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Local Optima Networks
of NK Landscapes with Neutrality

Sébastien Verel, Gabriela Ochoa, Marco Tomassini

Abstract—In previous work, we have introduced a network-based model
that abstracts many details of the underlying landscape and compresses the
landscape information into a weighted, oriented graph which we call the
local optima network. The vertices of this graph are the local optima of the
given fitness landscape, while the arcs are transition probabilities between
local optima basins. Here, we extend this formalism to neutral fitness land-
scapes, which are common in difficult combinatorial search spaces. By us-
ing two known neutral variants of the NK family (i.e. NKp and NKq) in
which the amount of neutrality can be tuned by a parameter, we show that
our new definitions of the optima networks and the associated basins are
consistent with the previous definitions for the non-neutral case. Moreover,
our empirical study and statistical analysis show that the features of neutral
landscapes interpolate smoothly between landscapes with maximum neu-
trality and non-neutral ones. We found some unknown structural differ-
ences between the two studied families of neutral landscapes. But overall,
the network features studied confirmed that neutrality, in landscapes with
percolating neutral networks, may enhance heuristic search. Our current
methodology requires the exhaustive enumeration of the underlying search
space. Therefore, sampling techniques should be developed before this anal-
ysis can have practical implications. We argue, however, that the proposed
model offers a new perspective into the problem difficulty of combinatorial
optimization problems and may inspire the design of more effective search
heuristics.

Keywords— NK landscapes, fitness landscapes, neutrality, complex net-
works, local optima, basin of attraction, problem hardness, search diffi-
culty.

I. INTRODUCTION

Studying the distribution of local optima in a search space
is of utmost importance for understanding the search difficulty
of the corresponding landscape. This understanding may even-
tually be exploited when designing efficient search algorithms.
For example, it has been observed in many combinatorial land-
scapes that local optima are not randomly distributed, rather they
tend to be clustered in a “central massif” (or “big valley” if we
are minimizing). This globally convex landscape structure has
been observed in the NK family of landscapes [1], [2], and in
many combinatorial optimization problems, such as the travel-
ing salesman problem [3], graph bipartitioning [4], and flow-
shop scheduling [5]. Algorithms that exploit this global struc-
ture have, in consequence, been proposed [3], [5].

Combinatorial landscapes can be seen as a graph whose ver-
tices are the possible configurations. If two configurations can
be transformed into each other by a suitable operator move, then
we can trace an edge between them. The resulting graph, with
an indication of the fitness at each vertex, is a representation of
the given problem fitness landscape. A useful simplification of
the graphs for the energy landscapes of atomic clusters was in-
troduced in [6], [7]. The idea consists of taking as vertices of the
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graph not all the possible configurations, but only those that cor-
respond to energy minima. For atomic clusters these are well-
known, at least for relatively small assemblages. Two minima
are considered connected, and thus an edge is traced between
them, if the energy barrier separating them is sufficiently low.
In this case there is a transition state, meaning that the system
can jump from one minimum to the other by thermal fluctua-
tions going through a saddle point in the energy hyper-surface.
The values of these activation energies are mostly known exper-
imentally or can be determined by simulation. In this way, a
network can be built which is called the “inherent structure” or
“inherent network” in [6].
In [8], [9], [10], we proposed a network characterization of com-
binatorial fitness landscapes by adapting the notion of inherent
networks described above. We used the well-known family of
NK landscapes as an example. In our case, the inherent net-
work was the graph where the vertices are all the local maxima,
obtained exhaustively by running a best-improvement (steepest-
ascent) local search algorithm from every configuration of the
search space. The edges accounted for the notion of adjacency
between basins. In our work we call this graph the local optima
network or since it also represents the interaction between the
landscape’s basin the basin adjacency network. We proposed
two alternative definitions of edges. In the first definition [8],
two maxima i and j were connected (with an undirected edge
without weight), if there exists at least one pair of directly con-
nected solutions si and sj , one in each basin of attraction (bi

and bj) (Fig. 1, top). The second, more accurate definition,
associated weights to the edges that account for the transition
probabilities between the basins of attraction of the local optima
(Fig. 1, bottom). More details on the relevant algorithms and
formal definitions are given in section III. This characteriza-
tion of landscapes as networks has brought new insights into the
global structure of the landscapes studied, particularly into the
distribution of their local optima. Therefore, the application of
these techniques to more realistic and complex landscapes, is a
research direction worth exploring.

The fitness landscape metaphor [11] has been a standard
tool for visualizing biological evolution and speciation. It has
also been useful for studying the dynamics of evolutionary and
heuristic search algorithms applied to optimization and design
problems. Traditionally, fitness landscapes are often depicted as
‘rugged’ surfaces with many local ‘peaks’ of different heights
flanked by ‘valleys’ of different depth [1], [2]. This view is
now acknowledged to be only part of the story. In both natural
and artificial systems a picture is emerging of populations en-
gaged not in hill-climbing, but rather drifting along connected
networks of genotypes of equal (or quasi equal) fitness, with
sporadic jumps between these so called neutral networks. The
importance of selective neutrality as a significant factor in evolu-
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Fig. 1. A diagram of the local optima or basin adjacency networks. The dark
nodes correspond to the local optima in the landscape, whereas the edges
represent the notion of adjacency among basins. Dashed lines separate the
basins. Two alternative definitions of edges are sketched as undirected (top
plot) and directed weighted arcs (bottom).

tion was stressed by Kimura [12] in the context of evolutionary
theory, and by Eigen et al. [13] in the context of molecular biol-
ogy. Interest in selective neutrality was re-gained in the 90s by
the identification of neutral networks in models for bio-polymer
sequence to structure mappings [14], [15], [16], [17], [18], [19],
[20]. It has also been observed that the huge dimensionality of
biologically interesting fitness landscapes, considering the re-
dundancy in the genotype-fitness map, brings naturally the ex-
istence of neutral and nearly neutral networks [21]. In this con-
text, the metaphor of ‘holey adaptive landscapes’ has been put
forward as an alternative to the conventionally view of rugged
adaptive landscapes, to model macro-evolution and speciation
in nature [21], [22], [23]. The relevance and benefits of neutral-
ity for the robustness and evolvability in living systems has been
recently discussed in [24].

