
Information and Software Technology 65 (2015) 1–13
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
An Integer Linear Programming approach to the single and bi-objective
Next Release Problem
http://dx.doi.org/10.1016/j.infsof.2015.03.008
0950-5849/� 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author. Tel.: +44 1786 46 7462.
E-mail address: nve@cs.stir.ac.uk (N. Veerapen).
Nadarajen Veerapen a,⇑, Gabriela Ochoa a, Mark Harman b, Edmund K. Burke a

a Computing Science and Mathematics, University of Stirling, FK9 4LA Scotland, UK
b Department of Computer Science, University College London, WC1E 6BT, UK

a r t i c l e i n f o
Article history:
Received 8 December 2014
Received in revised form 8 March 2015
Accepted 23 March 2015
Available online 31 March 2015

Keywords:
Integer Linear Programming
Multi-objective optimization
Next Release Problem
Requirements optimization
Search based software engineering
a b s t r a c t

Context: The Next Release Problem involves determining the set of requirements to implement in the
next release of a software project. When the problem was first formulated in 2001, Integer Linear
Programming, an exact method, was found to be impractical because of large execution times. Since then,
the problem has mainly been addressed by employing metaheuristic techniques.
Objective: In this paper, we investigate if the single-objective and bi-objective Next Release Problem can
be solved exactly and how to better approximate the results when exact resolution is costly.
Methods: We revisit Integer Linear Programming for the single-objective version of the problem. In addi-
tion, we integrate it within the Epsilon-constraint method to address the bi-objective problem. We also
investigate how the Pareto front of the bi-objective problem can be approximated through an anytime
deterministic Integer Linear Programming-based algorithm when results are required within strict run-
time constraints. Comparisons are carried out against NSGA-II. Experiments are performed on a combina-
tion of synthetic and real-world datasets.
Findings: We show that a modern Integer Linear Programming solver is now a viable method for this
problem. Large single objective instances and small bi-objective instances can be solved exactly very
quickly. On large bi-objective instances, execution times can be significant when calculating the complete
Pareto front. However, good approximations can be found effectively.
Conclusion: This study suggests that (1) approximation algorithms can be discarded in favor of the exact
method for the single-objective instances and small bi-objective instances, (2) the Integer Linear
Programming-based approximate algorithm outperforms the NSGA-II genetic approach on large
bi-objective instances, and (3) the run times for both methods are low enough to be used in real-world
situations.
� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

A key aspect in any large project is determining an appropriate
set of requirements as expressed by stakeholders. The Next Release
Problem (NRP), originally proposed by Bagnall et al. [1], formalizes
this issue and involves finding a subset of requirements or a subset
of stakeholders that maximizes a desirable property, such as rev-
enue, while being constrained by an upper bound on some other
property, usually cost. It is important to note that the NRP is only
concerned with the next release. Planning over several releases is
formalized in the closely related, and more complex, Release
Planning Problem [2].
In the bi-objective NRP [3], the upper bound is lifted and the
constraint transformed into a second objective which is usually
in conflict with the first. As a result, the decision-maker is pre-
sented with a set of potential solutions, the Pareto-optimal set, that
represents the different possible trade-offs between the two
objectives.

Research on the NRP has mainly been concerned with search
based software engineering approaches [4] probably because ini-
tial efforts to use Integer Linear Programming (ILP), which is an
exact approach, proved inconclusive beyond small problem
instances because of large run times [1]. In this paper we
revisit ILP in the light of much improved solvers to see if, and
how, it can be used to address the NRP with one and two
objectives.

The main contributions of this paper are as follows:

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.03.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.infsof.2015.03.008
http://creativecommons.org/licenses/by/4.0/
mailto:nve@cs.stir.ac.uk
http://dx.doi.org/10.1016/j.infsof.2015.03.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

2 N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13
1. We show that ILP can now solve single-objective NRP instances
under 4 s when several hours were required in 2001.

2. We show that iterated applications of ILP through the e-con-
straint method can be used to generate the Pareto front of the
bi-objective NRP, with the most complex instance clocking in
at over 8 h.

3. We show how to deterministically generate a good approx-
imation of the Pareto front when time is limited by applying
an Anytime Dichotomic Scheme which performs iterated appli-
cations of ILP.

We also introduce two transformations on the NRP that make it
more amenable to be solved by a genetic algorithm that cannot
handle constraints.

The next section gives an overview of related work. Section 3
presents the NRP with one objective, the possible constraints
between requirements and how to simplify the problem under cer-
tain conditions. The datasets and problem instances are presented
in Section 4 and the results for the NRP with one objective are
given in Section 5. Section 6 deals with the bi-objective NRP and
presents the e-constraint method, the Anytime Dichotomic
Scheme and the NSGA-II algorithm. Results for two objectives are
presented in Section 7. Section 8 examines the threats to the valid-
ity of this study. This is followed by the conclusion in Section 9.

The supplemental material contains model transformation
examples, an exploratory analysis of the NSGA-II seeding used in
the paper as well as the source code and results. It is available at
the following address: www.cs.stir.ac.uk/nve/nrp/

2. Related work

Since the early 2000s a number of researchers have modeled
software requirements selection and planning as specialized
optimization problems. A variety of formulations considering sin-
gle and multiple software releases, and single and multiple (dif-
ferent) optimization objectives, have been proposed. The term
Next Release Problem (NRP) was coined by Bagnall et al. [1] who
first formalized and successfully solved requirements optimization
for a single release as a constrained optimization problem using
metaheuristics.

Feather and Menzies [5] proposed an iterative approach to
requirements optimization that involves human-expert decision
making. A requirement interaction model is executed to randomly
sample the space of options. The large data set produced is then
condensed into a small list of critical decisions, which is presented
to humans experts. At each iteration, experts select from a decreas-
ing number of major alternatives to finally produce a near-optimal
set of requirements.

In a series of publications Ruhe et al. [6–9] propose a compre-
hensive family of hybrid approaches, termed EVOLVE, to solve
the so-called Release Planning Problem. Release planning, a general-
ization of the Next Release Problem, considers the selection and
assignment of features to a sequence of consecutive product
releases subject to resource and risk constraints.

Additional approximate algorithms employed to successfully
solve the single objective NRP include ant colony optimization
[10] and backbone-based multilevel search [11]. We compared
our results to the latter in Section 5. Ant colony optimization is fur-
ther explored with successful results against competing algorithms
in the Release Planning Problem with dependencies [12].

A bi-objective formulation of the NRP, with requirement costs
and stakeholder satisfaction values considered as two separate cri-
teria, was presented by Zhang et al. [3] where evolutionary meth-
ods are used to find approximations of the Pareto optimal set
(Section 6.5). In a follow up study [13], the authors incorporated
requirement interactions.
Other authors have studied the bi-objective NRP with the aim of
comparing the performance and highlighting the strengths of dif-
ferent algorithms including evolutionary approaches, simulated
annealing and ant colony optimization [14,15].

Finkelstein et al. [16] considered the problem of fairness analy-
sis in requirements optimization. A bi-objective formulation solved
with evolutionary methods is used for balancing multiple stake-
holders with different views on the priorities for requirements
choice.

Apart from the present paper, renewed interest in exact meth-
ods for the NRP has materialized in the work by Harman et al.
[17] which employs a dynamic programming algorithm to perform
sensitivity analysis of unconstrained NRP instances.
3. The NRP with one objective

The single-objective NRP is reducible to a knapsack problem [1]
and is, as such, an NP-hard combinatorial optimization problem
[18]. This means that there exists no polynomial time algorithm
to solve this problem unless P ¼ NP. Consequently several papers
have investigated the use of heuristic methods to address the sin-
gle-objective NRP [4]. Of course, the probable non-existence of a
polynomial time algorithm does not imply that exact methods can-
not perform well in practice. Incidentally, this is the case with the
knapsack problem: as early as 1979, random knapsack instances
with 10,000 variables were solvable within 3 s on a UNIVAC
1108 [19].

It was later proved [20] through average-case analysis that the
Nemhauser–Ullman algorithm [21], a dynamic programming
knapsack algorithm, has expected polynomial running time.

