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Optimisation problems 
• Wide variety of applications across industry, 

commerce, science and government 
• Optimisation occurs in the minimisation of time, 

cost and risk, or the maximisation of profit, quality, 
and efficiency 

• Examples 
– Finding shortest round trips in graphs (TSP) 
– Finding models of propositional formulae (SAT) 
– Determining the 3D-structure of proteins 
– Planning, scheduling, cutting & packing, logistics, transportation, 

communications, timetabling, resource allocation, genome sequencing 

– Software engineering: test case minimisation and 
prioritisation, requirements analysis, code design and 
repair, etc.   
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Optimisation problems are everywhere! 

Logistics, transportation, 
supply change management 

Manufacturing, production lines Timetabling 

Cutting  & packing 
Computer networks and 
Telecommunications 

Software - SBSE 
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Optimisation problems 
General constrained 
optimisation problem: 

Optimisation through search 

Iteratively generate and evaluate 

candidate solutions. 

• Systematic search 

• (Stochastic) local search 

Search Space: set of 
candidate solutions. All 
possible combinations of 
the decision variables. 
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Search in Computing Science 

1. Search for stored data 
 
• Finding information stored in disc or 

memory.  
• Examples: Sequential search, Binary 

search 

2. Search for web documents 
 
• Finding information on the world wide 

web 
• Results are presented as a list of results 
 

3. Search for paths or routes 
• Finding a set of actions that will bring us 

from an initial stat to a goal stat  
• Relevant to  AI 
• Examples: depth first search, breath first 

search, branch and bound, A*, Monte 
Carlo tree search.  

4. Search for solutions  
• Find a solution in a large space of 

candidate solutions 
• Relevant to AI, Optimisation, OR 
• Examples: evolutionary algorithms, Tabu 

search, simulated annealing, ant colony 
optimisation, etc. 

At least 4 meanings of the word search in CS 
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Search and optimisation in practice 

Real-world 
(SE) problem 

Model 

Solution 

Formulation 

Algorithm 

Problem Model 
• Problem representation 
• Constraints 
• A fitness function 

Solution to the Model 
• Feasible candidate  solution 
• Lead to the optimal (or good 
enough) value of the objective 
function 

Optimisation/search Algorithm 
• Exact methods 
• Approximate (heuristic)  methods 

Many challenging applications in science and industry can be 
formulated as optimisation problems! 
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Optimisation problems: two categories  

Continuous 

• Continuous variables 

• Looking for a set (vector) of real 
numbers  [45.78, 8.91, 3.36] 

• Objective function has a 
mathematical expression 

• Special cases studied in 
mathematics and OR: Convex, 
Linear, Dynamic programming 

 

 

Combinatorial 

• Discrete variables 

• Looking  for an object from a 
finite set 
– Binary digits   [1011101010] 

– Integer            [1, 53, 4, 67, 39] 

– Permutation  [3,5,1,2,4] 

– Graph 

 
 

• Generally have quite different flavours and methods for solving them 
• Have become divergent 
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Classic mathematical models 

Linear Programs (LP) 

• A single objective 

• The objective and 
constraints are linear 

• Decision variables, allowed 
to have any values 

• Easy to solve numerically 
(simplex method) 

Importance 

• Many applications 

 

Integer Programs (IP) 

• LP  in which some or all 
variables are constrained to 
take on integer values 

• Harder to solve. Software  
packages: Excel, LINGO/LINDO 
and MPL/CPLEX,  

Importance 

• problems in which variables 
required to be integer 

• many decisions are essentially 
discrete (yes/no, go/no-go)   
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Integer program: canonical form 
maximise  c1x1+c2x2+…+cnxn (objective function) 

subject to    

 a11x1+a12x2+…+a1nxn  b1              (functional constraints) 

 a21x1+a22x2+…+a2nxn  b2 

 …. 

 am1x1+am2x2+…+amnxn  bm  
    x1, x2 , …, xn  Z+  (set constraints) 

 
In vector form: 
 maximise  cx  (objective function) 
 subject to   Ax  b    (functional constraints) 
          x  Zn

