Research & Management Science, M. Gendreau and J-Y Potvin (Eds.), Springer, pp.449-468. E. K. Burke, M. Gendreau, G. Ochoa, J. Walker. Adaptive Iterated Local Search for Cross-domain Optimisation. Genetic and Evolutionary Computation Conference (GECCO-2011), ACM, pp. 1987-1994. G Ochoa, EK Burke (2014) HyperILS: An Effective Iterated Local Search Hyper-Heuristic for Combinatorial Optimisation, International Conference on the Practice and Theory of Automated Timetabling (PATAT 2014) J.A Soria-Alcaraz, G. Ochoa, J. Swan, M. Carpio, H. Puga, E.K. Burke (2014) Effective Learning Hyper-heuristics for the Course Timetabling Problem. European Journal of Operational Research. 238(1): 77-8. Gabriela Ochoa, goc@stir.ac.uk