However, with the NRP, one needs to take into account the con-
straints on the requirements as well as the fact that NRP instances
might exhibit some properties that make them more difficult to
solve than random knapsack instances.

In the paper that introduced the NRP in 2001 [1], ILP was tested
using CPLEX, a commercial solver: the more complex problem
instances required several hours to solve exactly or were inter-
rupted after running for 20 h. In a more recent paper [11] on
approximately solving large scale constrained NRP instances, it
was shown that solving real-world instances of around 4000
requirements could take about 27 min on a PC with an Intel Core
2.53 GHz CPU. A very recent paper [17] demonstrated that the
above-mentioned Nemhauser–Ullman algorithm could solve
unconstrained random NRP instances composed of 1500 require-
ments, with an Intel Core i7 2.76 GHz CPU, in 25 s when the data
was uncorrelated and in twice the time with highly correlated
data.

Since 2001, only a few papers have investigated ILP for the NRP
[22,23] or for release planning [24,25], and then only for relatively
small problem instances. During that time ILP solvers have
improved drastically [26]. As an example, over the 1991–2009 per-
iod, CPLEX has seen an algorithmic speedup of over 55,000 [27]
when discounting hardware speedup. This enables us to state the
research question for the single-objective section of this paper.

RQ1 How efficient is CPLEX on large scale instances of the single
objective NRP?

The NRP is constrained by a total maximum cost and potentially
other constraints such as dependencies between requirements.
Fig. 1 gives an illustrated example of the structure of the potential
relationships between requirements and stakeholders.

One key criterion for representing the NRP is whether a stake-
holder’s requirements need to be completely satisfied [1] or if par-
tial satisfaction is acceptable [16]. The complete satisfaction

http://www.cs.stir.ac.uk/nve/nrp/

Fig. 1. Illustrated example of an NRP instance with prerequisites between
requirements. Three stakeholders have some requirements. These depend on other
requirements in order to be satisfied.

N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13 3
criterion requires the NRP formulation to contain specific variables
for the stakeholders. This is not the case for partial satisfaction.
This leads to three model representations that are relatively similar
but which differ in the variables that are represented in the model:

1. The general formulation [1] requires decision variables for both
the requirements and stakeholders.

2. The basic-stakeholder formulation is inspired by Bagnall et al. [1]
and only represents stakeholder variables. It is a simplification
of the general formulation and therefore applies to complete
stakeholder satisfaction. As far as we are aware, this formula-
tion has not been used before: Bagnall et al. [1] give an indepen-
dent basic formulation which only uses stakeholder variables
but which does not model the constraints of the general
formulation.

3. The basic-requirement formulation [16] only represents the
requirement decision variables. Here, a stakeholder’s wishes
can be partially satisfied. We selected this name for this
formulation as we did not find a name for it in the literature.

3.1. General formulation

In this formulation, we assume that the decision maker wishes
to maximize stakeholder profits and bound requirements costs. Let
X ¼ ½x1; x2; . . . ; xn� and Y ¼ ½y1; y2; . . . ; ym� be the vectors of binary
decision variables representing the inclusion or not of require-
ments 1 to n and stakeholders 1 to m respectively. Let
C ¼ ½c1; c2; . . . ; cn� be the cost vector associated to requirements,
W ¼ ½w1;w2; . . . ;wm� the profit vector associated to the stakehold-
ers and b some bound on the total cost. The constraints are repre-
sented by binary relationships. Let P be the set of couples ði; jÞ
where requirement i is a prerequisite for requirement j. Let Q be
the set of couples ði; kÞ where requirement i is requested by stake-
holder k. Then the problem can be modelled by the following ILP:

max f ðyÞ ¼
Xm

i¼1

wiyi ð1aÞ

subject to
Xn

i¼1

cixi 6 b ð1bÞ

xi P xj; 8ði; jÞ 2 P ð1cÞ
xi P yj; 8ði; jÞ 2 Q ð1dÞ
x 2 f0;1gn

; y 2 f0;1gm ð1eÞ

In expression (1c), xi needs to be equal to 1 if xj ¼ 1 but xj can
still be equal to 0 if xi ¼ 1, thus modelling the prerequisite accu-
rately. In expression (1d), the same technique is used to force the
inclusion of all the requirements requested by some stakeholder
if this stakeholder’s profit is used in objective function f.
3.2. Basic-stakeholder formulation

This simpler formulation is based on the transformations 2 and
3 described in Section 3.5, in order to convert the general formula-
tion into one that only considers the stakeholders while still pre-
serving the initial semantics:

max f ðyÞ ¼
Xm

i¼1

wiyi ð2aÞ

subject to
Xn

i¼1

ci

_
j2Si

yj 6 b ð2bÞ

y 2 f0;1gm ð2cÞ

One drawback of this formulation is that it is no longer a linear
formulation and using it with an ILP solver would require a trans-
lation step to convert the logical operators into linear inequalities.
However, it is simpler to solve with a metaheuristic approach than
the general formulation since fewer constraints need to be consid-
ered. Its other benefit is using m decision variables instead of mþ n
in the general formulation.
3.3. Basic-requirement formulation

In this last formulation, the profits or levels of stakeholder
satisfaction are not computed based on strict adherence to each
stakeholder’s complete set of requested requirements but instead
they allow for partial satisfaction of each stakeholder’s set of
requirements. This effectively removes the need for stakeholder
decision variables (yi) in the model and the weight vector W now
represents the profits associated to each requirement. If no other
additional constraints are considered, we have:

max f ðxÞ ¼
Xn

i¼1

wixi ð3aÞ

subject to
Xn

i¼1

cixi 6 b ð3bÞ

x 2 f0;1gn ð3cÞ

For Zhang et al. [3], stakeholder satisfaction is used instead of
profit. A vector W represents weights assigned to each stakeholder.
The weight is proportional to the stakeholder’s importance and is
associated to an ðn�mÞ matrix V representing the value that each
stakeholder assigns to each requirement. This value is potentially
null. This gives us a slightly different version of Expression (3a):

max f ðxÞ ¼
Xn

i¼1

Xm

j¼1

wjv i;jxi ð3a’Þ

In Section 4, we describe a number of instances that are tackled
using the different formulations. We employ the general formula-
tion with ILP and the basic-stakeholder formulation with genetic
algorithms when addressing the classic and realistic instances.
For the real-world instances, we use the basic-requirement
formulation for all solving methods. This choice was made since
this is how these instances have been approached in the literature.
3.4. Constraints

The NRP can be augmented by different constraints that
describe the relationships between the various requirements. We
briefly describe some of the interactions presented by Zhang
et al. [13] that are used in this paper and that can be formulated
as a binary relation on any pair of requirements ði; jÞ. The
corresponding linear constraint is given between parentheses.

1 http://www.cs.ucl.ac.uk/staff/S.Lim/phd/dataset.html.

4 N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13
� AND – If any one of the two requirements is selected then the
other must be selected as well ðxi ¼ xjÞ.
� OR – At most one of the two requirements can be selected

(xi þ xj 6 1).
� PRECEDES – If j is selected then i must be selected as well (xi P xj).

This is identical to the prerequisite constraint in the general
formulation.

3.5. NRP transformations

An NRP formulation can be transformed in several ways whilst
still maintaining the same properties. Here we present three trans-
formations that can be used to simplify the models. To the best of
our knowledge, only the second transformation has been used
before in the context of the NRP. Examples of the transformations
are provided in the supplemental material. In this paper, the main
purpose of these transformations is to eliminate or reduce the
number of explicit constraints for the benefit of NSGA-II since it
cannot handle constraints natively.

3.5.1. Transformation 1
This removes the xi ¼ xj constraints. Since equality is, of course,

an equivalence relation, each decision variable involved in an
xi ¼ xj constraint is an element of the same equivalence class
½xi� ¼ fxjjxi ¼and xj; xj 2 Xg. Those decision variables can therefore
be substituted for a single variable representing the class, thus
decreasing the total number of variables and eliminating the AND

constraints.
Classic union-find algorithms over disjoint-set data structures

[28, Chapter 21] can be employed to determine the equivalence
classes of variables involved in multiple disjoint AND constraints.

