
HyFlex: A Benchmark Framework for
Cross-domain Heuristic Search

Gabriela Ochoa1, Matthew Hyde1, Tim Curtois1, Jose A. Vazquez-Rodriguez1,
James Walker1, Michel Gendreau2, Graham Kendall1, Barry McCollum3,

Andrew J. Parkes1, ‘ Sanja Petrovic1, and Edmund K. Burke4

1 School of Computer Science, University of Nottingham, UK
2 CIRRELT, University of Montreal, Canada

3 School of Electronics and Computer Science, Queen’s University, UK,
4 Department of Computing Science and Mathematics, University of Stirling, UK

Abstract. This paper presents HyFlex, a software framework for the
development of cross-domain search methodologies. The framework fea-
tures a common software interface for dealing with different combinato-
rial optimisation problems and provides the algorithm components that
are problem specific. In this way, the algorithm designer does not require
a detailed knowledge of the problem domains and thus can concentrate
his/her efforts on designing adaptive general-purpose optimisation algo-
rithms. Six hard combinatorial problems are fully implemented: maxi-
mum satisfiability, one dimensional bin packing, permutation flow shop,
personnel scheduling, traveling salesman and vehicle routing. Each do-
main contains a varied set of instances, including real-world industrial
data and an extensive set of state-of-the-art problem specific heuristics
and search operators. HyFlex represents a valuable new benchmark of
heuristic search generality, with which adaptive cross-domain algorithms
are being easily developed and reliably compared.This article serves both
as a tutorial and a as survey of the research achievements and publica-
tions so far using HyFlex.

1 Introduction

There is a renewed and growing research interest in techniques for automating
the design of heuristic search methods. The goal is to reduce the need for a hu-
man expert in the process of designing an effective algorithm to solve a search
problem and consequently raise the level of generality at which search method-
ologies can operate. Evolutionary algorithms and metaheuristics have been suc-
cessfully applied to solve a variety of real-world complex optimisation problems.
Their design, however, has become increasingly complex. In order to make these
methodologies widely applicable, it is important to provide self-managed systems
that can configure themselves ‘on the fly’; adapting to the changing problem (or
search space) conditions, based on general high-level guidelines provided by their
users.

Researchers pursuing these goals within combinatorial optimisation, are of-
ten limited by the number of problem domains available to them for testing their



adaptive methodologies. This can be explained by the difficulty and effort re-
quired to implement state-of-the-art software components, such as the problem
model, solution representation, objective function evaluation and search opera-
tors; for many different combinatorial optimisation problems. Although several
benchmark problems in combinatorial optimisation are available [24, 1, 3] (to
name just a few); they contain mainly the data of a set of instances and their
best known solutions. They generally do not incorporate the software necessary
to encode the solutions and calculate the objective function, let alone existing
search operators for the given problem. It is the researcher who needs to provide
these in order to later test their high-level adaptive search method. To overcome
such limitations, we propose HyFlex, a modular and flexible Java class library for
designing and testing iterative heuristic search algorithms. It provides a number
of problem domain modules, each of which encapsulates the problem-specific al-
gorithm components. Importantly, only the high-level control strategy needs to
be implemented by the user, as HyFlex provides an easy-to-use interface with
which the problem domain modules can be linked.

A number of research themes within operational research, computer science
and artificial intelligence would benefit (and are already benefiting) from the
proposed framework. Among them: hyper-heuristics [8, 22], adaptive memetic
algorithms [19, 23], adaptive operator selection [13], reactive search [2], variable
neighborhood search and its adaptive variants [21]; and generally the develop-
ment of adaptive parameter control strategies in evolutionary algorithms [12].
HyFlex can be seen as a unifying and extended benchmark for combinatorial
optimisation, with which the performance of different cross-domain adaptive
techniques can be reliably assessed and compared. Practitioners can also gain
even if they are only interested in one specific domain, because they could have
available a large range of hyper-heuristics. A simple test process could determine
the hyper-heuristic that best exploits the underlying domain and so allows prac-
titioners to quickly and easily obtain their results without having to implement
a complex search control process themselves.