+   (set constraints) 
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The knapsack problem 
• Given a knapsack of capacity W, and a number n of items, each 

with a weight and value.  The objective is to maximise the total 
value of the items in the knapsack 

maximise   

  4x1+2x2+x3+10x4 +2x5  

subject to    

 12x1+2x2+x3+4x4+x5  15 

   x1,x2,x3,x4,x5  {0, 1}  

 

Xi =  
1  If we select item i 
0  Otherwise 

• Can be formulated as an Integer Programming problem, 
and solved efficiently using Dynamic Programming 

• Binary representation [11010], using heuristic methods 

Maximise Subject to 

• Search space size = 2n 

• n = 100, 2100 ≈ 1030  
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Travelling salesman problem (TSP) 

• Given a number of cities and the costs of travelling 
from one to the other, what is the cheapest 
roundtrip route that visits each city and then 
returns to the starting city? 

• Objective:  Min Sum(dist(x,y)).  Total cost 
(distance) travelled 

• Configurations: permutation (ordering) of cities.  
Representing the order in which cities are visited 
– s1= (A B C D),  f(s1)= 20+30+12+35= 97 

– s2= (A B D C),  f(s2)= 20+34+12+42=108 

– s3= (A C B D),  f(s3)= 42+30+34+35= 141 

• Size of the search space:  (n-1)!/2 
– n= 10 (181,000); n=30 (1032)    

 

 

 

 

Gabriela Ochoa, goc@stir.ac.uk 12 



24/06/2014 

4 

Neighbourhoods 

• Region of the search space that is “near” to some particular 
point in that space 

• Define a distance function dist on the search space S  
– Dist: S x S →  R 

– N(x) = {y Є S: dist(x,y) ≤ ε } 

S 
. x 

N(x) 

A search space S, a potential solution 
x, and its neighbourhood N(x) 

Examples: 
• Euclidean distance, for search spaces 

defined over continuous variables 
• Hamming distance, for search spaces 

definced over binary strings  
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Defining neighbourhoods 

Binary   

• 1-flip: Solutions generated 
by flipping a single bit in the 
given bit string  

• Every solution has n 
neighbours 

• Example:     

– 1 1 0 0 1   → 0 1 0 0 1 

Permutation 

• 2-swap: Solutions 
generated by swapping two 
cities from a given tour 

• Every solution has n(n-1)/2 
neighbours 

• Example:     

– 2 4 5 3 1  →    2 3 5 4 1,  
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Fitness landscapes 

• Describe dynamics of adaptation in 
Nature (Wright, 1932). Later,  describe 
dynamics of  meta-heuristics 

• Search: adaptive-walk over a 
Landscape 

•  3 Components  L = (S,d,f) 
– Search Space  

– Neighborhood relation or distance metric  
(operator dependant!) 

– Fitness function 
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Features of landscapes relevant to 
heuristic search 

• Number, fitness, and distribution of  local 
optima or peaks  

• Fitness differences between neighboring 
points (ruggedness).  

• Presence and structure of plateaus, neutral 
networks (terrains with equal fitness) 

 

M. Fuji, Japan 

Earth pyramids, Tyrol, Italy 

Trentino Mountains 

M. Auyantepui, Venezuela (Angel Falls, Highest 
Waterfall) Gabriela Ochoa, goc@stir.ac.uk 16 
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Summary of optimisation problems 

Real-world 
(SE) problem 

Model 

Solution 

Formulation 

Algorithm 

Problem Model 
• Problem representation 
• Constraints 
• A fitness function 

Solution to the Model 
• Feasible candidate  solution 
• Lead to the optimal (or good 
enough) value of the objective 
function 

Optimisation/search Algorithm 
• Exact methods 
• Approximate (heuristic)  methods 

Many challenging applications in science and industry can be 
formulated as optimisation problems! 
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Outline 

1. Optimisation problems 
– Optimisation & search 

– Classic mathematical models 

– Two canonical examples (Knapsack, TSP) 

2. Optimisation methods 
– Heuristics and metaheuristcis 

– Single point algorithms 

– Population-based algorithms 

3. Autonomous search and hyper-heuristics 
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Optimisation/search algorithms 

