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Abstract. HyFlex is a recently proposed software framework for imple-
menting hyper-heuristics and domain-independent heuristic optimisation
algorithms [13]. Although it was originally designed to implement hyper-
heuristics, it provides a population and a set of move operators of differ-
ent types. This enable the implementation of adaptive versions of other
heuristics such as evolutionary algorithms and iterated local search. The
contributions of this article are twofold. First, a number of extensions to
the HyFlex framework are proposed and implemented that enable the
design of more effective adaptive heuristics. Second, it is demonstrated
that adaptive evolutionary algorithms can be implemented within the
framework, and that the use of crossover and a diversity metric pro-
duced improved results, including a new best-known solution, on the
studied vehicle routing problem.

1 Introduction

A hyper-heuristic is a search method or learning mechanism for selecting or
generating heuristics to solve computational search problems [6]. The main moti-
vation is to develop automated search methodologies with higher generalisation
abilities, which will potentially increase their application in practice. The HyFlex
(Hyper-heuristic Flexible) framework [13] has been recently proposed to assist re-
searchers in hyper-heuristics and autonomous search control. HyFlex consists of
two parts. First, a Java programming interface for hyper-heuristics, which splits
the heuristic search process into two modules. One module contains the problem-
specific algorithm components and other contains the problem-independent com-
ponents. Second, a library of ready-to-use problem domain modules covering hard
combinatorial optimisation problems with a rich variety of search operators and
including real-world industrial data. Two important antecedents of the HyFlex
framework are the domain-barrier hyper-heuristic conceptual framework [8], and
the PISA software framework [3].

Currently, six problem domain modules are implemented in HyFlex (which
can be downloaded from the CHeSC 2011 website [1]). These are the original four
test domains: permutation flow shop, one-dimensional bin packing, maximum
satisfiability and personnel scheduling; and the two additional domains used for



the competition: traveling salesman and vehicle routing. HyFlex was used to
support an international research competition: the first Cross-Domain Heuristic
Search Challenge [1] that received significant international attention.

HyFlex was initially designed to support research within hyper-heuristics.
However, since the framework provides search operators of different types (mu-
tation, crossover, ruin-recreate and hill-climbing) approaches not traditionally
identified as hyper-heuristics can be implemented using the framework. For ex-
ample, several adaptive implementations of iterated local search (ILS) within
HyFlex have been published recently [4, 5, 17, 7]. Indeed, the algorithms ranking
2nd and 3rd in the 2011 competition can be seen as adaptive ILS methods. These
approaches can be considered as hyper-heuristics as they operate in a domain
independent fashion, using limited information from the search process and fol-
lowing a modular design. Moreover, they coordinate the effort of several move
operators and local search heuristics.

The contributions of this paper are twofold. First, we describe number of ex-
tensions to the HyFlex framework that will enable the implementation of more
robust and effective adaptive search heuristics. Second, we extend a previous
adaptive ILS hyper-heuristic [17], which is a single-point search approach, by in-
corporating a population and the use of crossover heuristics. This brings hyper-
heuristics close to adaptive memetic algorithms [14]. These two approaches have
developed independently, but they share several features. In particular, they need
to provide adaptive mechanisms to autonomously guide the choice of operators
(or memes) during the search. These mechanisms have been also studied within
the evolutionary computation community using the term adaptive operator se-
lection [9, 12].

The next section overviews the proposed extensions to the HyFlex interface,
while section 3 describes their implementation within a selected problem do-
main: vehicle routing. Section 4 describes an empirical study illustrating that:
(i) adaptive memetic algorithms can be successfully implemented within the
HyFlex framework, and (ii) the distance metric incorporated in HyFlex can be
used to implement state-of-the-art adaptive operator selection mechanisms. Fi-
nally, section 5 summarises our main findings and discusses routes for future
research.

2 Extensions to the HyFlex interface

Providing additional feedback information from the search process would im-
prove the robustness and effectiveness of adaptive search heuristics. Below we
discuss the proposed extensions to the HyFlex interface, including their moti-
vation and an indication of which types of approaches may benefit from these
extensions.

Distance between solutions: An important source of feedback for population-
based algorithms is an indication of the genotypic diversity in the population.
Moreover, recently proposed adaptive operator selection mechanisms rely on the



population diversity as a source of feedback [12]. In order to calculate the diver-
sity of a population, a distance metric between solutions is needed. Therefore,
the HyFlex interface is extended with the following two methods:

double getMaxDistance()

double solutionDistance(int solutionIndex1, int solutionIndex2)

We assume that the minimum distance between two solutions is zero, and
that this occurs when they are exactly the same. Since different representa-
tions require different distance metrics and measurement ranges, the method
getMaxDistance returns the maximum possible distance maxd between two so-
lutions. The method solutionDistance returns a value between 0 and maxd

representing the distance between the two solutions in the memory of solutions
as indicated by the input indices.