There is growing evidence that such large-scale neutrality
is also present in artificial landscapes. Not only in combina-
torial fitness landscapes such as randomly generated SAT in-
stances [25], cellular automata rules [26] and many others,
but also in complex real-world design and engineering appli-
cations such as evolutionary robotics [27], [28], evolvable hard-
ware [29], [30], [31], genetic programming [32], [33], [34], [35]
and grammatical evolution [36].

Not only the structure of interesting natural and artificial land-
scapes, as discussed above, is different from the conventional
view of rugged landscapes; the evidence also suggests that the
dynamics of evolutionary (or more generally search) processes
on fitness landscapes with neutrality are qualitatively very dif-
ferent from the dynamics on rugged landscapes [17], [29], [37],

[38], [39], [40], [41], [42]. As a consequence, techniques for ef-
fective evolutionary search on landscapes with neutrality may be
quite different from more traditional approaches to evolutionary
search [40], [43].

In this paper, we apply our previous network definitions and
analysis of combinatorial search spaces to landscapes with se-
lective neutrality. In particular, it is our intention to investi-
gate whether our graph-based approach is still adequate when
neutrality is present. This is apparently simple but, in reality,
requires a careful redefinition of the concept of a basin of at-
traction. The new notions will be presented in the next section.
We also study how neutrality affects the landscape graph struc-
ture and statistics, and discuss the implications for the dynamic
of heuristic search on these landscapes. Following our previ-
ous work on NK landscapes [8], [9], [10], we selected two
extensions of the NK family as example landscapes with syn-
thetic neutrality, namely: the NKp (‘probabilistic’ NK) [39],
and NKq (‘quantized’ NK) [44] families. The NKp landscape
introduces neutrality by setting a certain proportion p of the en-
tries in a genotypes fitness tables to 0; whilst the NKq landscape
does so by transforming the genotype fitness entries from real
numbers to integer values (in the range [0, q)). These landscapes
posses two statistical features: fitness correlation and selective
neutrality, which are relevant to combinatorial optimization.

The paper begins by describing in more detail the neutral fam-
ilies of landscapes under study (section II). Thereafter, sec-
tion III includes the relevant definitions and algorithms used.
The empirical network analysis of our selected neutral landscape
instances is presented next (section IV), followed by a summary
and discussion (section V) and our conclusions and ideas for
future work (section VI).

II. NK LANDSCAPES WITH NEUTRALITY

The NK family of landscapes [2] is a problem-independent
model for constructing multimodal landscapes that can gradu-
ally be tuned from smooth to rugged. In the model, N refers
to the number of (binary) genes in the genotype (i.e. the string
length) and K to the number of genes that influence a particular
gene (the epistatic interactions). By increasing the value of K
from 0 to N − 1, NK landscapes can be tuned from smooth to
rugged.

The fitness function of a NK-landscape fNK : {0, 1}N →
[0, 1) is defined on binary strings with N bits. An ‘atom’ with
fixed epistasis level is represented by a fitness component fi :
{0, 1}K+1 → [0, 1) associated to each bit i. Its value depends
on the allele at bit i and also on the alleles at the K other epistatic
positions. (K must fall between 0 and N − 1). The fitness
fNK(s) of s ∈ {0, 1}N is the average of the values of the N
fitness components fi:

fNK(s) =
1
N

N∑

i=1

fi(si, si1 , . . . , siK
)

where {i1, . . . , iK} ⊂ {1, . . . , i−1, i+1, . . . , N}. Several ways
have been proposed to choose the K other bits from N bits in the
bit string. Two possibilities are mainly used: adjacent and ran-
dom neighborhoods. With an adjacent neighborhood, the K bits
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nearest to the bit i are chosen (the genotype is taken to have pe-
riodic boundaries). With a random neighborhood, the K bits are
chosen randomly on the bit string. Each fitness component fi is
specified by extension, i.e. a number yi

si,si1 ,...,siK
from [0, 1) is

associated with each element (si, si1 , . . . , siK
) from {0, 1}K+1.

Those numbers are uniformly distributed in the range [0, 1).
The two variants of NK landscapes are representative of the

way to obtain neutrality in additive fitness landscapes. Indeed,
for the two families, the fitness value of a solution is computed
as a sum. Modifying a term in the sum would alter the probabil-
ity to get the same fitness value.

The NKp landscapes have been introduced by Barnett [39].
In this variant, one term of the sum is null with probability p.
Formally, the fitness components are modified and tuned by the
parameter p ∈ [0, 1] which controls the neutrality of the land-
scape. The fitness component yi

si,si1 ,...,siK
is null with proba-

bility p, i.e. P (yi
si,si1 ,...,siK

= 0) = p. The probability that two
neighboring solutions have the same fitness value increases with
the parameter p.

The NKq landscapes have been introduced by Newman et
al [44]. For these landscapes, the terms of the sum are integer
numbers between 0 and q−1. Thus, when some terms are mod-
ified, it is possible to get the same sum. Formally, as for NKp

landscapes, the fitness components are defined with a parameter
q which tunes the neutrality. Parameter q is an integer number
above or equal to 2. Each yi

si,si1 ,...,siK
is one of the fractions k

q

where k is an integer number randomly chosen in [0, q − 1].
Neutrality is maximal when q is equal to 2, and decreases

when q increases. This family of landscapes was shown
to model the properties of neutral evolution of molecular
species [44].