Optimisation 
algorithms 

Exact 

Special purpose 

Generate bounds: 
dual ascent, 

Langrangean relax 

General purpose 

Branch and 
bound 

Cutting planes 

Approximate 

Special purpose 

Approximation 
Greedy / 

Constructive 
Heuristics 

Meta and Hyper 
heuristics 

Single point Population based 
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• Guarantee finding optimal solution 
• Useful when problems can be solved in 

Polynomial time, or for small instances 

• Do not Guarantee finding optimal solution 
• For most interesting optimisation problems 

there is no polynomial methods are known 

Approximation algorithms:  
• An attempt to formalise heuristics (emerged from the field of theoretical computer science) 
• Polynomial time  heuristics that provide some sort of guarantee on the quality of the solution 

19 

Terminology and dates 
• Heuristic: Greek word heuriskein, the art of discovering new 

strategies to solve problems 

• Heuristics for solving optimization problems, G. Poyla (1945) 
– A method for helping in solving of a problem, commonly informal 

– “rules of thumb”, educated guesses, or simply common sense 

• Prefix meta: Greek for “upper level methodology”  

• Metaheuristics:  term was introduced by Fred Glover (1986).  

• Other terms: modern heuristics,  heuristic optimisation, 
stochastic local search 

• G. Poyla, How to Solve it. Princeton University Press, Princeton NJ, 1945 

• F. Glover, Future Paths for Integer Programming and Links to Artificial Intelligence, 
Computers & Ops. Res, Vol. 13, No.5, pp. 533-549, 1986. 
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What is a heuristic? 

• An optimisation method that tries to exploit 
problem-specific knowledge, for which we 
have no guarantee to find the optimal solution 

Improvement 
• Search space: complete 

candidate solutions 

• Search step: modification 
of one or more solution 
components 

• Example in TSP: 2-opt 

Construction 
• Search space: partial 

candidate solutions 

• Search step: extension 
with one or more 
solution components 

• Example in TSP: nearest 
neighbour 
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What is a metaheuristic? 

• Extended variants of improvement heuristics 

• General-purpose solvers, usually applicable to 
a large variety of problems 

•  Use two phases during search 
– Intensification (exploitation): focus the applications 

of operators on high-quality solutions 

– Diversification (exploration): systematically 
modifies existing solutions such as new areas of 
the search space are explored 

Gabriela Ochoa, goc@stir.ac.uk 22 

Genealogy of metaheuristics 

Metaheuristics: From Design to 
Implementation 
 By El-Ghazali Talbi (2009) 

The Simplex Algorithm (G. Dantzig, 1947)  

(J.Edmonds, 1971):  

Gabriela Ochoa, goc@stir.ac.uk 23 

Key components of metaheuristics 

Gabriela Ochoa, goc@stir.ac.uk 

• Describes encoding of solutions 

• Application of search operators 

Problem 
Representation 

• Often same as the objective function 

• Extensions might be necessary (e.g.. Infeasible 
solutions) 

Fitness Function 

• Closely related to the representation 

• Mutation, recombination, ruin-recreate 

Search/Variation 
Operators 

• Created randomly  

• Seeding with higher quality or biased solutions Initial Solution(s) 

• Defines intensification/diversification mechanisms 

• Many possibilities and alternatives! Search Strategy 

24 
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Problem representations in SBSE 

Bit String/Matrix 

• Network protocols: synthesis secure protocols 

• Requirements: selection, system design,fairness analysis, etc. 

• Design Tools: learning automate, sw integration, OO, etc.   

• Coding tools: splitability analysis 

• SW Verification: model checking 

• Testing: test selection, … 

• Maintenance: clone refactoring, library refactoring 

Permutation 
• Test case prioritisation 

• Requirements prioritisation 

Vector of Integers • … 

Vector of Real No. • … 

String • … 

Trees • … 

Graphs • … 

Gabriela Ochoa, goc@stir.ac.uk 

M. Harman, S. A. Mansouri, and Yuanyuan Zhang (2012) Search-based software engineering: 
Trends, techniques and applications. ACM Comput. Surv. 45, 1, Article 11, 61 pages.  