3.5.2. Transformation 2
This removes the xi P xj constraints [1]. Let R be the set of

requirements and let S be the set of stakeholders. Let precedes
0 be

the transitive closure of PRECEDES on R. Let Ri be the set of requirements

requested by stakeholder i 2 S. Then bRi ¼ Ri [fr0jr0 precedes
0

r; r 2 Rig is the set of all the requirements required to fulfill the
request of stakeholder i.

If precedes
0 is not readily available, it can be computed using

Warshall’s algorithm [29, Chapter 2] as suggested by Bagnall
et al. [1]. Alternatively, it is fair to assume that no cycles are
induced by the PRECEDES relation. In this context, the transitive clo-
sure can be constructed by parsing the requirements in reverse
topological order [29, Chapter 4].

Given this information, we can generate xi P yj, i 2 Rj, 8j 2 S
and remove any xi P xj constraints. Let us note that the trans-
formation will potentially generate a larger number of constraints
than in the initial formulation.

3.5.3. Transformation 3
This removes the xi variables and only leaves the yj variables.

Let Si be the set of stakeholders who requested requirement i, then
any variable xi ¼ _j2Si

yj. The xi P yj of the general formulation are
no longer required.

4. Problem instances

To perform some computational experiments, a number of prob-
lem instances are required, ideally from real-world data.
Unfortunately obtaining such data is problematic, especially for
large instances, as private companies usually keep this confidential.

In order to test the single objective NRP, we will thus use the
instances presented by Xuan et al. [11]. These are divided into
two groups called the classic instances and the realistic instances.
The number of requirements and stakeholders for these instances
are given in Table 1.

We will also have two real-world datasets. However, because of
their relatively small size, they will only be used for the bi-objec-
tive NRP.

4.1. Classic instances

The classic instances are composed of five synthetic datasets
generated by Xuan et al. [11] in the way described by Bagnall
et al. [1]. It is not possible to use the original datasets [1] since they
are no longer available.

Each dataset, nrp1 to nrp5, corresponds to a single problem
instance for the bi-objective NRP. For the single-objective case,
each dataset is used to generate two instances which differ only
by the bound on the cost constraint. This bound is the sum of total
costs multiplied by a coefficient (0.3, 0.5 or 0.7).

The data itself is generated according to a multi-level approach.
Each level consists of a number of requirements specified before-
hand. The cost of each requirement and the number of child require-
ments is chosen uniformly in a range that depends on the level.

4.2. Realistic instances

In order to obtain more realistic large instances, Xuan et al. [11]
proposed to use the bug repositories for the Eclipse, Mozilla and
Gnome open-source projects. Bugs correspond to the requirements
and stakeholder requests correspond to users commenting on the
bugs. The cost of a requirement is the severity of the bug and the
profit per stakeholder is selected uniformly in a predefined range.

Four subsets of bugs are extracted from the three repositories
(nrp-e1 to nrp-e4, nrp-m1 to nrp-m4, nrp-g1 to nrp-g4). These sub-
sets correspond to bi-objective NRP instances. For the one-objec-
tive case, two bounds on the costs are defined. Again, these
bounds correspond to the sum of total costs multiplied by a coeffi-
cient (0.3 or 0.5).

The requirements for realistic instances do not have
prerequisites.

4.3. Real-world instances

We use two real-world datasets from Motorola and University
College London (UCL). They are both relatively small datasets.

4.3.1. Motorola
The Motorola dataset [3] contains 35 requirements for hand-

held communication devices and 4 mobile telephone companies
as stakeholders. The stakeholders have a different set of features
they wish to be part of each device. The sets of features are specific
to each company so no two companies want the same feature. Each
company is equally important to Motorola and therefore no
weights are used to assign priorities to stakeholders.

4.3.2. UCL – RALIC
Replacement Access, Library and ID Card – RALIC – was a

2.5 year project deployed in 2009 in University College London
(UCL) to replace the previous access control systems and provide
integration with the library access and borrowing [30]. The dataset
[31] is publicly available online.1 The instance as used in this paper
is composed of 77 stakeholders and 142 requirements with AND and

OR constraints. Simplifying the AND constraints with the trans-
formation described in Section 3.5 reduces the number of require-
ments to 45.

http://www.cs.ucl.ac.uk/staff/S.Lim/phd/dataset.html

Table 1
Results for Classic and Realistic NRP instances. Column 1 indicates the name of the
dataset set and the number of requirements, column 2 the number of stakeholders
and column 3 the coefficient on the total cost bound. The optimal value found by ILP
is given in column 4 followed by the mean run time. Column 6 provides the best
results obtained by BMA as an indication of the performance of heuristic methods.

Instance ILP BMA

Name req. Sta. Coef. Opt. Time (s) Best

nrp1 0.3 1204 0.15 1201
140 100 0.5 1840 0.05 1824

0.7 2507 0.03 2507

nrp2 0.3 4970 3.63 4726
620 500 0.5 8065 2.95 7566

0.7 11,316 0.56 10,987

nrp3 0.3 7488 0.47 7123
1500 500 0.5 11,159 0.32 10,897

0.7 14,196 0.31 14,180

nrp4 0.3 10,690 1.81 9818
3250 750 0.5 15,985 2.50 15,025

0.7 20,913 1.79 20,853

nrp5 0.3 18,510 0.32 17,200
1500 1000 0.5 24,701 0.31 24,240

0.7 28,912 0.32 28,909

nrp-e1 0.3 7919 0.06 7572
3502 536 0.5 11,071 0.06 10,664

nrp-e2 0.3 7446 0.10 7169
4254 491 0.5 10,381 0.17 10,098

nrp-e3 0.3 6666 0.05 6461
2844 456 0.5 9362 0.06 9175

nrp-e4 0.3 5814 0.05 5692
3186 399 0.5 8174 0.10 8043

nrp-g1 0.3 6130 0.03 5938
2690 445 0.5 8897 0.03 8714

nrp-g2 0.3 4580 0.06 4526
2650 315 0.5 6553 0.03 6502

nrp-g3 0.3 5932 0.02 5802
2512 423 0.5 8501 0.04 8402

nrp-g4 0.3 4218 0.03 4190
2246 294 0.5 6063 0.03 6030

nrp-m1 0.3 10,770 0.14 10,008
4060 768 0.5 15,540 0.12 14,588

nrp-m2 0.3 8707 0.13 8272
4368 617 0.5 12,585 0.25 11,975

nrp-m3 0.3 10,391 0.14 9559
3566 765 0.5 15,096 0.10 14,138

nrp-m4 0.3 7777 0.06 7408
3643 568 0.5 11,369 0.07 10,893

N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13 5
5. Experiments on the 1-objective NRP

This section addresses the research question for the single-
objective NRP.

RQ1 How efficient is CPLEX on large scale instances of the single
objective NRP?

The large scale NRP has previously been solved by Xuan et al.
[11] using a backbone-based multilevel algorithm which scales
the problem down using multilevel reductions and uses multilevel
refinements to construct a set of near-optimal stakeholders. The
backbone identifies characteristics that are common in the optimal
solutions. As those are unknown, an approximate backbone is gen-
erated from the intersection of a number of locally optimal solu-
tions. Another type of backbone, the soft backbone, is also used.

While this method is relatively complex to implement, as far as
we are aware, it is also the best attempt at solving large scale Next
Release Problems. It was compared to a genetic algorithm and
simulated annealing. For these reasons, we do not reimplement
the backbone-based multilevel algorithm but quote the profits
obtained. We do not provide direct run time comparisons as our
test machine is different from theirs.

Using ILP is comparatively simpler as it only requires entering
the model into a black-box solver. Here we use CPLEX an earlier
version of which was also used by Bagnall et al. [1]. The solving
process involves applying a number of techniques, all transparent
to the user. In its most basic form, an ILP solver will first relax
the integer linear problem to a continuous linear problem which
can be solved efficiently by the Simplex algorithm. This provides
a starting point for a Branch and Bound algorithm to explore the
decision tree of integer solutions [32]. Modern solvers include
many additional techniques such as model simplification, various
tree pruning algorithms and tree exploration heuristics.