HyFlex was used to support an international research competition: the first
Cross-Domain Heuristic Search Challenge [18]. The challenge is analogous to
the athletics Decathlon event, where the goal is not to excel in one event at the
expense of others, but to have a good general performance on each. Competitors
submitted one Java class file using HyFlex representing their hyper-heuristic
or high-level search strategy. This ensures that the competition is fair, because
all of the competitors must use the same problem representation and search
operators. Moreover, due to the common interface, the competition considered
not only hidden instances, but also two hidden domains.

The purpose of this article is to describe the HyFlex framework as a bench-
mark tool for research in hyper-heuristics and adaptive/autonomous heuristic
search. A detailed analysis of the 2011 CHeSC competition is beyond the scope
of this article and will be discussed elsewhere. The next section describes the an-
tecedents and architecture of the HyFlex framework. It also includes a detailed
account of how to implement and run hyper-heuristics within the framework



and a brief summary of the problem domains currently implemented. Section 3
presents a survey of published research and achievements made possible by the
framework so far. Finally, section 4 summarises our contribution and suggests
directions for future research.

2 The HyFlex Framework

HyFlex (Hyper-heuristics Flexible framework) is a software framework designed
to enable the development, testing and comparison of iterative general-purpose
heuristic search algorithms (such as hyper-heuristics). To achieve these goals it
uses modularity and the concept of decomposing a heuristic search algorithm
into two main parts:

1. A general-purpose part: the algorithm or hyper-heuristic.
2. The problem-specific part: provided by the HyFlex framework.

In the hyper-heuristics literature, this idea is also referred to as the domain
barrier between the problem-specific heuristics and the hyper-heuristic [7, 10].
HyFlex extends the conceptual domain-barrier framework by maintaining a pop-
ulation (instead of a single incumbent solution) in the problem domain layer.
Moreover, it provides a richer variety of problem specific heuristics and search
operators (i.e. it includes crossover and ‘ruin-recreate’ heuristics). Another rel-
evant antecedent to HyFlex is PISA [4], a text-based software interface for
multi-objective evolutionary algorithms. PISA provides a division between the
application-specific and the algorithm-specific parts of a multi-objective evolu-
tionary algorithm. In HyFlex, the interface is given by an abstract Java class.
This allows a more tight coupling between the modules and overcomes some of
the speed limitations encountered in PISA. Moreover, HyFlex provides a richer
variety of fully implemented combinatorial optimisation problems including real-
world instance data.

The framework is written in Java which is familiar to and commonly used
by many researchers. It also benefits from object orientation, platform indepen-
dence and automatic memory management. At the highest level, the framework
consists of just two abstract classes: ProblemDomain and HyperHeuristic. The
structure of these classes is shown in the class diagram of figure 1. In the dia-
gram, the signatures adjacent to circles are public methods and fields and the
signatures adjacent to diamonds are protected. Abstract methods are denoted
by italics and the implementations of these methods are necessarily different for
each instantiation of problem domain or hyper-heuristic.

2.1 The ProblemDomain Class

As shown in figure 1, an implementation of the ProblemDomain class provides
the following elements, each of which is easily accessed and managed with one
or more methods.



1. A user-configurable memory (a population) of solutions, which can be man-
aged by the hyper-heuristic through methods such as setMemorySize and
copySolution.

2. A routine to randomly initialise solutions, initialiseSolution(i), where
i is the index of the solution array in the memory.

3. A set of problem specific heuristics, which are used to modify solutions.
These are called with the applyHeuristic(i, j, k) method, where i is the
index of the heuristic to call, j is the index of the solution in memory to
modify and k is the index in memory where the resulting solution should be
placed. Solution j is not changed by this operation. Each problem-specific
heuristic in each problem domain is classified into one of four groups, shown
below. The heuristics belonging to a specific group can be accessed by calling
getHeuristicsOfType(type).
– Mutational or perturbation heuristics: perform a small change on the

solution, by swapping, changing, removing, adding or deleting solution
components.