25 

Search operators for binary representation 

Recombination:   

• One-point 

• N-point 

• Uniform 

• Pc typically in range (0.6, 0.9) 

Mutation:  

• Alter each gene independently with 

a probability Pm (mutation rate) 

• Typically: 1/chromosome_length 

Gabriela Ochoa, goc@stir.ac.uk 26 

Search operators for permutation representation 

Recombination: Combining  two permutations into two new permutations: 

• choose random crossover point 

• copy first parts into children 

• create second part by inserting values from other parent: 

• in the order they appear there  

• beginning after crossover point 

• skipping values already in child 

8 7 6 4 2 5 3 1 

1 3 5 2 4 6 7 8 

8 7 6 4 5 1 2 3 

1 3 5 6 2 8 7 4 

Mutation: Small variation in one permutation, e.g.: swapping values of 

two randomly chosen positions,  

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

Gabriela Ochoa, goc@stir.ac.uk 27 

Hill-climbing search 

Like climbing a mountain in thick fog with amnesia 

 

Gabriela Ochoa, goc@stir.ac.uk 28 
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Hill-climbing search 

Problem: depending on initial state, can get stuck in local maxima 

 

 

Gabriela Ochoa, goc@stir.ac.uk 29 

Simulated annealing 
• Key idea:  provides a mechanism to escape local 

optima by allowing moves that worsen the 
objective function value 

• Annealing:  the physical process of heating up a 
solid and then cooling it down (slowly) until it 
crystallizes 
– candidate solutions →   states of physical system 

– objective function → thermodynamic energy 

– globally optimal solutions  → ground states 

– parameter T →  physical temperature 
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Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. (1983). Optimization by simulated annealing. 
Science, 220, 671–680. 

Google Scholar citations: 31,477 
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Simulated Annealing – Algorithm 

1. Start with a random solution s 

2. Choose some “nearby” solution s’ 

3. If the new solution is better (i.e. f(s’) ≤ f(s)) , take it as the 
current solution (= accept it)  

4. If it is worse, accept it with a probability that depends on the 
deterioration f(s)-f(s’) and a global parameter T (the 
temperature) 

 

Metropolis acceptance criterion 

Cooling schedule:  a 
mechanism for reducing 
the temperature 

Gabriela Ochoa, goc@stir.ac.uk 31 

Tabu search 

Procedure Tabu Search (TS) 
determine initial candidate solution s 
while NOT termination criterion { 
    determine set N’ of non-tabu neighbours of s 
    choose a best improving candidate solution s’ in N’ 
    update tabu attributes based on s’ 
    s := s’ 
}  

• Key idea: use aspects of search history  escape local optima by allowing moves 

• Simple Tabu search   

– Associate tabu attributes with candidate solutions or solution components 

– Forbid steps to search positions recently visited based on tabu attributes 

F. Glover (1989). Tabu Search - Part 1. ORSA Journal on Computing 1 (2): 190–206. Google cites: 5,675  
F. Glover (1990). Tabu Search - Part 2. ORSA Journal on Computing 2 (1):  4-32.        Google cites: 3,684 
R. Battiti, G. Tecchiolli (1994) The reactive tabu search . ORSA journal on computing 6 (2): 126-140. 

The word 'tabu' comes from 
Tongan, a language of 
Polynesia, used by the locals to 
indicate things that cannot be 
touched because they are 
sacred.  

 

Gabriela Ochoa, goc@stir.ac.uk 32 



24/06/2014 

9 

Iterated local search 

Procedure Iterated Local Search (ILS) 
determine initial candidate solution s 
perform subsidiary local search on s 
while NOT termination_criterion { 
    r = s 
    perform perturbation on s 
    perform subsidiary local search on s 
    based on  acceptance criterion      
 keep s or revert to s = r 
}  

• Key idea: use two stages 
– Subsidiary local search for efficiently reaching local optima (intensification) 

– Perturbation stage, for effectively escaping local optima (diversification) 

• Acceptance criterion: to control diversification vs. intensificaction 

Key idea rediscovered several times with different names  (80s &90s). Term iterated local search proposed 
HR Lourenço, OC Martin, T Stützle(2003). Iterated local search. Handbook of metaheuristics,  320-353, 
Springer .     Google cites: 964 
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Evolutionary algorithms:  inspiration 

NATURE 

Environment 

Individual 

Fitness 

 

COMPUTER 

Problem 

Candidate Solution 

Quality 

Quality  chance for seeding new solutions 

Fitness  chances for survival and reproduction 

Natural Selection 
1. Variation  
2. Hereditary transmission 
3. High rate of population growth 
4. Differential survival and reproduction 

 

Charles Darwin and Alfred Wallace: Theory of 
evolution by means of Natural Selection (1859) 
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Origins of evolutionary algorithms 

• Evolutionary Programming 

–  Fogel, Owens, Walsh (1962) 

• Evolution Strategy:   

– 60s and 70s. I. Rechenberg & H-P Schwefel 

• Genetic Algorithms:   

– John Holland (1975).  