Solution metrics and alternative objective functions: Heuristic search
approaches that dynamically modify the fitness function in order to escape local
optima or fitness plateaus can be found in the metaheuristics and artificial in-
telligence literature [2]. Moreover, a recently published hyper-heuristic approach
[18], declared the winner of a computational search competition to solve the
Eternity II Puzzle, employs alternative fitness functions in order to guide the
search. Guided local search (GLS) proposes augmenting the objective function
with a set of penalty terms on a set of solution features [16]. A solution feature is
a non-trivial property of the solution and a cost is associated to each feature. We
borrow and extend this concept in HyFlex, instead of feature, we use the term
metric to refer to additional costs or objectives associated to a given solution.
The two following two methods are included:

int getNumberOfMetrics()

double getMetric(int solutionIndex, int metricIndex)

Where the first method returns the number of solution metrics, and the
second gets the value of the given metric for the indicated solution in memory.
These metrics can then be used by the hyper-heuristic designer to implement
their own alternative objective functions to guide the search.

Additional instances: The version of HyFlex used in the 2011 competition
contains 12 instances for the test domains (the 10 training instances and 2 addi-
tional hidden instances), and 10 instance for the new (hidden) domains. More-
over, this instance data is included within the software, and there is no flexibility
for adding new instances. Having additional instances will both improve the de-
velopment of robust online strategies, and facilitate the implementation of offline
configuration techniques. An approach based on offline learning for algorithm
selection obtained surprisingly good results in the 2011 challenge [11]. This is
very promising, as the challenge was designed to encourage online approaches
to heuristic selection. To enable the incorporation of additional instances the
method: void loadInstanceFromFile (String fileName) is included in HyFlex,
which loads the instance indicated in the file and set is as the current instance.
The file needs to have the correct format, which will be included in the domain
documentation.



Additional utilities: Utilities for saving and retrieving solutions from files
may facilitate both the reuse of previously found solutions and the analysis of
previous runs. The two methods below are included:

void loadSolutionFromFile(String fileName, int solutionIndex)

void SolutionToFile(String fileName, int solutionIndex)

Where solutionIndex refers to the position in the memory of solutions, and
fileName to the name of the source or destination file.

3 The extended vehicle routing domain

The vehicle routing problem with time windows involves satisfying the demand
of a set of customers, using the fewest possible vehicles, and adhering to all
constraints such as time windows, whereby a customer must be served between
two points in time. Each vehicle starts from the same point, the depot. A route
consist of a list of locations. The HyFlex VRP problem domain [17] provides
12 search operators including: 4 mutation, 2 ruin-recreate, 4 hill-climber and
2 crossover heuristics. The objective function balances the dual objectives of
minimising the number of vehicles, and minimising the total distance travelled.
Due to space constraints we refer the reader to [17] for a complete description.
We concentrate here on the problem domain extensions.

Distance metric: We implemented a distance metric suggested in [10], which
is based on a concept formulated for the travelling salesman problem. The metric
considers the number of common edges between two solutions. For the vehicle
routing problem, an edge represents an undirected link between two locations.
The distance metric produces a value between 0 and 1 and the formula is as
follows: distance = totalEdges−commonEdges

totalEdges
.

Solution features: The solution features provided are: (1) the default objective
function, which is a weighed sum of the number of routes and the distance
traveled,(2) the number of routes or vehicles, (3) the total distance traveled, and
(4) the distance of the shortest route.

Instance file format: The instance format is the Solomon format. The instance
file provides the number of customers and vehicle capacity. This is followed by
a list of customers with he following attributes: (1) customer number, (2) X co-
ordinate, (3) Y co-ordinate, (4) demand, (5)ready time, (6) due date, (7) service
time.

4 Empirical study

4.1 Algorithms

Two classes of algorithms are considered: adaptive iterated local search and
adaptive memetic algorithms. These algorithms adapt the probabilities associ-
ated to the available search operators, according to the history of their perfor-
mances. The operators are then selected according to these learned probabilities



using a roulette wheel mechanism. Since HyFlex provides several operators be-
longing to different classes: mutation, ruin-recreate, crossover and hill-climbing;
several adaptive mechanisms may be required for selecting different operators
at different parts of an algorithm framework. This study consider two variants
of each algorithm class, which differ on the feedback information used from the
search process to adapt the choice of search operators. The first variant considers
only the fitness function improvements or deteriorations obtained after apply-
ing the search operators, while the second is based on the compass mechanism
[12], which considers a diversity metric and the running time of the operators
in conjunction with their fitness variation as sources of feedback. The under-
lying idea behind the compass control mechanism is to provide an adequate
exploration/exploitation balance. Thus, both diversity and quality are pertinent
criteria to guide the search.