– Ruin-recreate (destruction-construction) heuristics: partly destroy the
solution and rebuild or recreate it afterwards. These heuristics can be
considered as large neighbourhood structures. They are, however, differ-
ent from the mutational heuristics in that they can incorporate problem
specific construction heuristics to rebuild the solutions

– Hill-climbing or local search heuristics: iteratively make small changes
to the solution, only accepting non-deteriorating solutions, until a local
optimum is found or a stopping condition is met. These heuristics differ
from mutational heuristics in that they incorporate an iterative improve-
ment process and they guarantee that a non-deteriorating solution will
be produced.

– Crossover heuristics: take two solutions, combine them and return a new
solution.

4. A varied set of instances that can be easily loaded using the method:
loadInstance(a), where a is the index of the instance to be loaded.

5. A fitness function, which can be called with the getFunctionValue(i) method,
where i is the index of the required solution in the memory. HyFlex prob-
lem domains are always implemented as minimisation problems, so a lower
fitness is always better. The fitness of the best solution found so far in the
run can be obtained with the getBestSolutionValue() method.

6. Two parameters: α and β, (0 <= [α, β] <= 1), which are the ‘intensity’ of
mutation and ‘depth of search’, respectively, that control the behaviour of
some search operators.

2.2 The HyperHeuristic Class

The HyperHeuristic class is designed to allow algorithms which implement this
class to be compared and benchmarked across one or more of the problem
domains available (for example, in a competition). Users create cross-domain



Fig. 1. Class diagram for the HyFlex framework.

heuristic algorithms by creating implementations of this abstract class. Each
class must contain a toString() method, to give the methodology a name. It
must also contain a solve() method, in which the functionality of the particular
methodology is written.

The solve() method would normally contain a loop, which continues while
the time limit (defined by the user) has not been exceeded. In the loop, the code
should provide a mechanism for selecting between the available problem-specific
heuristics and choose to which solutions in memory to apply the heuristics. This
class could choose to work with a memory size of 1 for a single point search,
or a large memory could be maintained for a population based approach. The
memory can be easily defined and maintained through calling methods of the
ProblemDomain class, where the memory is stored. A hyper-heuristic class auto-
matically records the length of time for which it has been running and this can be
monitored through methods such as hasTimeExpired() and getElapsedTime().

The solve method is the only method which must be implemented. All other
common functionality is provided by the HyFlex software, such as the timing
function and the recording of the best solution.



2.3 Running a Hyper-Heuristic

Algorithm 1 shows the ease with which a hyper-heuristic can be run on a problem
domain. An object is created for the problem domain (in this example MAX-
SAT) and for the hyper-heuristic, each with a random seed. Then a problem
instance is loaded from the selection available in the problem domain object. In
this example we choose the instance with index 0. The problem domain is now
set up for the hyper-heuristic.

We set the time for which the hyper-heuristic will run, in milliseconds. Then
the hyper-heuristic object is given a reference to the problem domain object.
Now that the setup is complete, the run() method of the hyper-heuristic is
called to start the search process. The hyper-heuristic will run for 60 seconds
in this example and the best solution found during that time is retrievable with
the getBestSolutionValue() method, as shown in Algorithm 1. This (or indeed
any) hyper-heuristic can be run on the 5 other problem domains by changing
just one line of code.

Algorithm 1 Java code for running a hyper-heuristic on a problem domain
ProblemDomain problem = new SAT(seed1);
HyperHeuristic HHObject = new ExampleHyperHeuristic1(seed2);
problem.loadInstance(0);
HHObject.setTimeLimit(60000);
HHObject.loadProblemDomain(problem);
HHObject.run();
System.out.println(HHObject.getBestSolutionValue());

2.4 An Example Hyper-Heuristic

This section provides an example hyper-heuristic, to illustrate the ease with
which a hyper-heuristic can be created. This is done by extending the Hyper-
Heuristic abstract class and implementing only one method. All of the common
functionality is provided by the HyFlex software, such as the timing function
and the recording of the best solution. This example demonstrates exactly how
to use certain elements of HyFlex functionality, including the solution memory.