5.1. Experimental setup

We use CPLEX 12.5.1 to solve the classic and realistic instances
using the general NRP formulation presented in Section 3.1. The
CPLEX API is called from a C++ program whose only other task is to
read in and output the data. CPLEX is only allowed to use one thread.

We set the EpInt, EpGap and EpAGap parameters to 0. Briefly,
these specify the threshold beyond which a solution is considered
to be close enough to optimality. Setting them to 0 ensures that we
obtain the best possible value although in many cases this
unnecessarily lengthens the search as the best value could be
obtained with a small non-zero parameter value. Default values
are used for the remaining CPLEX parameters.

The C++ source code is compiled with GCC 4.6.3 with the -O3

compiler optimization flag. The experiments are carried out on a
PC running Ubuntu 12.04 LTS 64-bit with an Intel Core i7-3770
CPU clocked at 3.4 GHz and with 16 GB of RAM.

Since the results are deterministic, we run each instance three
times to account for potential run time differences due to external
processes on the test machine having a detrimental effect on very
small execution times. In practice, the run times for the same
instance only differ by, at most, 0.01 s.

5.2. Analysis of results

The results for the classic and realistic instances are given in
Table 1. As we can see, the optimal solution for most instances is
usually found in less than one second. The hardest instances are
the ones based on the classic synthetic data (especially nrp2 and
nrp4), which are still solved in less than 4 s. This answers RQ1.
These low execution times would be suitable for most single objec-
tive requirements optimization scenarios.

The only classic instances which have approximately the same
number of decision variables as the realistic instances are the ones
based on nrp4. However, the realistic instances have smaller run
times. The difference here is that the classic instances are the only
ones that have requirement prerequisites. Resolving those con-
straints probably explains the higher run times.

While the classic instances are not the same ones that took sev-
eral hours to solve using CPLEX in 2001 [1], they were nonetheless
generated using the same algorithm [11] and are likely to exhibit
the same level of difficulty. Solving them with an improved version
of CPLEX and a modern desktop PC is now only a matter of seconds.
Moreover, there is also a significant improvement over the back-
bone-based multilevel algorithm, which took between 52 s to
27 min to approximately solve the classic and realistic instances.

The marked improvement in execution time allows for highly
flexible requirements management scenarios, for instance where
fast recomputation of the solution is required following reevalua-
tion of stakeholder wishes or requirement costs. Another possible

Fig. 2. Different types of points in bi-objective optimization. Points A–E are non-
dominated points. They form the Pareto front. The remaining points, in the shaded
region, are dominated. A, C and E are points of extreme supported efficient
solutions. D is a point of a non-extreme supported efficient solution. B is a point of a
non-supported efficient solution. The area of the shaded region is the hypervolume.

6 N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13
use-case occurs when the available data is imprecise: multiple sce-
narios can now be quickly evaluated across multiple different con-
figurations in order to have a wider view of the possible outcomes.

Given that the run times are small, it is reasonable to think that
it may be possible to use multiple applications of ILP to solve
exactly the bi-objective NRP provided the number of solutions
remains within some reasonable limit. If run time is constrained,
an approximate method should be considered.

We will now consider the following research questions:

RQ2.1 How efficient is it to compute the exact Pareto front of
the NRP with two objectives?

RQ2.2 How efficient is it to obtain an approximation of the
Pareto front that can be considered good enough?

6. The bi-objective NRP

In the bi-objective NRP, the cost constraint is transformed into
an objective of its own. There are now two objectives to solve.
The first objective needs to be maximized whilst the second needs
to be minimized.

It is often convenient to have all objectives require either maxi-
mization or minimization. In order to maximize the second objec-
tive, it is multiplied by �1. If we consider the general formulation
of the bi-objective NRP, we have:

max f 1ðyÞ ¼
Xm

i¼1

wiyi ð4aÞ

f 2ðxÞ ¼ �
Xn

i¼1

cixi ð4bÞ

subject to xj P xj; 8ði; jÞ 2 E ð4cÞ
xi P yj; 8ði; jÞ 2 C ð4dÞ
x 2 f0;1gn ð4eÞ
y 2 f0;1gm ð4fÞ

Naturally the different formulations can be supplemented by
different constraints as described earlier. Let us introduce some
terms and definitions in the next section.

6.1. Multi-objective combinatorial optimization

In multi-objective combinatorial optimization [33], two or more
objectives are considered. Since the objectives are likely to be in
conflict with each other, it is assumed that a solution optimizing
all objectives does not exist. The aim is to find a set of solutions
called the efficient solutions. This term as well as some other useful
terms are defined below and illustrated in Fig. 2.

For simplicity and relevance to this work, let us consider only 2
maximization objectives. Let X be the set of all feasible solutions of
the problem in the decision space, X ¼ fx 2 f0;1gnjAx 6 bg, where
Ax 6 b are the constraints of the problem. Let Z ¼ ff ðxÞjx 2 Xg be
the feasible set in the objective space.

Definition 1. Given two vectors u and v ; u dominates v if
ðu1 P v1 ^ u2 > v2Þ _ ðu1 > v1 ^ u2 P v2Þ. This is often referred
to as Pareto dominance and is denoted by u � v .
Definition 2. A solution x̂ 2 X is said to be efficient if there is no
x 2 X such that f ðxÞ � f ðx̂Þ.
Definition 3. The image f ðx̂Þ of an efficient solution x̂ is said to be a
non-dominated point. The set of all non-dominated points is called
the Pareto front.
Efficient solutions can be divided into two categories: sup-
ported efficient solutions and non-supported efficient solutions.

� A supported efficient solution is the optimal solution of a
weighted sum single-objective problem with weight vector
½k;1� k�; 0 < k < 1. It is said to be extreme if its image is a ver-
tex (in general position, i.e, no three collinear vertices) of the
convex hull of the Pareto front and non-extreme if it is found
in its relative interior.
� A non-supported efficient solution is an efficient solution for

which there does not exist an optimal solution to a weighted
sum single-objective problem for any weight vector k > 0.
Definition 4. The lexicographic order, u>lexv , is defined by
u1 > v1 _ ðu1 ¼ v1 ^ u2 > v2Þ. In this paper lexmax will be the
operator that returns the lexicographically maximal solution.

6.2. Which methods to generate Pareto fronts?

To address RQ2.1, we require an exact bi-objective algorithm
that can use the single objective solver results to generate the
exact Pareto front. Here we choose to employ the e-constraint
method which has the advantage of being very simple both to
understand and implement.

To address RQ2.2, we will consider NSGA-II since it was pre-
viously used to solve the bi-objective NRP [3,15,13]. With NSGA-
II there is no guarantee that any of the solutions obtained is part
of the real Pareto front. We also wish to test if the exact single
objective approach can be used within an approximate algorithm
and thus generate an approximation that is a subset of the real
Pareto front. The simplest way to leverage the efficiency of a single
objective solver is to solve multiple weighted sums of the two
objectives [33]. Even if the single objective solver is an exact one,
this only provides an approximation of the Pareto front since
non-supported efficient solutions cannot be reached this way.
The Anytime Dichotomic Search [34] is an example of an algorithm
based on weighted sums and we will be using it in our experi-
ments. Its main advantage over other weighted sum algorithms
is that it provides a good distribution of points on the Pareto front
irrespective of the execution time it is allotted.

The next three subsections provide more details on these multi-
objective algorithms.
6.3. The Epsilon-constraint method

The concept of e-constraint involves solving one of the objec-
tives of a multi-objective combinatorial optimization problem

Fig. 3. The Epsilon-constraint algorithm for two objectives.

2 As implemented in the R mco package, http://cran.r-project.org/web/packages/
mco/.

N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13 7
and transforming the remaining objectives into constraints bound-
ing the search space [35]:

max
x2X
ff iðxÞjf jðxÞP ej; i – jg

In the bi-objective case we thus have:

max
x2X
ff 1ðxÞjf 2ðxÞP e2g ð5Þ

A systematic variation of e can be used to generate a Pareto
front [36,37]. This is illustrated in Fig. 3, which gives the pseudo-
code of the algorithm. Fig. 4 provides a visual example.