III. DEFINITIONS AND ALGORITHMS

We include the relevant definitions and algorithms to obtain
the local optima network in landscapes with neutrality. For com-
pleteness, we also include some relevant definitions that apply
to non-neutral landscapes [9], [10].

Fitness landscape:
A landscape is a triplet (S, V, f) where S is a set of admissi-

ble solutions i.e. a search space, V : S −→ 2|S|, a neighbor-
hood structure, is a function that assigns to every s ∈ S a set of
neighbors V (s), and f : S −→ R is a fitness function that can
be pictured as the height of the corresponding solutions.

In our study, the search space is composed of binary strings of
length N , therefore its size is 2N . The neighborhood is defined
by the minimum possible move on a binary search space, that is,
the 1-move or bit-flip operation. In consequence, for any given
string s of length N , the neighborhood size is |V (s)| = N .

Neutral neighbor: A neutral neighbor of s is a neighbor con-
figuration x with the same fitness f(s).

Vn(s) = {x ∈ V (s) | f(x) = f(s)}

The neutral degree of a solution is the number of its neutral
neighbors.

A fitness landscape is neutral if there are many solutions with
high neutral degree. The landscape is then composed of- several

sub-graphs of configurations with the same fitness value. Some-
times, another definition of neutral neighbor is used in which the
fitness values are allowed to differ by a small amount. Here we
stick to the strict definitions given above.

Neutral network: A neutral network, denoted as NN , is a
connected sub-graph whose vertices are configurations with the
same fitness value. Two vertices in a NN are connected if they
are neutral neighbors.

With the bit-flip mutation operator, for all solutions x and y,
if x ∈ V (y) then y ∈ V (x). So in this case, the neutral networks
are the equivalent classes of the relation R(x, y) iff (x ∈ V (y)
and f(x) = f(y))1.

We denote the neutral network of a configuration s by
NN(s).

A. Definition of basins of attraction

In this section, we define the notion of a basin of attraction
for landscapes with neutrality. The analogous notion for non-
neutral landscapes has been given in [10].

First let us define the standard notion of a local optimum, and
its extension for landscapes with neutral networks.

Local optimum: A local optimum, which is taken to be a
maximum here, is a solution s∗ such that ∀s ∈ V (s), f(s) ≤
f(s∗).

Notice that the inequality is not strict, in order to allow the
treatment of the neutral landscape case.

Local optimum neutral network (LONN): A neutral net-
work is a local optimum if all the configurations of the neutral
network are local optima.

To extract the basins of attraction of the local optima neutral
networks, the “Stochastic Hill Climbing” algorithm is used. In
this algorithm (illustrated below) one neighbour solution with
maximum fitness is randomly chosen, and solutions with equal
or improved fitness are accepted.

Algorithm 1 Stochastic Hill Climbing
Choose initial solution s ∈ S
repeat
randomly choose s

′
from {z ∈ V (s)|f(z) = max{f(x)|x ∈

V (s)}}
if f(s) ≤ f(s

′
) then

s ← s
′

end if
until s is in a LONN

Let us denote by h, the stochastic operator which associates to
each solution s, the solution obtained after applying the Stochas-
tic Hill Climbing algorithm for a sufficiently large number of
iterations to converge to a solution in a LONN.

The size of the landscape is finite, so we can denote by
NN1, NN2, NN3 . . . , NNn, the local optima neutral networks.
These LONNs are the vertices of the local optima network in the

1Our definition of neutrality is strict. It also possible to define a concept of
quasi-neutrality [26] but we do not use it in this work.
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neutral case. So, in this scenario, we have an inherent network
whose nodes are themselves networks.

Now, we introduce the concept of basin of attraction to define
the edges and weights of our inherent network. Note that for
each solution s, there is a probability that h(s) ∈ NNi. We
denote pi(s) the probability P (h(s) ∈ NNi). We have for each
solution s ∈ S,

∑n
i=1 pi(s) = 1.

In non-neutral fitness landscapes where the size of each neu-
tral network is 1, for each solution s, there exists only one neu-
tral network (in fact one solution) NNi such that pi(s) = 1.
In this case, the basin of attraction of a local optimum neutral
network i is the set bi = {s ∈ S | pi(s) = 1} which exactly cor-
respond to our previous definition in [10]. We cannot use this
definition in neutral fitness landscapes, but we can extend it in
the following way:

Basin of attraction: The basin of attraction of the local op-
timum neutral network i is the set bi = {s ∈ S | pi(s) > 0}.
This definition is consistent with our previous definition [8], [9]
for the non-neutral case.

The size of each basin of attraction can now be defined as
follows:

Size of a basin of attraction: The size of the basin of attrac-
tion of a local optimum neutral network i is

∑
s∈S pi(s).

We are ready now to define the landscape’s local optima net-
work.

Local optima network: The local optima network G =
(N, E) is the graph where the nodes are the local optima NN
and there is an edge between nodes NNi and NNj when there
are two solutions si ∈ bi and sj ∈ bj such that si ∈ V (sj).

Edge weight:
We first reproduce the definition of edge weights for the non-

neutral landscape [9]:
For each solutions s and s

′
, let p(s → s

′
) denote the probability

that s
′

is a neighbor of s, i.e. s
′ ∈ V (s). The probability that a

configuration s ∈ S has a neighbor in a basin bj , is therefore:

p(s → bj) =
∑

s′∈bj

p(s → s
′
)

The total probability of going from basin bi to basin bj is the
average over all s ∈ bi of the transition probabilities to solutions
s
′ ∈ bj :

p(bi → bj) =
1
]bi

∑

s∈bi

p(s → bj)

Figure 2 illustrates the complete network of a small non-
neutral NK landscape (N = 6, K = 2). The circles repre-
sent the local optima basins (with diameters indicating the size
of basins), and the weighted edges the transition probabilities as
defined above.