After the run() method of the hyper-heuristic is called (see section 2.3), the
hyper-heuristic abstract class performs some housekeeping tasks, such as initial-
ising the timer and then calls the solve method of the chosen hyper-heuristic. In
Algorithm 1, this is an object of the class ExampleHyperHeuristic1. Algorithm
2 shows the code for the solve() method in ExampleHyperHeuristic1. It shows
that very few lines of code are necessary in order to implement a hyper-heuristic
method with the HyFlex framework. Algorithm 2 is written in pseudocode, but
each line corresponds to no more than one line of actual Java code. The solve()
method is the only substantial method which needs to be implemented. Indeed



the only other necessary method is toString(), which requires one line to give
the hyper-heuristic a name.

From Algorithm 2, we can see that the solve() method takes the problem
domain object as an argument and checks for the number of search operators
available within it. We also initialise a value to store the current objective func-
tion value. It is also necessary to initialise at least one solution in the memory.
The default memory size is 2 and we initialise the solution at index 0, which
means we build an initial solution with the method specified in the problem do-
main (generally a fast randomised constructive heuristic). The solution at index
1 remains uninitialised and therefore has a value of null.

An implemented hyper-heuristic must always contain a while loop which
checks if the time limit has expired. The code within the loop specifies the
main functionality of the hyper-heuristic. In this example, we choose a random
operator and then apply it to the solution at index 0. The modified solution is
put in the memory at index 1 (previously not initialised). Note that a random
number generator rng is provided by the HyperHeuristic abstract class. This is
created when the hyper-heuristic object’s constructor is called and is the reason
why that constructor requires a random seed.

If the new solution is superior to the old solution, it is accepted and the new
solution overwrites the old one in memory. The copySolution method of the
problem domain class is employed to manage this. If the new solution is not
superior, then the new solution is accepted with 0.5 probability.

Algorithm 2 Pseudocode for the solve method of ExampleHyperHeuristic1.
This is called when the run() method of the hyper-heuristic is called (see Algo-
rithm 1)
Require: A ProblemDomain object, problem

int numberOfHeuristics = problem.getNumberOfHeuristics
double currentObjValue = Double.POSITIVE-INFINITY
problem.initialiseSolution(0)
while hasTimeExpired = FALSE do

int h = rng.nextInt(numberOfHeuristics)
double newObjValue = problem.applyHeuristic(h, 0, 1)
double delta = currentObjValue - newObjValue
if delta > 0 then

problem.copySolution(1, 0)
currentObjValue = newObjValue;

else
if rng.nextBoolean = TRUE then

problem.copySolution(1, 0)
currentObjValue = newObjValue;

end if
end if

end while



2.5 HyFlex Problem Domains

Currently, six problem domain modules are implemented. From these, 4 were
given as test domains for the CHeSC competition: maximum satisfiability (MAX-
SAT), one-dimensional bin packing, permutation flow shop and personnel schedul-
ing. Two additional domains, namely, the traveling salesman and the capacitated
vehicle routing problem [25], were later implemented and used as hidden domains
in the competition. Each domain includes 10 training instances from different
sources and a number of problem-specific heuristics of the types discussed in
section 2.1. The six domains together with technical reports describing them in
detail, including the problem formulation, solution initialisation, instance date
and low-level heuristics, can be found on the competition site [18]. Due to space
constraints we only present a summary describing the solution initialisation, the
total number of low-level heuristics and the number of heuristics of each type
(Table 1).

Table 1. HyFlex problem domains, indicating initialisation, the total number
of low-level heuristics and the number of heuristics per type.

Domain Initialisation Total Mut. R&R Xover. LS.
Max-SAT Random bit-string 9 4 1 2 2

Bin Packing Randomised first-fit heuristic [15] 8 3 2 1 2
Flow Shop Randomised NEH procedure [17] 15 5 2 3 4

Pers. Sched. Randomised hill climbing heuristic 12 1 3 3 4
TSP Random permutation 15 5 1 3 6
VRP Randomised constructive heuristic 12 4 2 2 4

3 HyFlex Achievements

HyFlex was made available in August 2010 when the CHeSC competition was
launched at the International Conference on the Practice and Theory of Au-
tomated Timetabling (PATAT 2010)1. In May 2011, a web statistics counter
was added to the website and since then, up to January 30th 2012, it has
recorded 4,721 visits and 9,451 page views. This section briefly surveys the re-
search achievements and publications made possible with HyFlex so far.