– David Goldberg (1989) 

Alan Turing (1912 – 1954). Mathematician, wartime code-breaker and pioneer of 

computer science Article: ‘‘Computing Machinery and Intelligence,’’  (1950) 

described how evolution and natural selection might be used to automatically 

create an intelligent computer program 

Google Scholar 
citations: 63,968 
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Genetic algorithms 
Procedure GA  

Generate [P(0)] 
t  = 0 
while NOT Termination_Criterion {  

Evaluate [P(t)] 
P' (t) = Select [P(t)] 
P''(t) = Apply_Operators [P'(t)] 
P(t+1) = Replace [P(t), P''(t)] 
t = t + 1  

} 

Tournament selection 

Parent selection: Better individuals get higher 
chance  (proportional to fitness). 
• Proportional selection (roulette wheel, 

stochastic universal sampling) 
• Scaling methods 
• Rank selection 
• Tournament selection 
• (μ + λ)- and (μ , λ) selection 

Replacement (population models) 
• Generational: each generation  set of 

parents replaced by the offspring 
• Steady-state: one offspring is generated 

per generation. One member is replaced 
• Generation gap: a proportion of the 

population is replaced  
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24/06/2014 

10 

Memetic (hybrid) algorithms 

• Combination of GAs with 
local search operators, or 
GAs that use instance specific 
knowledge in operators  

• Orders of magnitude faster 
and more accurate than GAs 
on some problems, and are 
the “state-of-the-art” on 
many problems 

 
(Eiben, Smith, 2003)  

• The term meme was coined by R. Dawkins (1976) 
• The term memetic algorithms by P. Moscato (1989) 
• The idea of hybridisation in GAs is older 
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Evolution strategies 
• Specialised in continuous search spaces: min. f : Rn  R 

• Rechenberg & Schwefel in the 60s, Technical University of 
Berlin. Applied to hydrodynamic shape optimisation 

• Special feature: self-adaptation of mutation parameters 

Procedure (1+1)-ES  
   t = 0;  
   initialise solution xt =  x1

t,…,xn
t  

   while NOT Termination_criterion) { 
         Draw zi from a Normal distr. for all i = 1,…,n 
         yi

t = xi
t + zi   

         if  f(xt) < f(yt)  then  xt+1 = xt 

        else xt+1 = yt  
t = t+1 

    } 
• z values from Normal dist. N(0,  )  
• , step size, varied on the fly   
• 1/5 success rule sets   every k iterations 

•  =  / c if ps > 1/5 
•  =  x c if ps < 1/5 
•  =    if ps = 1/5 

• ps is the % of successful mutations 
• 0.8  c  1 
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Modern evolution strategies 
• Use a population: μ  parents,   λ offspring 

• (μ + λ)-ES:  next generation crated from the union of parents and 
offspring  

• (μ , λ)-ES: the best μ solutions from the offspring are chosen 

• Recombination used for exchanging information 

• Self-adaptation: Incorporate strategy parameter (, std. dev 
mutation strength) into the search process 

• CMA-ES: (Covariance Matrix Adaptation ES, N. Hansen, A. Ostermeier, 1996) 

– State-of-the-art ES, unconstrained or bounded constraint, 3 – 100 dim. 