For landscapes with neutrality, we have defined the probabil-
ity pi(s) that a solution s belongs to a basin i. So, we can modify

the previous definitions to consider neutral landscapes:

p(s → bj) =
∑

s′∈bj

p(s → s
′
)pj(s

′
)

and in the same way :

p(bi → bj) =
1
]bi

∑

s∈bi

pi(s)p(s → bj)

where ]bi is the size of the basin bi.
In the non-neutral case, we have pk(s) = 1 for all the configu-
rations in the basin bk. Therefore, the definition of weights for
the non-neutral case is consistent with the previous definition.
Now, we are in a position to define the weighted local optima
network:
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Fig. 2. Visualization of the weighted local optima network of a small NK
landscape (N = 6, K = 2). The nodes correspond to the local optima
basins (with the diameter indicating the size of basins, and the label “fit”,
the fitness of the local optima). The edges depict the transition probabilities
between basins as defined in the text.

Weighted local optima network: The weighted local optima
network Gw = (N, E) is the graph where the nodes are the
local optima neutral networks, and there is an edge eij ∈ E
with the weight wij = p(bi → bj) between two nodes i and j if
p(bi → bj) > 0.

According to our definition of edge weights, wij = p(bi →
bj) may be different than wji = p(bj → bi). Thus, two weights
are needed in general, and we have an oriented transition graph.

IV. ANALYSIS OF THE LOCAL OPTIMA NETWORKS

A. Experimental setting

In order to minimize the influence of the random creation of
landscapes, we considered 30 different and independent land-
scapes for each parameter combinations: N , K and q or p. The
measures reported, are the average of these 30 landscapes. We
conducted our empirical study for N = 18, which is the largest
possible value of N that allows the exhaustive extraction of
inherent networks. The remaining set of parameters explored
are: K ∈ {2, 4, 6, 8, 10, 12, 14, 16, 17}, for NKq landscapes
q ∈ {2, 4, 10}, and for NKp landscapes, p ∈ {0.5, 0.8, 0.9}.

B. General Network Features

This section describes some standard network features such
as the number of nodes and edges, and the weight distribution
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of the edges. For all the combinations of landscape type and
parameters, the measurements are the average of 30 independent
landscape instances. When possible, we have also reported the
data for the corresponding standard NK landscape [9], [10] in
order to facilitate the comparison. In the figures, if not explicitly
stated, the thick curves labeled NK stand for the standard, non-
neutral case.

B.1 Number of nodes

Figure 3 shows the average of the number of nodes in the op-
tima networks of both the NKq (top) and NKp (bottom) land-
scapes with all the combinations of parameters studied. No-
tice that the number of nodes increases rapidly as K increases.
Clearly, for given N and K, the standard NK landscape always
has more nodes than the corresponding neutral version because
the probability of changing fitness in non-neutral landscapes
is higher than in neutral ones. Therefore, for a given K, the
number of nodes decreases with increasing neutrality. All other
things being equal, it is reasonable to assume that the search will
be more difficult the larger the number of nodes. Therefore, as
it is well known, the search is more difficult as K increases, and
for a given K, it will be more difficult when neutrality is low.
In other words, an easier search will be expected for low K and
high neutrality.
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Fig. 3. Average number of nodes in the networks for all the landscape parame-
ters combinations. NKq landscapes (top), and NKp landscapes (bottom).
Averages on 30 independent landscapes. Results for the standard NK case
are also shown for comparison (thick lines).

B.2 Number of edges

Similarly, Figure 4 illustrates the average number of edges
in the networks for both the NKq and NKp families of land-

scapes. Notice that the number of connections increases expo-
nentially with increasing K. For the NKq landscape (Figure 4,
bottom), the number of edges decreases with increasing neutral-
ity for all K; whereas for NKp landscapes, this is true only for
K ≤ 8. In this case when K > 8 the trend is the opposite,
that is the number of edges increases with increasing neutrality.
The weight distribution results in the next subsection may help
to clarify this finding.
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Fig. 4. Average number of edges with weight greater than 0, for all the land-
scape parameters combinations. NKq landscapes (top) and NKp land-
scapes (bottom). Averages on 30 independent landscapes. The standard
NK data are also reported (thick lines). Note the different scales on the
y-axis.

B.3 Weight Distribution

For weighted networks, the weights are characterized by both
the weight distribution p(w) that any given edge has weight w,
and the average of this distribution. In our study, for each node
i, the total sum of weights from i is equal to 1. Therefore, an
important measure is the weight wii of self-connecting edges
(i.e. configurations remaining in the same node). We have the
relation: wii + si = 1. si, the vertex strength, is defined as
si =

∑
j∈V (i)\{i} wij where the sum is over the set V (i) \ {i}

of neighbors of i [45]. The strength of a node is a generalization
of the node’s connectivity giving information about the number
and importance of the edges.

Figure 5 shows the averages, over all the nodes in the network,
of the weights wii (i.e. the probabilities of remaining in the same
basin after a hill-climbing from a mutation of one configuration
in the basin). On the other hand, Figure 6 shows the empiri-
cal average of weights wij with i 6= j. It is clear from these
results that jumping into another basin is much less likely than
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walking around in the same basin (approximately by an order of
magnitude). Notice that for both types of neutral landscapes, the
weights to remain in the same basin, wii (fig. 5), decrease with
increasing K, which is also the trend followed in standard NK
landscapes. The weights to get to another basins (fig. 6) also
decrease with increasing K up to K = 8, thereafter they seem
to remain constant or increase slightly. This can be explained
as follows, as the number of basins increases non-linearly with
increasing K, the probability to get to one particular basin de-
creases.