The first article implementing hyper-heuristics using HyFlex was published in
2010 [5], where several hyper-heuristics combining two heuristic selection mech-
anisms and three acceptance criteria were compared. A multiple neighbourhood
iterated local search was also implemented and found to outperform the other
approaches as a general optimiser. This iterated local search hyper-heuristic
contains a perturbation stage, during which a neighborhood move is selected

1 http://www.cs.qub.ac.uk/~B.McCollum/patat10/



uniformly at random (from the available pool of mutation and ruin-recreate
heuristics) and applied to the incumbent solution; followed by a greedy improve-
ment stage (using all the local search heuristics). The approach is extended in [6]
by substituting the uniform random selection of neighbourhoods in the perturba-
tion stage, by online learning strategies. Two strategies were implemented: choice
function [10] (from the hyper-heuristics literature) and extreme value based adap-
tive operator selection [13] (from the evolutionary computation literature), with
the latter producing better overall results. This last implementation was the best
performing hyper-heuristic before the competition started.

In [14], the authors used reinforcement learning for heuristic selection and
explored several variants for the rewards, policy and learning functions. Different
ways of modeling the agents’ states and actions were also explored. The results
reported are preliminary and do not compare well with those generated by other
HyFlex hyper-heuristics.

In [20], the authors implement a multi-stage hyper-heuristic, combining a
greedy stage with a random descent stage, followed by a simple solution accep-
tance mechanism. During the greedy stage, all the available low-level heuristics
are applied during a number of steps and a subset of the best performing heuris-
tics (active set) is constructed using a dominance-based strategy. The subsequent
random descent stage, randomly selects a heuristic from the active set and applies
it repeatedly until no improvement is achieved. The transition between stages is
controlled by a probability parameter. This relatively simple approach produces
very good results when compared with previous HyFlex hyper-heuristics.

HyFlex was used to support the CHeSC 2011 competition. The event suc-
cessfully attracted the interest and participation of universities and academic
institutions across the six continents; 43 registrations and 20 submissions were
received. We received several positive and encouraging comments regarding both
HyFlex and the competition, from the registered participants. The competition
results and brief technical reports describing the participant entries can be found
in the website [18]. Here, we briefly summarise the top 4 hyper-heuristics:

1. AdapHH: Mustafa Misir, University KaHo Sint-Lieven, Belgium.
A ‘traditional’ selective hyper-heuristic that includes two stages: heuristic
selection and solution acceptance. Heuristic selection is done by learning
dynamic heuristic sets and effective pairs of heuristics. The algorithm also
incorporates adaptation of the heuristic parameters and an adaptive thresh-
old acceptance. This approach was presented in [16].

2. VNS-TW: Ping-Che Hsiao, National Taiwan University, Taiwan.
A variable neighborhood search algorithm that orders perturbation heuristics
according to strength. It includes two stages: diversification and intensifica-
tion and incorporates an adaptive technique to adjust the strength of the
local search heuristics.

3. ML: Mathieu Larose, Montreal University,Canada.
An adaptive iterated local search algorithm with three stages: diversifica-
tion, intensification and a simple adaptive move acceptance. Reinforcement
learning is used for selecting heuristics.



4. PHUNTER: Fan Xue, Hong Kong Polytechnic University, Hong Kong.
A hyper-heuristic that can assemble different iterated local search algo-
rithms. The authors use the metaphor of pearl hunting; there is a diver-
sification stage (surface and change target area) and an intensification stage
(dive and find pearl oysters). The algorithm also uses offline learning to
identify search modes. This approach was presented in [9].

Several new best-known solutions have been found for personnel scheduling
instances [11] using HyFlex (see Table 2). This is an interesting result, consid-
ering that HyFlex was designed to implement general-purpose search heuristics.