– Source code: https://www.lri.fr/~hansen/cmaes_inmatlab.html   

• Differential Evolution  (K. Price and R. Storn, 1996) 

– Recent and powerful EA for continuous optimisation, elegant and simple 

– Key idea: using vector differences for perturbing the vector population 

– Source code: http://www1.icsi.berkeley.edu/~storn/code.html 

 Gabriela Ochoa, goc@stir.ac.uk 39 

Genetic programming 

• Evolve a population of computer programs 

• Applied to: machine learning tasks (prediction, classification…) 

• Representation 
– Non-linear genomes: trees, graphs 

– Linear genomes: grammatical evolution (Ryan, 1999)  

• Main difference with GAs: 
– Search space of tree structures different sizes 

– Solutions are parse-trees, syntactic structure according to some grammar 

– Nodes in the parse tree are either: 
• Terminal set T (leaf nodes): independent variables of the problem, zero argument 

functions, random constants, terminals with side effects (eg. “turn left”) 

• Function set S (interior nodes):  arithmetic (+,-,*)/logic operations ( ˄,˅) 
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https://www.lri.fr/~hansen/cmaes_inmatlab.html
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Genetic programming 













15
)3(2

y
x Mutation: replace randomly 

chosen sub-tree by 
randomly generated tree 
 

Parent 1 

Parent 2 

Recombination: interchange 
randomly chosen sub-trees 

Child 1 Child 2 
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Genetic programming origins and sources 

Origin 1985: NL Cramer (1985) A Representation for the 
Adaptive Generation of Simple Sequential Programs. In 
Proceedings of the 1st International Conference on Genetic 

Algorithms, John J. Grefenstette (Ed.). 183-187. 

Gabriela Ochoa, goc@stir.ac.uk 

John R. Koza 
Scientist and business man. Popularised GP, proposed and 
funds the HUMMIES award.  Millionaire,  co-inventor of rub-
off instant lottery game ticket, proposed a plan for electing the 
US president by popular vote. 
 

1992 book: On the Programming of 
Computers by Means of Natural 
Selection from The MIT Press.  

(Poli, Langdon, and McPhee, 2008) 
http://www.gp-field-guide.org.uk 
  

Bill Langdon 
The GP Bibliography  
http://www.cs.bham.ac.uk/~wbl/biblio/README.html 
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Other population-based algorithms: 
the social behaviour metaphor 

Ant colony optimisation (ACO) 

• Dorigo, Di Caro &                  
Gambardella (1991).  

• Inspired by the behaviour             
of  real ant colonies 

• A set of software agents artificial 
ants search for good solutions 

• Problem transformed to finding 
the best path on a weighted 
graph.  

• Ants build solutions incrementally 
by moving on the graph 

• http://www.aco-metaheuristic.org/ 

• http://www.scholarpedia.org/article/Ant_c
olony_optimization 

 

 

Particle Swarm Optimization (PSO) 

• Eberhart & Kennedy, 1995 

• Inspired by social behaviour of 
bird flocking or fish schooling 

• Solutions (called particles) fly 
through the search space by 
following the current optimum 
particles 

• At each iteration they accelerate 
towards the best locations 

• http://www.swarmintelligence.org/ 

• http://www.scholarpedia.org/article/Par
ticle_swarm_optimization 
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Summary: Optimisationalgorithms 

Optimisation 
algorithms 

Exact 

Special purpose 

Generate bounds: 
dual ascent, 

Langrangean relax 

General purpose 

Branch and 
bound 

Cutting planes 

Approximate 

Special purpose 

Approximation 

Greedy / 
Constructive 

Heuristics 

Meta and Hyper 
heuristics 

Single point Population based 

Gabriela Ochoa, goc@stir.ac.uk 

• Guarantee finding optimal solution 
• Useful when problems can be solved in 

Polynomial time, or for small instances 

• Do not Guarantee finding optimal solution 
• For most interesting optimisation problems 

no polynomial methods are known 

Metaheuristcs, modern heuristics, stochastic local search (key components): 
1. Problem representation 
2. Fitness function 
3. Search/variation operators 
4. Solution initialisation 
5. Search strategy (balance exploration & exploitation, avoid local optima) 
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Outline 

1. Optimisation problems 
– Optimisation & search 

– Classic mathematical models 

– Two canonical examples (Knapsack, TSP) 

2. Optimisation methods 
– Heuristics and metaheuristcis 

– Single point algorithms 

– Population-based algorithms 

3. Autonomous search and hyper-heuristics 
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Increase in complexity 
• Real world problems are complex 

• Heuristic search algorithms are powerful but  

– There are too many variants 

– They are getting increasingly complex 

• Many parameters 

• Many  design/algorithmic components  

• Advantage 

– More  variety  and more flexible algorithms 

– Fit to different problems 

• Disadvantage  

– Need to select an algorithm, or 

– Select the algorithm components/operators 
and/or set their parameters 
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Algorithm selection, configuration and tuning 
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Holy-Grail:  Finding the most suitable optimisation/search algorithm 
and its correct setting for solving a given problem 

Can we automate 
these processes? 