The trend with regards to neutrality is more complex, and it is
different for the two families of neutral landscapes. On the NKq

landscape, for a fixed K, the average weight to stay in the same
basin decreases with increasing neutrality (fig. 5, top); whereas
the opposite happens on the NKp landscape, that is, the aver-
age weight to stay in the same basin increases with neutrality
(fig. 5, bottom). The trend of the weights to get to another basin
(fig. 6) is similar for both families of landscapes. It changes
when K = 8: for K < 8 it increase with neutrality, while
for K > 8 it is nearly constant. Therefore, neutrality increases
the probability that a given configuration escapes its basin and
gets to another basin; but neutrality also increases the number of
basins to which the current configuration is linked.
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Fig. 5. Average weight wii according to the parameters for NKq landscapes
(top) and NKp landscapes (bottom). Averages on 30 independent land-
scapes.

The general network features discussed in this section are re-
lated to the search difficulty on the corresponding landscapes2,
since they reflect both the number of basins, and the ability to

2The Appendix reports an empirical study exploring the effect of neutrality on
the search difficulty for a standard evolutionary algorithm.
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Fig. 6. Average of the outgoing weights wij where i 6= j, for NKq land-
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navigate the landscapes.

C. Basins of attraction

Besides the local optima networks, it is useful to describe the
associated basins of attraction as they play a key role in heuris-
tic search algorithms. Furthermore, some characteristics of the
basins can be related to the local optima network features. The
notion of the basin of attraction of a local maximum has been
presented in section III. We have exhaustively computed the
size and number of the basins of all the neutral landscapes un-
der study.

C.1 Number of basins of a given size

Fig. 8 shows the average size (left) and standard deviation
(right) of the basins for all the studied landscapes (averaged over
the 30 independent instances in each case). Notice that size of
basins decreases exponentially with increasing K. They also de-
crease when neutrality decreases, being smallest for non-neutral
NK landscapes, as one would expect intuitively. The standard
deviations show the same behaviour as the average. It decreases
exponentially with increasing K and also decreases when the
neutrality decreases.

Using the Shapiro-Wilk normality test [46] we confirmed that
some distributions of basin’s sizes can be fitted by a log-normal
law when K is low. Fig 9 shows the number of landscape in-
stances where the size distribution can be fitted by a log-normal
distribution according to the statistical test at level of 1%. The
number 30 on the y-axis means that for all the instances stud-
ied the size distribution can be fitted by a log-normal. For the
non-neutral NK landscapes when K ≤ 6, nearly all the size
distribution are log-normal.

For K ≥ 4, the neutrality increases the number of log-normal
distributions. Again the influence of neutrality on the two types
of landscapes is not the same: for NKq landscapes, the number
of log-normal distributions increases when there is more neu-
trality whereas, the number of log-distribution is not maximal
for the more neutral NKp landscapes. For large K, the average
size of basins is very small (Fig. 8 left). In this case, the size
distributions are not log-normal, and become very narrow. Few
different sizes exist and those are very small. This confirms the
ruggedness of the landscape when K is very large even when
there is some neutrality. The log-normal distribution implies
that the majority of basins have a size close to average; and that
there are few basins with larger than average size. We will see
that this may be related to the search difficulty on the underlying
landscape.

C.2 Fitness of local optima

The scatter-plots in Fig. 10 (left) illustrate the correlation be-
tween the basin sizes (in logarithmic scale) and their fitness val-
ues, for two representative landscape instances (with K = 6,
q = 3 and p = 0.8 ). Fig. 10 (right) reports the correlation
coefficients ρ for all combinations of landscape types and its
parameters. Notice that the correlations are positive and high,
which implies that the larger basins have the higher fitness value.
Therefore, the most interesting basins are also the larger ones!
This may be surprising, but consider that our results on basin
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Fig. 9. Number of landscape instances (over the 30 independent instances)
where the size distribution is a log-normal distribution according to the
Shapiro-Wilk normality test at level of 1% for NKq landscapes (top) and
for NKp landscapes (bottom).

sizes show that the size differences between large and small de-
creases with increasing epistases. In consequence, with increas-
ing ruggedness the difficulty to find the basin with higher fitness,
also increases. Notice also that the correlations increase with K,
up to K = 8 and then they decrease. Fig. 10, also illustrates that
neutrality decreases the correlation between basin sizes and their
fitness values. In other words, the size of basins is less related
to the fitness of their local optima when neutrality is present.
But, as we have discussed before, basins are larger in size and
smaller in number with increasing neutrality.

C.3 Global optimum basin size

In Fig. 11 we plot the average size of the basin correspond-
ing to the global maximum for all combinations of landscape
types and its parameters. The results clearly show that the size
exponentially decreases when K increases. This agrees with
our previous results on standard NK landscapes [8], [9]. With
respect to neutrality the size of the global maximum basin in-
creases with increasing neutrality.

D. Advanced network features

In this section, we study the weighted clustering coefficient,
the average path length between nodes, and the disparity of the
local optima networks.
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Fig. 8. Average (left) and standard deviation (right) of distribution of sizes for NKq landscapes K = 4 (top) and for NKp landscapes K = 4 (bottom). Averages
on 30 independent landscapes.
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Fig. 11. Average of the relative size of the basin corresponding to the global
maximum for each K and neutral parameter over 30 independent landscapes
(top NKq and bottom NKp).