The general idea is to start by solving one of the two objectives,
say f 1. This gives us solution x1, and f 1ðx1Þ is the best possible value
for f 1. The search space is then bounded by the constraint
f 2 P f 2ðx1Þ þ d and we solve for f 1 within that space. The process
is repeated as long as a new solution for f 1 is found. During this
procedure, f 2 is gradually improving whilst f 1 is worsening.

Notice that d is a key parameter. If we want an approximation of
the Pareto front, then d can be used to generate solutions that will
have at least d difference between the values of f 2. Here we want
the exact Pareto front, d should thus be set to the smallest repre-
sentable value, i.e, 1 for integer functions and the smallest machine
precision for floating point functions. One might wonder why a
strict inequality is not used instead of the d parameter. Strict
inequalities are not allowed in linear programming because they
might lead to solutions that are not well-defined, e.g., in
maxx2Rfxjx < 10g.

6.4. Anytime Dichotomic Scheme

The Anytime Dichotomic Search (ADS) presented here is based on
Aneja and Nair’s dichotomic scheme [38] where an approximation of
the Pareto front is recursively computed using weighted sums of the
objectives. One problem of this approach, which is also shared by the
e-constraint method, is that if there is a time limit then the generated
points are grouped in a subset, or a number of unevenly distributed
subsets,of theParetofront.Dubois-Lacosteetal. [34]describeanany-
time behavior of the dichotomic scheme to obtain a more even dis-
tribution of points, which we will use here. Note however that
Dubois-Lacoste et al. [34] use a local search algorithm as solver while
we use ILP. Fig. 5 presents the pseudo-code of the Anytime
Dichotomic Scheme and Fig. 6 gives a visual example.

The main idea of this approach involves taking two solutions, at
first x1 and x2 such that they are lexicographic optima of ðf 1; f 2Þ and
ðf 2; f 1Þ respectively, and finding a solution in between. This is done
by calculating the weight k that defines a line perpendicular to the
segment joining the two solutions. Solving the weighted sum
kf 1 þ ð1� kÞf 2 gives a new solution x0. If the latter is any of the
two previous solutions then no new solution can be found between
those solutions with the dichotomic scheme. Otherwise additional
solutions can potentially be found between the two newly created
segments. This process is repeated until no new solutions are
found or the time limit is reached.

The defining characteristic of the anytime approach is that the
longest segment is always chosen, thereby targeting the explo-
ration of the front to sections with fewer solutions.

Recall from Section 6.1 that weighted sums produce supported
efficient solutions. Therefore, this approach will not produce any
non-supported efficient solutions and may miss non-extreme sup-
ported efficient solutions.

6.5. NSGA-II

NSGA-II, Non-dominated Sorting Genetic Algorithm, is an elitist
version of the original NSGA [39]. It is one of the most popular
multi-objective metaheuristic algorithms with over 7500 citations
to the original paper in the Scopus database at the time of writing.

Fig. 7 presents a top-level view of NSGA-II. The starting pop-
ulation of size N is initialized with random solutions. After the
solutions have been evaluated, a fitness corresponding to the
dominance depth is assigned to each of them. The dominance
depth of a given solution is the number of solutions within the
population which dominate this solution. Solutions with the same
depth form a front and the lower the depth the better. A measure
of spread, the crowding distance, is computed for each solution. A
new population is generated through recombination, mutation and
tournament selection operators. For each new population, the
dominance depth and crowding distance are computed. Then the
solutions are initially sorted according to dominance depth and
then according to crowding distance within the same front. The
first N solutions are kept and the process is repeated until a stop-
ping criterion is met, usually a fixed number of generations.

NSGA-II was successfully used to solve the bi-objective NRP
[3,15,13]. This approach cannot readily deal with constraints.
Where necessary, we employ the strategy already used by Zhang
et al. [13]: invalid solutions in the population are repaired at the
end of the Create-Random-Population and Make-New-

Population steps. Since we use the transformations described
in Section 3.5, in practice only the OR constraints need repair for
the instances in this paper. When xi or xj is violated, xj is set to 0.

Through preliminary tests we experienced the same phe-
nomenon described by Zhang et al. [3], namely that NSGA-II had
some difficulty reaching both ends of the Pareto front, with solu-
tions being generally clustered in the middle.

It has been shown that the spread of solutions obtained with
genetic algorithms can be improved when starting with a pop-
ulation that includes good non-random solutions in both the single
objective [40] and the multi-objective case [41]. This has been
dubbed inoculation or seeding. More recently, seeding has also been
used in other software engineering problems [42,43]. The explora-
tory analysis we performed, included in the supplemental material,
showed that seeding was also beneficial for the NRP and we are
thus using it in this paper.
6.6. Performance metrics

With the single-objective problem, we could simply rely on the
objective function’s value to measure a solution’s quality. With two
objectives, we need to select appropriate metrics to gauge the
quality of approximate fronts.

There are a number of multi-objective performance metrics [44]
and in this paper we will use two of them: the number of exact
solutions found on the approximate front and the hypervolume.2

http://cran.r-project.org/web/packages/mco/
http://cran.r-project.org/web/packages/mco/

Fig. 4. Illustrated example of running the e-constraint algorithm in order to maximize two objectives, f 1 and f 2: (a) find an optimum solution of f 1; (b) restrict the solution
space according to the f 2 coordinate of the solution found and look for an optimum solution of f 1 in that space; (c) repeat the previous step, notice that in this step there are
two optimal solutions for f 1 and the single objective solver returns a solution that is weakly efficient; (d) the next solution is found, it dominates the previous one; (e) again
there are two optimal solutions for f 1 but here the single objective solver immediately finds the non-dominated one; and (f) there are no more solutions to be found, the
problem is infeasible and the algorithm ends. The weakly efficient (dominated) solutions need to be filtered out of the set of solutions.

Fig. 5. Anytime Dichotomic Scheme.

8 N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13
6.6.1. Number of exact solutions found
The number of solutions of the exact front that are found on the

approximate front is probably the simplest unary measure.
Other than what it measures, it cannot be used by itself to com-

pare two approximate fronts. Say front A has 5 well-spaced solu-
tions on the exact front and front B has 10 solutions on the exact
front but clustered together. Using this measure B would be better
than A.

6.6.2. Hypervolume
The hypervolume indicator computes the space that is domi-

nated by the solutions in the front [45]. With two objectives, this
actually corresponds to the union of the area of all the rectangles
that are dominated by the solutions, e.g. the shaded area in
Fig. 2. The area of the rectangle is defined w.r.t. the solution’s
objective values and a reference point p. This point corresponds
to the worst values for each objective. The hypervolume indicator
is denoted by IH.

IHðA;pÞ ¼
[
a2A

areaða;pÞ
An advantage of the hypervolume is that it is strictly Pareto-
compliant, i.e., if front A dominates front B then IHðAÞ > IHðBÞ.
One drawback is that it is biased towards convex parts of the front.
7. Experiments on the 2-objective NRP

7.1. Statistical methodology

We are performing comparisons with a stochastic algorithm,
NSGA-II, which generates a different result for each execution.
However both the e-constraint method and ADS are deterministic.
To evaluate the ‘‘better’’ option between NSGA-II and ADS, we
mainly use boxplots of NSGA-II results plotted against the
corresponding ADS single result, the difference between them
being very obvious. We also use Cliff’s test [46, pp. 180–185], at
the 0.05 significance level, to corroborate this.

Quantifying the extent to which the null hypothesis is false, i.e.,
the effect size, is important. However in this paper we dispense
from explicitly measuring it since the differences that matter to
us are clearly visible on boxplots.

7.2. Experimental setup

For this set of experiments, we use the same base setup as
described in Section 5.1. All the programs are coded in C++ and
NSGA-II is implemented using the ParadisEO framework [47]. It
is key to note that the use of the -O3 compiler optimization flag
plays a very important part in making the NSGA-II algorithm fast
since it roughly produces a fivefold speedup on our machine. The
deterministic algorithms are run only once.

For the e-constraint method, since cost is an integer function for
all instances, r ¼ 1 and the search space is progressively restricted
w.r.t. cost.