Adaptive iterated local search: We consider the best performing algorithm
proposed in [17], which is a multiple neighborhood ILS algorithm that includes
adaptive mechanisms for both the perturbation and improvement stages. The
perturbation stage selects among the set of available mutation and ruin-recreate
heuristics using the extreme value [9] operator selection mechanism. The im-
provement stage considers the available hill-climbers and incorporates a simple
adaptive mechanism, in which the operators are ordered according to learned
propoabilities and sequentially applied using this order. We name this algorithm
AILS. A new version of this algorithm is implemented, in which the extreme
value mechanism is substituted by the by the compass mechanisms. We call this
algorithm AILS-C.

Adaptive Memetic Algorithm: Our implementation of adaptive memetic
algorithms works as follows (see Algorithm 1). A small population (of size 4)
is generated and then goes through a recombination stage in which all possible
recombination pairs are considered and a randomly selected crossover operator
(from the available pool) is applied for each pair. From all these generated so-
lutions the best four are kept. This is a costly stage and it is only invoked a
number of times during the search process. A perturbation and improvement
stage follows. For each member of the population, a mutation or ruin-recreate
heuristic is selected from the pool according to operator probabilities learned
using a simple reinforcement learning mechanism. The solution is thereafter im-
proved by a hill-climbing heuristic. The improvement heuristic to apply is also
selected according to learned probabilities. We call this algorithm AMA. A vari-
ant is also implemented in which the reinforcement learning mechanism used in
the perturbation stage is substituted by the compass mechanism. We call this
algorithm AMA-C.

4.2 Results

The experiments were conducted using the 10 VRP test instances currently
available in the 2011 HyFlex software. These instances were originally taken



Algorithm 1 Adaptive Memetic Algorithm (AMA).

P = GenerateInitialPopulation
repeat

P
′= RecombinationStage(P )

P
′′ = MutationAndImprovementStage(P ′)

UpdatePerturbationOperatorProb
UpdateImprovementOperatorProb
P = SelectBest(P ′ + P

′′′)
until time limit is reached

from [15] and include 5 instances from the Solomon data set and 5 from the
Gehring and Homberger data set. Both data sets include three types of instances:
Random, Clustered, and Random Clustered; according to the way in which the
customers’ locations are determined. Details about the instances can be found
in the first three columns of Table 1. In the instance name, the first number
indicates the HyFlex numbering, while the first letter whether it is a Solomom
(S) or Homberger (H) instance. The second group of letters indicates the type
of instance; and the final string corresponds to the identifier in the data set.

As a first test, we compared our two base adaptive algorithms AMA and
AILS against the best-performing algorithms for VRP in the 2011 competition
and using the original HyFlex version. We considered the competition exper-
imental setting, namely, 10 minutes per run, 31 runs per instance and the 5
competition instances. These are instances 1, 2, 5, 6 and 9. Since the instances
have different objective function ranges, we selected ordinal data analysis to
compare the algorithms. If m is the number of instances and n the number of
competing algorithms. For each instance an ordinal value ok is given represent-
ing the rank of the algorithm (1 ≤ ok ≤ n). An algorithm having a rank ok in a
given instance is simply given ok points, and the total score of an algorithm is
the sum of its ranks ok across the m instances (this metric is known as the Borda

count). In this comparison, the number of instances m = 5 and the number of
algorithms n = 5. Therefore, best possible score is 5, and the worst possible is
25. The ranks were calculated according to the median best objective function
value across the 31 runs per instance. Figure 1 (a) illustrates the Borda counts
for AMA, AILS and the top 3 performing competitors in the 2011 challenge.
Clearly, the AMA is the best performing algorithm, producing an almost perfect
score.

The next set of experiments use the the new HyFlex VRP domain and the
four algorithm variants described above, AILS, AILS-C, AMA and AMA-C. The
whole set of 10 instances were used (see Table 1). The running time was set to
20 CPU minutes and 10 runs were conducted per instance. The machine running
the tests has a 2.27 GHz Intel(R) Core(TM) i3 CPU and 4GB RAM. The Borda
count is used for comparison and the median best objective function value is
used for the ranking. This time we have m = 10 instances and n = 4 algorithms.
Therefore, the best possible score is 10 and the worst is 40. Figure 1 illustrates



the results. We can see that the two versions of the adaptive memetic algorithm
have similar performance, and clearly outperform the adaptive ILS algorithms.
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Fig. 1. Borda counts for (a) AMA, AILS and the top 3 VRP hyper-heuristics in the
2011 challenge, (b) the two variants of AMA and AILS on the full set of 10 instances
and using the extended HyFlex VRP domain. Objective is minimisation.