D.1 Clustering Coefficient

The standard clustering coefficient [47] does not consider
weighted edges. We thus use the weighted clustering measure
proposed by [45], which combines the topological information
with the weight distribution of the network:

cw(i) =
1

si(ki − 1)

∑

j,h

wij + wih

2
aijajhahi

where si =
∑

j 6=i wij , anm = 1 if wnm > 0, anm = 0 if
wnm = 0 and ki =

∑
j 6=i aij .

For each triple formed in the neighborhood of the vertex i,
cw(i) counts the weight of the two participating edges of the
vertex i. Cw is defined as the weighted clustering coefficient
averaged over all vertices of the network.

Figure 12 shows the average values of the weighted cluster-
ing coefficients for all the combinations of landscape parame-
ters. On both the NKq and NKp landscapes, the coefficient de-
creases with the degree of epistasis and increases with the degree
of neutrality. The decrease in the clustering coefficients with in-
creasing epistasis is consistent with our previous results on stan-
dard NK-landscapes [9]. For high epistasis and low neutrality,
there are fewer transitions between adjacent basins, and/or the
transitions are less likely to occur.

D.2 Disparity

The disparity measure proposed in [45], Y2(i), gauges the
heterogeneity of the contributions of the edges of node i to the
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Fig. 12. Average (30 independent landscapes) of weighted clustering coeffi-
cient. NKq landscapes (top) and NKp landscapes (bottom).

total weight (strength):

Y2(i) =
∑

j 6=i

(
wij

si

)2

Figure 13 depicts the disparity coefficients as defined above.
Again the measures are consistent with our previous study on
standard NK landscapes [9]. Some interesting results with re-
gards to neutrality can also be observed. For low values of
K, a high degree of neutrality increases the average disparity.
When epistasis is high and regardless of the neutrality degree,
the basins are more uniformly connected, and therefore we can
picture the local optima network as more ”random” i.e. more
uniform, which has implications on the search difficulty of the
underlying landscape.

D.3 Shortest Path

Finally, as in [9], [10], in order to compute the shortest dis-
tance between two nodes on the local optima network of a given
landscape, we considered the expected number of bit-flip mu-
tations to go from one basin to the other. This expected num-
ber can be computed by considering the inverse of the transition
probabilities between basins (defined in III). In other words, if
we attach to the edges the inverse of the transition probabilities,
this value would represent the average number of random mu-
tations to pass from one basin to another. More formally, the
distance between two nodes is defined by dij = 1/wij where
wij = p(bi → bj). Now, the length of a path between two nodes
is defined as being the sum of these distances along the edges
that connect the respective basins. The average path length of
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Fig. 13. Average disparity Y2 for NKq landscapes (top) and NKp landscapes
(bottom). Averages of 30 independent landscapes.

the whole network is the average value of all the possible short-
est paths.

Fig. 14 is a graphical illustration of the average shortest path
length between basins for all the neutral landscapes studied. The
epistasis has the same influence on the results whatever the fa-
mily of landscapes and the level of neutrality. This path length
increases until K = 12 and decreases thereafter. However, the
degree of neutrality introduces some differences between the
families; whereas more neutrality decreases the shortest path
length for the NKp family (bottom plot, Fig. 14); the minimal
path length is obtained for the intermediate neutrality degrees
q = 4 for NKq family (top plot, Fig. 14). The longest path
length, in this case, is obtained for the largest degree of neutral-
ity (q = 2). So, even though neutrality is high, the basins are
more distant. This confirms that there are structural differences
on the two types of landscapes that include neutrality, and some
of these structural differences are captured by the local optima
networks.

Some paths are more relevant than others from the point of
view of a stochastic local search algorithm following a trajectory
over the local optima network. In order to better illustrate the re-
lationship of this network property with the search difficulty by
heuristic methods such as stochastic local search, Fig. 15 shows
the shortest path length to the global optimum from all the other
basins in the landscape. The trend is clear, the path lengths to
the optimum increase steadily with increasing K in all cases.
With regards to neutrality, in both types of neutral landscapes,
the higher the degree of neutrality, the shortest the path length
to the global optimum. This suggest, therefore, that the kind of
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Fig. 14. Average shortest path lengths between local optima for NKq land-
scapes (top), and NKp landscapes (bottom). Averages of 30 independent
landscapes.
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neutrality introduced in the NKp and NKq landscapes could be
a positive factor in the search of the global optimum3.

V. DISCUSSION

The fitness landscape concept has proved extremely useful
in many fields, and it is especially valuable for the description
of the configuration spaces generated by difficult combinatorial
optimization problems. In previous work, we have introduced a
network-based model that abstracts many details of the underly-
ing landscape and compresses the landscape information into a
graph Gw which we have named the local optima network [9],
[10]. The vertices of this weighted oriented graph are the local
optima of a given fitness landscape, while the arcs are transition
probabilities between optima. The same graph also describes
the basins of attraction in the landscape and the adjacency re-
lationship among them. While previous work dealt with non-
neutral landscapes, the present paper treats the case of fitness
landscapes where neutrality, i.e. groups of configurations with
the same fitness are present. Neutrality is a common feature
of many landscapes generated by important combinatorial prob-
lems, including real-world problems and it is, thus, fundamental
to be able to use the network description also in this case. The
most difficult aspect is how to define basins of attraction when
there are neutral networks in the landscape and how transitions
take place between these basins. Our definition in Sect. III deals
with these issues successfully and it is consistent, both concep-
tually and mathematically, with the previous definition for non-
neutral landscapes.