The NSGA-II parameter values are mostly those used by Zhang
et al. [13]: a population of 500, a tournament size of 5, a cross-over
probability Pc ¼ 0:8 and a mutation probability Pm ¼ 1=n where n

Fig. 6. Illustrated example of the Anytime Dichotomic Scheme to maximize two objectives, f 1 and f 2: (a) find a lexicographically optimal solution for the orders ðf 1; f 2Þ and
ðf 2; f 1Þ; A and B are two possible solutions for f 2 alone but if we then consider f 1, B is the lexicographically optimal solution; (b) find the weight k defining a perpendicular line
through the segment joining the two points, find an optimum solution for kf 1 þ ð1� kÞf 2; (c) choose the longest segment and repeat the previous step, this time there are no
solutions beyond the segment; there is a point on the segment which could potentially be found, assume it is not; (d) no new solution is found for this segment; and (e) there
are no longer any segment to examine and the algorithm ends.

Fig. 7. High-level view of the NSGA-II algorithm.

N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13 9
is the number of boolean decision variables. However, we deter-
mined that we needed to increase the number of generations from
100 to 200 in the case of the classic and realistic instances, mainly
to deal with larger instance size and complexity. Seeding is set to
2%. These two choices were determined by performing an explora-
tory analysis that is described in the supplemental material. For
each instance, NSGA-II is executed 30 times.
7.3. Answers to research questions

RQ2.1 How efficient is it to compute the exact Pareto front of
the NRP with two objectives?

Table 2 presents the results for the e-constraint method with
CPLEX, NSGA-II with seeding and the Anytime Dichotomic
Scheme with CPLEX on the classic and realistic instances w.r.t.
number of solutions, run time and hypervolume. Plots for the
hypervolume are provided in Fig. 8.

We can answer RQ2.1 immediately. The longest run time is over
8 h and several instances take less than an hour. This is again
testimony to the improved performance of ILP solvers since in
2001 the longest single-objective run was stopped after 20 h [1].
Obviously, execution times of the order of the hour allow for less
flexible use cases but can be useful nonetheless.

For the smallest classic instance, nrp1, all solutions are found in
24 s. The real-world Motorola and RALIC instances are solved even
more quickly since they are very small and feature no or few con-
straints. The instance producing the longest run, nrp4, is also the
one with the second largest number of solutions. The next most
computationally expensive instance is nrp2. Both these instances
share the characteristic of having been generated with five levels
of requirement dependency, compared with three for the other
classic instances and no dependencies for the realistic instances.

All but one of the classic and realistic instances produce fronts
with several thousands of solutions. Although choice is usually a
good thing from a decision maker’s point of view, such a large
number of solutions is probably unnecessary in most circum-
stances. The greater the number of solutions, the longer the run
time, therefore this leads us to the next research question.

RQ2.2 How efficient is it to obtain an approximation of the
Pareto front that can be considered good enough?

Fig. 9 presents the empirical attainment functions [48] of the
various algorithms for the nrp1 and nrp-e1 instances. These func-
tions describe the probabilistic distributions of the solutions
obtained by stochastic algorithms in the objective space. They
allow us to identify the worst, median and best fronts, as well as
the empirical probability of obtaining the solutions. For deter-
ministic algorithms, an empirical attainment function is simply
the front produced.

Let us examine the NSGA-II results in Table 2. The seeded NSGA-
II solutions are well distributed but an overwhelming majority of
them do not reach the real Pareto front, especially for larger
instances. For smaller instances where NSGA-II performs well,
the exact method finds all solutions within a shorter time-frame.

Table 2
Bi-objective results. The table presents the number of solutions, time and hypervolume for the e-constraint method (Exact), NSGA-II and the Anytime Dichotomic Scheme (ADS).
The values for NSGA-II are means over 30 runs and the rest use single-run values. All and Conv correspond to the number of solutions of the exact Pareto front and of its convex
hull respectively. The numbers between parentheses are the number of solutions found by NSGA-II that are on the exact Pareto front. The time for NSGA-II corresponds to the
mean time for 200 generations except for the Motorola and RALIC instances where 100 generations are used. The NSGA-II mean time for each instance is used as cutoff for ADS. The
raw hypervolume value is given for the exact front and as a percentage of it for NSGA-II and ADS. Plots for the hypervolume are presented in Fig. 8.

Number of solutions Time (s) Hypervolume

Instance Exact NSGA-II ADS Exact NSGA-II Exact NSGA-II (%) ADS (%)

All Conv

nrp1 465 27 206 (29.6) 28 24 53.06 1,32�106 95.4 86.9
nrp2 4540 70 305 (1.67) 72 12,217 63.78 3,7�107 74.1 51.1
nrp3 6296 172 327 (1.80) 181 1748 69.29 5,85�107 81.0 96.7
nrp4 13,489 195 345 (1.77) 101 29,264 70.78 2,17�108 73.5 90.1
nrp5 2898 264 324 (1.60) 301 435 65.90 5,6�107 70.9 99.6
nrp-e1 10,331 309 348 (1.63) 201 3426 79.27 1,34�108 89.3 99.6
nrp-e2 10,572 300 345 (1.43) 131 5798 76.45 1,52�108 89.3 99.4
nrp-e3 8344 268 346 (1.67) 248 1726 75.93 8,95�107 90.2 99.6
nrp-e4 8303 257 339 (1.40) 224 2384 76.86 8,83�107 90.4 99.6
nrp-g1 9280 233 358 (1.83) 224 1534 78.80 1,09�108 90.6 99.4
nrp-g2 6393 209 335 (1.47) 201 1153 75.66 7,56�107 91.6 99.5
nrp-g3 8457 228 353 (1.60) 223 1222 79.24 9,64�107 91.1 99.4
nrp-g4 6171 201 341 (1.57) 202 786 76.53 5,97�107 92.3 99.5
nrp-m1 13,773 351 341 (1.50) 132 7562 81.09 2,25�108 86.9 99.3
nrp-m2 12,933 329 341 (1.40) 111 8625 78.08 1,96�108 88.8 99.3
nrp-m3 12,624 324 364 (1.60) 173 5091 82.00 1,93�108 86.3 99.5
nrp-m4 11,547 295 350 (1.40) 161 4949 78.93 1,49�108 88.4 99.4
Motorola 36 21 36.0 (34.1) 21 0.05 20.17 4,74�104 99.9 98.8
RALIC 1165 45 294 (234) 45 4.26 65.42 1,02�104 97.0 98.9

Fig. 8. Hypervolume for NSGA-II (boxplots) and the Adaptive Dichotomic
Scheme (crosses). Relevant numbers are presented in Table 2. Naturally, had the
exact method’s results been plotted, they would be at the 100% mark. Notice that
the x-axis scale for Motorola and RALIC instances is different from the other
instances.

10 N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13
The Anytime Dichotomic Scheme produces larger hypervolume
values than NSGA-II for all but the first two classic instances and
the Motorola instance. On Fig. 9, we can see that the 28 solutions
found by ADS for nrp1 are too few and too unevenly spread to
accurately describe the Pareto front. One shortcoming of ADS is
that it is only able to find extreme supported solutions and, possi-
bly, some non-extreme supported ones. In other words, if the
Pareto front has some concave regions, these will not be discov-
ered. The Conv column in Table 2 gives the number of solutions
that define the convex hull of the exact front, i.e, the extreme sup-
ported solutions. This represents a tiny fraction of the total number
of solutions, thereby being ADS’ limiting factor. However, for the
instances considered, it appears that, once roughly 100 or more
extreme solutions have been found, these can provide a fairly good
approximation of the Pareto front and result in large hypervolume
values.

The Anytime Dichotomic Scheme sometimes finds more solu-
tions than the number of solutions in the convex hull. Recall from
Section 6.1 that the convex hull is composed of the extreme sup-
ported solutions. When the Anytime Dichotomic Scheme ends
within its time limit, it will find all of these solutions and may also
find some non-extreme supported solutions (Section 6.4), which
explains the difference.

The Motorola instance is very small and has no constraints. We
can observe that these conditions are beneficial to the NSGA-II per-
formance leading to most of the actual Pareto being discovered and
thus to an almost perfect hypervolume. We should nevertheless
reiterate that small and simple instances are extremely easy for
the exact method leading it find the Pareto front extremely quickly.