Table 2. Personnel scheduling best-known solutions obtained by the PHUNTER
HyFlex hyper-heuristic.

Instance HyFlex Previous Shift
name best-known best-known staff types days

CHILD-A2 1095 1111 41 5 42
ERRVH-A 2142 2197 51 8 42
ERRVH-B 3121 6859 51 8 42

MER-A 9017 9915 54 12 42

A special session on Cross-domain Heuristic Search was held as part of the
Learning and Intelligent OptimizatioN conference (LION 2012)2. Seven papers
were accepted and presented using HyFlex for implementing cross-domain hyper-
heuristics. HyFlex is also being used as a tool for teaching modules in meta-
heuristics and evolutionary algorithms. Finally, HyFlex is potentially useful from
the point of view of practitioners. If they provide their problem-specific software
components following the interface, they will have at their disposal a growing
number of hyper-heuristics and adaptive search controllers ready to use.

4 Discussion and Future Work

HyFlex is a software framework which enables cross-domain algorithms to be eas-
ily developed and reliably compared. It currently provides 6 problem domains,
each containing a set of problem instances and search operators to apply. There-
fore, it represents a novel extension of the notion of benchmark for combinatorial
optimisation. Researchers from different communities and themes within com-
puter science, artificial intelligence and operational research, can benefit from
HyFlex, as it provides a common benchmark in which to test the performance
and behavior of single-point and population-based self-configuring search heuris-
tics. When using HyFlex, researchers can concentrate their efforts on designing
their adaptive methodologies, rather than implementing the required set of prob-
lem domains. There is currently ample evidence that HyFlex is being used by
the research community for both research and teaching.
2 http://intelligent-optimization.org/LION6



Different algorithm design ideas have been implemented and tested using
HyFlex. Some successful design principles start to emerge such as the use of
diversification and intensification phases, the use of reinforcement learning for
heuristic selection, adaptation of the heuristic parameters and the use of adap-
tive acceptance criteria. Interesting emerging ideas are the use of co-evolution
and evolution of heuristic sequences. The use of a population is starting to be val-
ued within selective hyper-heuristic research, which has traditionally focused on
single-point search algorithms. It is our vision that the HyFlex framework will
continue to facilitate and increase international interest in developing hyper-
heuristics and adaptive heuristic search methodologies that can find wider ap-
plication in practice.

HyFlex can be extended to include new domains, additional instances and
operators in existing domains and multi-objective and dynamic problems. The
current software interface can also be extended to incorporate additional feed-
back information from the domains to guide the adaptive search controllers.
In particular, parameterised low-level heuristics and diversity metrics can be
included. We plan to host a new edition of the competition and maintain a
repository of results and updates to the HyFlex framework.

References

1. J. Argelich, C-M. Li, F. Manya, and J. Planes. Maxsat evaluation 2009 benchmark
data sets. Website, 2009. http://www.maxsat.udl.cat/.

2. R. Battiti, M. Brunato, and F. Mascia. Reactive Search and Intelligent Opti-
mization, volume 45 of Operations Research/Computer Science Interfaces Series.
Springer, 2009.

3. J. E. Beasley. Or-library: collection of test data sets for a variety of operations
research (or) problems. Website, 2010. http://people.brunel.ac.uk/~mastjjb/

jeb/info.htmll.

4. S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA—A Platform and Pro-
gramming Language Independent Interface for Search Algorithms. In Conference
on Evolutionary Multi-Criterion Optimization (EMO 2003), volume 2632 of LNCS,
pages 494–508, Berlin, 2003. Springer.

5. E. K. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa, S. Petrovic, J. A.
Vazquez-Rodriguez, and M. Gendreau. Iterated local search vs. hyper-heuristics:
Towards general-purpose search algorithms. In IEEE Congress on Evolutionary
Computation (CEC 2010), pages 3073–3080, Barcelona, Spain, July 2010.

6. E. K. Burke, M. Gendreau, G. Ochoa, and J. D. Walker. Adaptive iterated local
search for cross-domain optimisation. In Proceedings of the 13th annual conference
on Genetic and evolutionary computation, GECCO ’11, pages 1987–1994, New
York, NY, USA, 2011. ACM.