In order to study the applicability of our methodology, we
have used synthetic landscapes where the amount of neutrality
can be controlled by a parameter. These landscapes, called NKp

and NKq, are neutral variants of the well known NK family of
landscapes. This choice also has the advantage of permitting
a comparison between neutral and non-neutral variants of the
same family of landscapes. We have measured a set of network
and basin properties for these three classes. The general obser-
vation is that there is a smooth variation with respect to standard
NK landscapes when neutrality is gradually introduced. This
outcome was somewhat expected and it confirms that our defi-
nitions for neutral landscapes are adequate.

Our analysis of the local optima networks concentrates on the
inherent structure of the studied landscapes rather than on the
dynamics of a search algorithm on such landscapes. However,
our findings, summarized below, support the view that neutral-
ity may enhance evolutionary search [17], [24], [29], [37], [38],
[39], [40], [48], [49]. The empirical study reported in the Ap-
pendix further corroborates this view. As discussed in [50],
there is considerable controversy on whether neutrality helps
or hinders evolutionary search. This is so, because many stud-
ies emphasize algorithm performance, instead of providing an
in-depth investigation of the search dynamics. Moreover, there
is not a single definition of neutrality, nor an unified approach
of adding redundancy to an encoding [50]. Our study, how-
ever, concentrates on specific model landscapes which posses

3The empirical evaluation of search difficulty in NKp and NKq landscapes
for a standard EA is studied in the Appendix. It shows that the landscapes with
more neutrality (search space size and parameters K being equal) are easier to
solve for the EA.

fitness correlation and selective neutrality. These model land-
scapes have been found to resemble the properties of biologi-
cal RNA-folding landscapes. In particular, they feature neutral
networks which have the “constant innovation” property [17].
This property raises the possibility that (given enough time) al-
most any possible fitness value can ultimately be attained by
the population. The scenario of a population trapped on a lo-
cal optima vanishes [39]. The detailed study by Barnett [38],
[39], illustrates the dynamics of a simple evolutionary algorithm
on several landscapes featuring neutral networks, and compares
it with the dynamics on rugged landscapes without neutrality.
The dynamics on both cases are strikingly different (Figs. 4
and 5 in [39]). On the non-neutral landscape, the population
climbs rapidly up the landscape until it reaches a local optimum,
at which higher optima are difficult to reach by mutation; the
population is effectively trapped. In the presence of percolating
neutral networks, the scenario of entrapment by local optima is
evaded; adaptation is characterized by neutral drift punctuated
by transitions to higher fitness networks.

We argue that our results are only relevant to optimization
problems that feature percolating neutral networks with similar
statistical properties than those present in the model landscapes
studied. It is not possible to directly judge the impact of the re-
sults for more realistic optimization problems. Therefore, it is
important to analyze more complex genotype-phenotype map-
pings in future work. It is worth noticing that massively re-
dundant genotype-phenotype mappings, such as those used in
Cartesian Genetic Programming [35], have been found to be
beneficial to evolutionary search. The application of the local
optima network model in such scenarios is, therefore, a research
direction worth exploring.

Our results, which were at least partly unknown to our knowl-
edge, can be summarized as follows.

The optima networks for neutral NK landscapes are smaller,
in terms of the number of nodes, with respect to standard NK.
Since the number of maxima (nodes) in the landscape increases
with N and K, search difficulty in general also increases. But
for the same N , K pair, the search should be easier in neutral
NK landscapes, and the difficulty should decrease with increas-
ing neutrality.

The number of edges in the networks gives the average num-
ber of possible transitions between maxima. However, it is
more interesting to observe the average probabilities, which
can be computed from the empirical distribution of the weights
for the outgoing edges. It is seen that neutrality increases the
probability that a given local optimal configuration escapes its
present basin under the effect of a stochastic local search oper-
ator. This observation supports the idea that a heuristic search
algorithm with an adequately set mutation rate could be more ef-
fective when neutrality is present, as the opportunity of finding
a promising (adaptive) search path is increased [40].

The statistics on the basins of attraction of the landscapes are
particularly interesting. The trend is similar to what has been
previously reported by the authors [9], [10] for the standard NK
family, but the size of the basins is larger the higher the degree
of neutrality, and it decreases exponentially with increasing K.
Similarly, and as an important particular case, the size of the
global maximum basin decreases exponentially with K, and in-
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creases with increasing neutrality.
The analysis of the clustering coefficient and the disparity,

two useful local features of the optima networks, show that the
clustering decreases with the degree of epistasis K while, for a
fixed K, it tends to increase with increasing locality. This is an
indirect topological indication of the fact that maxima are more
densely connected in the neutral case, which again confirms the
easier heuristic search of the corresponding landscapes. The dis-
parity coefficient, on the other hand, says that for high K the
basins tend to be randomly connected, independent of the de-
gree of neutrality, a known result confirmed here from the purely
network point of view.

Finally, we have statistically analyzed the average shortest
paths between nodes in the maxima networks. This is an im-
portant characterization of the landscape which is easy to ob-
tain from our maxima networks. It is relevant because it gives
useful indications on the average number of transitions that a
stochastic local searcher will do between two maxima. In all
cases the path length increases with K up to K = 12 and then
stays almost constant or decreases slightly. Neutrality decreases
the mean path length in the NKp case, while it increases it for
the NKq family. The same trend is observed for the particular
average path length from any maximum to the optimum. This
last measure gives a rough approximation of the average number
of steps a local searcher would perform in the landscape to reach
the optimum from any starting local optimal configuration, if it
were “well-informed”, i.e. if it knew what would be the average
best local optimum hop at each step.

VI. CONCLUSIONS

We have found that the topological observation of the local
maxima networks of a given fitness landscapes gives both useful
information on the problem difficulty and may suggest improved
ways of searching them.