Algorithm 
selection 

Algorithm 
configuration 

Parameter  
tuning  

Static/dynamic 

47 

Autonomous/adaptive (self-*) search 
approaches 

• Different approaches (that share common principles) have been 
developed in different communities (OR, OP, AI, ML, CS) 

• Incorporate ideas from machine learning and statistics 
Offline, Static Configuration 
• Algorithm selection 
• Algorithm portfolios 
• Algorithm configuration and  

Parameter tuning 
•  Racing, ParamILS, SPO 

• Hyper-heuristics 
 

Online, Dynamic Control 
• Adaptive operator selection 
• Parameter control 
• Reactive search 
• Adaptive memetic algorithms 
• Hyper-heuristics 
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What is a Hyper-heuristic? 

• A higher level heuristic which manages a set of low-level 
heuristics 

• An optimisation algorithm with a modular design  

• Benefits from combining the strengths of several simpler 
heuristics  

• Uses only limited problem-specific information 
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Hyper-
heuristic 
Hyper-

heuristic 

Heuristic 1 Heuristic 1 Heuristic 2 Heuristic 2 Heuristic 3 Heuristic 3 Heuristic n Heuristic n 

Heuristics to choose 
heuristics  

49 

What Motivates Hyper-Heuristic Research? 

 Decision support systems that are  

off the peg vs. Taylor made  

 Develop the ability to automatically 

work well on different problems 

  Increase the generality and 

applicability of these methods to 

solve complex real-world problems 
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vs. 

50 

Classification of hyper-heuristics 

Hyper-
heuristics 

Heuristic 
Selection 

Construction 
heuristics 

Improvement 
heuristics 

Heuristic  
generation 

Construction 
heuristics 

Improvement 
heuristics 

Heuristic components Fixed, human-designed low level 
heuristics 

Gabriela Ochoa, goc@stir.ac.uk 51 

Hyper-ILS or adaptive ILS 

• Pool of operators of different type 

• Reinforcement learning used to 
adaptively select the best operator to 
apply at each iteration 

• Either or both 
– Improvement stage 

– Perturbation stage  

Procedure Hyper-ILS 

s0 = GenerateInitialSolution 

s* = HyperImproveStage(s0) 

while NOT Termination_criterion) { 

 s'=  HyperPerturbStage(s*) 

 s'*= HyperImproveStage(s') 

 if f(s'*) < f(s*) 

  s* = s'*  

} 

• Successful applications to both Vehicle routing and Course time-tabling 
• Research questions 

• Metrics to gather feedback from the search, how to combine them 
• Mechanism for adaptive operator selection 
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Given a pool of operators 

Simple Random Perturbation (SRP) 

Best Single Perturbation (BSP) 

Statistical Dynamic Perturbation (SDP) 

Double Dynamic Perturbation (DDP) 

Swap (SWP) 

Two Points Perturbation (2PP) 

Move to Less Conflict (MLC) 

Burke-Abdhulla (BA) 

Conant-Pablos (LSA) 
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QUESTION: Given f K search operators  

• How to select (on the fly) the operator 

to be applied next, considering the 

history of their performance? 

• Measuring performance  Assigning 

credit  Selecting the operator: Fitness 

Improvement + Extreme Credit + 

Adaptive Pursuit 

 

Application to 
Timetabling 
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Summary of hyper-heuristics 

• Main feature:  search in a space of heuristics 
• Term used for  ‘heuristics to choose heuristics’ in 2000 
• Ideas can be traced back to the 60s and 70s 
• Two main type of approaches 

– Heuristic selection 
– Heuristic generation 

• Ideas from online and offline machine learning are relevant, as are 
ideas of meta-level search 

 A hyper-heuristic is an automated methodology for selecting or 
generating heuristics to solve computational search problems 
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