7. E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Hyper-
heuristics: An emerging direction in modern search technology. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics, pages 457–474. Kluwer,
2003.

8. E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. Woodward. Hand-
book of Metaheuristics, volume 146 of International Series in Operations Research



& Management Science, chapter A Classification of Hyper-heuristic Approaches,
pages 449–468. Springer, 2010. Chapter 15.

9. C.Y. Chan, Fan Xue, W.H. Ip, and C.F. Cheung. A hyper-heuristic inspired by
pearl hunting. In International Conference on Learning and Intelligent Optimiza-
tion (LION 6), Lecture Notes in Computer Science. Springer, 2012. (to appear).

10. P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach for scheduling
a sales summit. In Selected Papers of the Third International Conference on the
Practice And Theory of Automated Timetabling, PATAT 2000, LNCS, pages 176–
190, Konstanz, Germany, 2001. Springer.

11. T. Curtois. Staff rostering benchmark data sets. Website, 2011. http:///www.cs.
nott.ac.uk/~tec/NRP/.

12. A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith. Parameter Setting in
Evolutionary Algorithms, chapter Parameter Control in Evolutionary Algorithms,
pages 19–46. Springer, 2007.

13. A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Extreme value based
adaptive operator selection. In Parallel Problem Solving from Nature PPSN X,
volume 5199 of LNCS, pages 175–184. Springe, 2008.

14. L. Di Gaspero and T. Urli. A reinforcement learning approach for the cross-domain
heuristic search challenge. In Proceedings of the 9th Metaheuristics International
Conference (MIC 2011), Udine, Italy, July 25–28 2011.

15. D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham. Worst-case per-
formance bounds for simple one-dimensional packaging algorithms. SIAM Journal
on Computing, 3(4):299–325, December 1974.

16. M. Misir, K. Verbeeck, P. De Causmaecker, and G. Vanden Berghe. An intelligent
hyper-heuristic framework for chesc 2011. In International Conference on Learn-
ing and Intelligent Optimization (LION 6), Lecture Notes in Computer Science.
Springer, 2012. (to appear).

17. M. Nawaz, E. Enscore Jr., and I. Ham. A heuristic algorithm for the m-machine, n-
job flow-shop sequencing problem. OMEGA-International Journal of Management
Science, 11(1):91–95, 1983.

18. G. Ochoa and M. Hyde. The Cross-domain Heuristic Search Challenge (CHeSC
2011). Website, 2011. http://www.asap.cs.nott.ac.uk/chesc2011/.

19. Y. S. Ong, M. H. Lim, N. Zhu, and K. W. Wong. Classification of adaptive
memetic algorithms: a comparative study. IEEE Transactions on Systems, Man,
and Cybernetics, Part B, 36(1):141–152, 2006.

20. E. Ozcan and A. Kheiri. A hyper-heuristic based on random gradient, greedy and
dominance. In Proceedings of the 26th International Symposium on Computer and
Information Sciences ISCIS2011, London, UK, July 25–28 2011.

21. D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Com-
puters and Operations Research, 34:2403– 2435, 2007.

22. P. Ross. Hyper-heuristics. In E. K. Burke and G. Kendall, editors, Search Method-
ologies: Introductory Tutorials in Optimization and Decision Support Techniques,
chapter 17, pages 529–556. Springer, 2005.

23. J. E. Smith. Co-evolving memetic algorithms: A review and progress report. IEEE
Transactions in Systems, Man and Cybernetics, part B, 37(1):6–17, 2007.

24. E. Taillard. Benchmarks for basic scheduling problems. European Journal of Op-
erational Research, 64(2):278–285, 1993.

25. J. D. Walker, G. Ochoa, M. Gendreau, and E. K. Burke. Vehicle routing and adap-
tive iterated local search within the hyflex hyper-heuristic framework. In Inter-
national Conference on Learning and Intelligent Optimization (LION 6), Lecture
Notes in Computer Science. Springer, 2012. (to appear).