The boxplots shown in Figure 2 illustrate the magnitude and distribution of
the best objective values for 2 representative Homberger instances (instances 6
and 9). Each plot summarises the result of 10 runs from each algorithm. For
both instances, the AMA algorithms produce the best results. The difference in
performance is more noticeable for instance 6, but this behaviour is consistent
across all the instances. The Borda counts in Figure 1, indicate that the two
versions of AMA have similar performance considering the median best objective
value. However, the best solutions were in most cases obtained by the AMA−C

variant as can be seen in Figure 2 and Table 1.

Finally, Table 1 shows the best solutions found by our AMA algorithms
together with the best-known solutions for the these instances. The adaptive
memetic algorithms matched the bet-known number of vehicles for all the Solomon
instances and for two of the Homberger instances. Moreover, for instance 1 (1-
SR101) AMA−C produced a shorter distance, with the same number of vehicles,
which makes this a new best-known solution for this instance. Better distances
were found for instances 0 and 6, but at the expense of a larger number of vehi-
cles. These results are encouraging as HyFlex was designed to explore adaptive
search heuristics that operate in a domain-independent way.
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Fig. 2. Distribution of objective function values for Homberger instances 6 and 9.
Objective is minimisation.

Table 1. VRP Instances. AMA best results vs. best-known results.

Instance No. of Vehicles Distance

Name Cust. Capacity AMA AMA-C Best-k AMA AMA-C Best-k

0-SRC207 100 1000 4 3 3 1047.42 1133.83 1061.14
1-SR101 100 1000 19 19 19 1650.8 1631.82 1645.79
2-SRC103 100 200 11 11 11 1276.82 1263.78 1261.67

3-SR201 100 200 4 4 4 1261.043 1276.45 1252.37

4-R106 100 1000 12 12 12 1268.93 1284.23 1251.98

5-HC1-10-1 100 200 100 100 100 42481.26 42485.04 42478.95

6-HRC2-10-1 250 1000 26 26 20 33272.57 32839.49 63373.15
7-HR1-10-1 250 200 100 100 100 59020.74 60517.21 53904.23

8-HC1-10-8 250 200 101 101 93 44037.96 44120.54 42499.59

9-HRC1-10-5 250 200 94 93 90 52581.52 52439.09 46631.89

5 Conclusions

We have presented a number of extensions to the HyFlex framework that will
enable the implementation of more effective adaptive heuristics, while main-
taining a high degree of modularity between the problem-independent and the
problem-dependent heuristic components. In particular, the new version sup-
ports the implementation of: (i) population-based approaches and mechanisms
for operator selection that consider diversity metrics in the solution space, (ii)
adaptive approaches that modify the fitness function or consider alternative ob-
jective functions, and (iii) offline approaches and portfolio methods that benefit
from a greater number of problem instances. This article concentrated on the
first of these extensions, namely using a diversity metric to implement more
sophisticated adaptive operator selection mechanisms. Our results suggest that
this mechanism may improve the search, in particular for locating best solutions.
Indeed a new best-known solution was found for one of the studied instances.



In future work we plan to further exploit this and the additional HyFlex fea-
tures. Our HyFlex adaptive evolutionary algorithms also supports that using a
population and crossover operators may improve the search. This is an impor-
tant result, which may encourage the evolutionary computation community, as
iterative hyper-heuristics have been traditionally single-point approaches.

The proposed HyFlex extensions were implemented and tested in a single
domain: the vehicle routing problem. Work is in progress to incorporate these
extensions in other domains such as permutation flow-shop, 1D bin packing and
personnel scheduling. We envisage the incorporation of new challenging and real-
world domains in HyFlex. We are also planning a second international challenge
with additional features. The creativity and enthusiasm of the 2011 competi-
tors pushed the boundary of hyper-heuristic research. We expect that the new
competition will bring the interest and participation not only of hyper-heuristic
researchers, but also researchers in reactive search, intelligent optimisation, adap-
tive operator selection, adaptive memetic algorithms, co-evolutionary memetic
algorithms, guided local search, adaptive large neighborhood search, autonomous
search, self-* search and automatic configuration of search heuristics to name a
few.
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