To answer RQ2.2, we can first note that both approximate
methods presented here seem to give results of reasonable quality
within 90 s. However, there is no single method that could be
recommended in all cases. Considering the algorithms we tested,
the best choice is likely to follow the scenarios below:

� If the instance is small enough, the e-constraint method with an
ILP solver such as CPLEX can generate the exact front quickly.
� If the Pareto front is ‘‘convex enough’’ and the extreme sup-

ported points are relatively evenly distributed, both of which
depend largely on the user’s appreciation, the Adaptive
Dichotomic Scheme with an ILP solver can produce a good
approximation of the front. The solutions obtained are a subset
of the real Pareto front.

Fig. 9. Pairwise comparison of the Empirical Attainment Functions for the nrp1 and
nrp-e1 instances. The algorithms involved are indicated in the upper right corner.
Two solid lines bound the area containing solutions for the two compared
algorithms. The lower line connects the worst solutions and the upper line
connects the best solutions for both algorithms. When it is visible, the dashed line
corresponds to the median attainment surface of the algorithm. For the points, the
degree of shading corresponds to their probability as given by the bottom left
legend. We dispense from labeling the axes, representing the two objectives, since
we are interested in the shape of the fronts.

N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13 11
� If the Pareto front is non-convex, the seeded NSGA-II algorithm
provides a good approximation but the solutions obtained are
suboptimal for most of them.
� Considering that the combined runtime for the Adaptive
Dichotomic Scheme and seeded NSGA-II is below three minutes,
it seems that running both and combining their results would
be entirely reasonable.

8. Threats to validity

In this section we discuss the validity of the results [49] pre-
sented in this paper.

Construct validity refers to the degree a test measures what it
claims it is measuring. For the bi-objective case, metrics are
required to assess the quality of the fronts. These produce scalar
values that obviously cannot describe the entirety of a set of solu-
tions. Furthermore, the quality of a front is potentially subjective to
the decision maker’s appraisal. We have used plots to determine if
the fronts ‘‘looked’’ good enough.

Internal validity is concerned with the causal relationships that
are examined. This is typically the case when considering random-
ized algorithms. We investigate whether some algorithm provides
better results but then the randomness of the process plays a part
as well. This is mitigated by performing a number of independent
runs with the same (algorithm, instance) couple. In the present
study we chose to have 30 runs and used strict statistical proce-
dures to evaluate the results. In addition, we have not relied
entirely on p-values and also used boxplots to gauge the differ-
ences between the algorithms.

External validity deals with the extent to which it is possible to
generalize the results. We tested the different algorithms on
instances with specific characteristics which will obviously not
be necessarily the same for new instances. Nevertheless, the
instances used were relatively varied in terms of number of vari-
ables, number and type of constraints. We would expect to obtain
similar results on instances that do not entirely depart from these.
Another issue is that most of our instances are not completely real-
world instances. The two real-world instances are quite small and
can easily be solved exactly. Yet there are probably larger real-
world problem instances. The performance of the different algo-
rithms on the classic synthetic instances and the realistic part
real-world part synthetic instances provide a rough idea of what
one could expect on larger real-world instances.
9. Summary and conclusion

This paper examines the use of Integer Linear Programming to
solve the single and the bi-objective Next Release Problem. This
allows us to exactly solve large single objective instances very
quickly.

For the bi-objective case, we show that, in conjunction with the
e-constraint method, ILP can be used to generate the exact Pareto
fronts. On smaller instances this is very fast but can take several
hours for larger, more complex instances. Comparing the exact
method with NSGA-II and the Anytime Dichotomic Scheme, using
ILP, shows that these approximate methods can provide relatively
good approximations of the fronts. ADS is particularly useful on the
larger instances where it clearly outperforms NSGA-II. For
instances with non-convex fronts, which can be problematic for
ADS but less so for NSGA-II, we suggest pairing the results of both
approaches to obtain the best of both worlds.

Based on those observations, we conclude that ILP is a useful
approach for accurately solving the single and bi-objective NRP
and can be used within an approximate algorithm when time is
an issue.

Determining how well the different approaches presented will
scale to problems that are quite different to the ones studied is
beyond the scope of this paper. Nevertheless, using ILP in single

12 N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13
objective mode with several thousand more requirements is quite
conceivable. Beyond two objectives, the e-constraint method
remains usable since the same principle of progressively restricting
the search space may be carried out across several dimensions.
Obviously performance may be an issue. Going beyond three
objectives with ADS involves various geometrical challenges: in
two dimensions, line segments are considered; in three dimen-
sions, faces will need to be considered; but in n dimensions
ðn� 1Þ-polytopes need to be manipulated.

In the future, the seeding mechanism could be enhanced by
incorporating non-trivial initial solutions obtained through ILP.
An alternative hybrid approach could incorporate ILP within a
genetic algorithm in the context of a memetic algorithm. This
paper deals with data that we assume exact in order to produce
exact results. A logical progression of this work will be to investi-
gate the results’ sensitivity to potential changes in user-provided
data. A related concern is how to perform robust optimization
when dealing with instances that contain uncertain data, as is
often the case in the real world.
Acknowledgments

This work has been funded under the DAASE project, EPSRC
programme grant EP/J017515/1. The authors would like to thank
Dr. Y. Zhang from University College London (UCL) for kindly pro-
viding the real-world instances used in this paper and for discus-
sions on the NRP. IBM graciously provided an academic license
for the IBM ILOG CPLEX Optimizer.
References

[1] A. Bagnall, V. Rayward-Smith, I. Whittley, The next release problem, Inf. Softw.
Technol. 43 (14) (2001) 883–890, http://dx.doi.org/10.1016/S0950-
5849(01)00194-X.

[2] D. Greer, G. Ruhe, Software release planning: an evolutionary and iterative
approach, Inf. Softw. Technol. 46 (4) (2004) 243–253, http://dx.doi.org/
10.1016/j.infsof.2003.07.002.

[3] Y. Zhang, M. Harman, S.A. Mansouri, The multi-objective next release problem,
in: Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’07, ACM, New York, NY, USA, 2007, pp. 1129–1137,
http://dx.doi.org/10.1145/1276958.1277179.

[4] A.M. Pitangueira, R.S.P. Maciel, M.d.O. Barros, A.S. Andrade, A systematic
review of software requirements selection and prioritization using SBSE
approaches, in: G. Ruhe, Y. Zhang (Eds.), Search Based Software Engineering,
Lecture Notes in Computer Science, vol. 8084, Springer, Berlin Heidelberg,
2013, pp. 188–208.

[5] M. Feather, T. Menzies, Converging on the optimal attainment of requirements,
in: IEEE Joint International Conference on Requirements Engineering, 2002.
Proceedings, 2002, pp. 263–270. (http://dx.doi.org/10.1109/ICRE.2002.
1048537).

[6] G. Ruhe, D. Greer, Quantitative studies in software release planning under risk
and resource constraints, in: 2003 International Symposium on Empirical
Software Engineering, 2003. ISESE 2003. Proceedings, 2003, pp. 262–270.
(http://dx.doi.org/10.1109/ISESE.2003.1237987).

[7] G. Ruhe, A.N. The, Hybrid intelligence in software release planning, Int. J.
Hybrid Intell. Syst. 1 (1) (2004) 99–110.

[8] G. Ruhe, M. Saliu, The art and science of software release planning, IEEE Softw.
22 (6) (2005) 47–53, http://dx.doi.org/10.1109/MS.2005.164.

[9] G. Ruhe, Product Release Planning: Methods, Tools and Applications, CRC Press,
2011.

[10] H. Jiang, J. Zhang, J. Xuan, Z. Ren, Y. Hu, A hybrid ACO algorithm for the next
release problem, in: 2010 2nd International Conference on Software
Engineering and Data Mining (SEDM), 2010, pp. 166–171.

[11] J. Xuan, H. Jiang, Z. Ren, Z. Luo, Solving the large scale next release problem
with a backbone-based multilevel algorithm, IEEE Trans. Softw. Eng. 38 (5)
(2012) 1195–1212, http://dx.doi.org/10.1109/TSE.2011.92.