However, although we think that our network methodology is
promising as a description of both neutral and non-neutral com-
binatorial landscapes, several issues must be addressed before
it acquires practical usefulness. For example, we have limited
ourselves to landscape sizes that can be fully enumerated in rea-
sonable time by using relatively low values of N . Of course, this
is not going to be possible for bigger spaces. Work is thus on-
going to sample the landscapes in a statistically significant way,
a step that will allow us to extend the analysis to more interest-
ing problem instances. Second, we plan to extend the present
type of analysis to more significant combinatorial optimization
problems such as the TSP, SAT, knapsack problems, and several
others in order to better understand the relationships between
problem difficulty and topological structure of the correspond-
ing networks. Additionally, the analysis of problems with more
complex genotype-phenotype mappings, would help to further
enlighten the role of neutrality in evolutionary search. A further
step would be to incorporate and analyze the dynamic aspects
of search heuristics operating on these landscapes. The ulti-
mate goal would be to try to improve the design of stochastic
local search heuristics by using the information gathered in the
present and future work on the local optima and basin networks
of several problem classes.
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APPENDIX

ASSESSING THE IMPACT OF NEUTRALITY ON
EVOLUTIONARY SEARCH

This appendix compares the search performance of a stan-
dard evolutionary algorithm (EA) running on NK landscapes
of equal size and ruggedness (epistasis) level but with different
degrees of neutrality. The goal is to asses whether the presence
of neutrality in a landscape would enhance evolutionary search.
Given that the fitness value of the global optimum in a NK land-
scape depends on its parameters (N , K, p or q), a comparison
based on the average best fitness of a number of EA runs is not
possible. Therefore, we resort to the success rate as a perfor-
mance measure. This is possible on the small landscapes ex-
plored here as the global optimum is known after the exhaustive
exploration for extracting the optima networks. For our empiri-
cal study we chose the same landscape parameters as those used
in the main sections of the article. Namely, NK landscapes
with N = 18 and K = {2, 4, 6, 8, 10, 12, 14, 16, 17} with and
without neutrality, with three levels of (increasing) neutrality:
q = {10, 4, 2} and p = {0.5, 0.8, 0.9} for the NKq and NKp

models, respectively. Table I summarizes the evolutionary algo-
rithm operator choices and parameter settings employed.
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Fig. 16. Average (top) and standard deviation (bottom) of the success rate
of a standard EA searching on the NKq landscapes. See table I for EA
parameter settings. Averages on 100 independent landscapes.
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TABLE I
EVOLUTIONARY ALGORITHM COMPONENT CHOICES AND PARAMETER SETTINGS.

Component Choice Parameter value(s)
Population random initialisation size = 100
Mutation bit-flip mutation rates = {0.01/N, 0.1/N, 0.5/N, 1/N, 1.5/N, 2/N}
Recombination 1-point crossover rates = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
Selection tournament size = 2
Stopping criteria fixed number of evaluations 10% of search space size (26215 evaluations)
Replacement generational with elitism
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Fig. 17. Average (top) and standard deviation (bottom) of the success rate
of a standard EA searching on the NKp landscapes. See table I for EA
parameter settings. Averages on 100 independent landscapes.

A preliminary study was carried out to select the optimal
combination of mutation and recombination rates for each NK
model and neutrality level. The study explored the performance
of the 36 possible mutation and recombination rate pairs (see
Table I), on 30 independent randomly generated landscape in-
stances of each type. The ‘optimal’ combination was the one
achieving the highest average success rate, which is simply de-
fined as the number of runs where the global optimum was found
divided by the total number of runs. We found that the ‘opti-
mal’ crossover rates were low (on average 0.1523 over all land-
scape types) and the mutation rates per bit were around the well-
known figure 1/N [51] (on average 1.317/N ).

To compute the search difficulty on each landscape type, the
average and standard deviation of success rates on 100 runs
were computed over 100 independent landscape instances with
the‘optimal’ parameter setting found as discussed above. Fig-
ures 16 and 17show the average success rates and their standard
deviations for the NKq and the NKp models, respectively. As it
is already known, the success rates were found to decrease with

increasing epistasis (K values) in all the studied landscapes.
Most interestingly, for a given ruggedness level (value of K),
the average success rates were found to increase with the degree
of neutrality (figures 16 and 17, top plots). The success rate
standard deviations (figures 16 and 17, bottom plots) are higher
for K values around 6 except for the NKq model with q = 2,
for which the standard deviation was found to increase steadily
with increasing K values.

Since the distribution of success rates is not Normal, we con-
ducted a Mann-Whitney test to asses the statistical significance
of the difference between the averages (see figure 18). We com-
pared the averages for various neutrality degrees with the same
epistasis (K value). A thick line between two neutral parameter
values means that the difference is significant with a p-value of
5%; whereas a thin line indicates that the difference between the
averages are not statistically significant. For NKq landscapes,
the average differences are nearly always significant except be-
tween some non-neutral NK landscapes and NKq with low
neutrality (q = 10). Similar results are found for the NKp

model, with the exception the highest epistasis values where
there is nearly no difference between the averages. Our results
clearly suggest that, for the landscape models studied, neutrality
increase the evolvability of rugged landscapes. More precisely,
NK landscapes of equal size and epistasis level, are easier to
search for a simple EA when neutrality is higher.

K=

NK

4 6 8 10 12 14 16 172

q=10

q= 4

q= 2

NK

2 4 6 8 10 12 14 16 17K=

p=0.5

p=0.8

p=0.9

Fig. 18. Mann-Whitney test to compare the success rate averages of simple
EA on NKq landscapes (top), and NKp landscapes (bottom). A thick line
indicates that the equality of average success rates can be rejected with the
p-value of 0.05 according to the test. Otherwise the line is thin.
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