[12] J.T. de Souza, C.L.B. Maia, T. do Nascimento Ferreira, R.A.F. do Carmo, M.M.A.
Brasil, An ant colony optimization approach to the software release planning
with dependent requirements, in: M.B. Cohen, M.O. Cinnéide (Eds.), Search
Based Software Engineering, Lecture Notes in Computer Science, vol. 6959,
Springer, Berlin Heidelberg, 2011, pp. 142–157.

[13] Y. Zhang, M. Harman, S.L. Lim, Empirical evaluation of search based
requirements interaction management, Inf. Softw. Technol. 55 (1) (2013)
126–152, http://dx.doi.org/10.1016/j.infsof.2012.03.007.

[14] J. del Sagrado, I. del Aguila, F. Orellana, Ant colony optimization for the next
release problem: a comparative study, in: 2010 Second International
Symposium on Search Based Software Engineering (SSBSE), 2010, pp. 67–76.
(http://dx.doi.org/10.1109/SSBSE.2010.18).

[15] J.J. Durillo, Y. Zhang, E. Alba, M. Harman, A.J. Nebro, A study of the bi-objective
next release problem, Empirical Softw. Eng. 16 (1) (2011) 29–60, http://
dx.doi.org/10.1007/s10664-010-9147-3.

[16] A. Finkelstein, M. Harman, S.A. Mansouri, J. Ren, Y. Zhang, A search based
approach to fairness analysis in requirement assignments to aid negotiation,
mediation and decision making, Requir. Eng. 14 (4) (2009) 231–245, http://
dx.doi.org/10.1007/s00766-009-0075-y.

[17] M. Harman, J. Krinke, I. Medina-Bulo, F. Palomo-Lozano, J. Ren, S. Yoo, Exact
scalable sensitivity analysis for the next release problem, ACM Trans. Softw.
Eng. Methodol. 23 (2) (2014) 19:1–19:31, http://dx.doi.org/10.1145/2537853.

[18] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman, 1979.

[19] E. Balas, E. Zemel, An algorithm for large zero-one knapsack problems, Oper.
Res. 28 (5) (1980) 1130–1154.

[20] R. Beier, B. Vöcking, Random knapsack in expected polynomial time, in:
Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of
Computing, STOC ’03, ACM, New York, NY, USA, 2003, pp. 232–241, http://
dx.doi.org/10.1145/780542.780578.

[21] G.L. Nemhauser, Z. Ullmann, Discrete dynamic programming and capital
allocation, Manage. Sci. 15 (9) (1969) 494–505.

[22] J.M. van den Akker, S. Brinkkemper, G. Diepen, J. Versendaal, Determination of
the next release of a software product: an approach using integer linear
programming, in: Proceeding of the 11th International Workshop on
Requirements Engineering: Foundation for Software Quality REFSQ’05, 2005.

[23] F.G. Freitas, D.P. Coutinho, J.T. de Souza, Software next release planning
approach through exact optimization, Int. J. Comput. Appl. 22 (8) (2011) 1–8,
http://dx.doi.org/10.5120/2607-3636.

[24] M. van den Akker, S. Brinkkemper, G. Diepen, J. Versendaal, Software product
release planning through optimization and what-if analysis, Inf. Softw.
Technol. 50 (1–2) (2008) 101–111, http://dx.doi.org/10.1016/
j.infsof.2007.10.017.

[25] C. Li, J.M. van den Akker, S. Brinkkemper, G. Diepen, Integrated requirement
selection and scheduling for the release planning of a software product, in: P.
Sawyer, B. Paech, P. Heymans (Eds.), Requirements Engineering: Foundation
for Software Quality, Lecture Notes in Computer Science, vol. 4542, Springer,
Berlin Heidelberg, 2007, pp. 93–108.

[26] A. Lodi, Mixed integer programming computation, in: M. Jünger, T.M. Liebling,
D. Naddef, G.L. Nemhauser, W.R. Pulleyblank, G. Reinelt, G. Rinaldi, L.A.
Wolsey (Eds.), 50 Years of Integer Programming 1958–2008, Springer, Berlin
Heidelberg, 2010, pp. 619–645.

[27] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R.E. Bixby, E. Danna,
G. Gamrath, A.M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D.
Salvagnin, D.E. Steffy, K. Wolter, MIPLIB 2010, Math. Program. Comput. 3 (2)
(2011) 103–163, http://dx.doi.org/10.1007/s12532-011-0025-9.

[28] T.H. Cormen, C.E. Leiverson, R.L. Rivest, C. Stein, Introduction to Algorithms,
second ed., MIT Press, Cambridge, Mass, 2009.

[29] J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications,
Springer, 2008.

[30] S.L. Lim, A. Finkelstein, StakeRare: using social networks and collaborative
filtering for large-scale requirements elicitation, IEEE Trans. Softw. Eng. 38 (3)
(2012) 707–735, http://dx.doi.org/10.1109/TSE.2011.36.

[31] S.L. Lim, Social Networks and Collaborative Filtering for Large-Scale
Requirements Elicitation, Ph.D. Thesis, The University of New South Wales,
Sydney, Australia, August 2010.

[32] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons,
1998.

[33] M. Ehrgott, X. Gandibleux, Multiobjective combinatorial optimization –
theory, methodology, and applications, in: M. Ehrgott, X. Gandibleux (Eds.),
Multiple Criteria Optimization: State of the Art Annotated Bibliographic
Surveys, International Series in Operations Research & Management Science,
vol. 52, Springer, US, 2003, pp. 369–444.

[34] J. Dubois-Lacoste, M. López-Ibáñez, T. Stützle, Improving the anytime behavior
of two-phase local search, Ann. Math. Artif. Intell. 61 (2) (2011) 125–154,
http://dx.doi.org/10.1007/s10472-011-9235-0.

[35] Y.Y. Haimes, L.S. Lasdon, D.A. Wismer, On a bicriterion formulation of the
problems of integrated system identification and system optimization, IEEE
Trans. Syst. Man Cybern. 1 (3) (1971) 296.

[36] C.-L. Hwang, A.S.M. Masud, Multiple objective decision making — methods and
applications – a state-of-the-art survey, Lecture Notes in Economics and
Mathematical Systems, vol. 164, Springer-Verlag, Berlin, Heidelberg, 1979.

[37] L.N. Van Wassenhove, L.F. Gelders, Solving a bicriterion scheduling problem,
Eur. J. Oper. Res. 4 (1) (1980) 42–48.

[38] Y.P. Aneja, K.P.K. Nair, Bicriteria transportation problem, Manage. Sci. 25 (1)
(1979) 73–78, http://dx.doi.org/10.1287/mnsc.25.1.73.

[39] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast elitist multi-objective genetic
algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–-197, http://
dx.doi.org/10.1109/4235.996017.

[40] P.D. Surry, N.J. Radcliffe, Inoculation to initialise evolutionary search, in: T.C.
Fogarty (Ed.), Evolutionary Computing, Lecture Notes in Computer Science, vol.
1143, Springer, Berlin Heidelberg, 1996, pp. 269–285.

[41] A. Hernandez-Diaz, C.A. Coello Coello, F. Perez, R. Caballero, J. Molina, L.
Santana-Quintero, Seeding the initial population of a multi-objective
evolutionary algorithm using gradient-based information, in: IEEE Congress
on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on

http://dx.doi.org/10.1016/S0950-5849(01)00194-X
http://dx.doi.org/10.1016/S0950-5849(01)00194-X
http://dx.doi.org/10.1016/j.infsof.2003.07.002
http://dx.doi.org/10.1016/j.infsof.2003.07.002
http://dx.doi.org/10.1145/1276958.1277179
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0020
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0020
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0020
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0020
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0020
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0020
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0020
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0020
http://dx.doi.org/10.1109/ICRE.2002.1048537
http://dx.doi.org/10.1109/ICRE.2002.1048537
http://dx.doi.org/10.1109/ISESE.2003.1237987
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0035
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0035
http://dx.doi.org/10.1109/MS.2005.164
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0045
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0045
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0045
http://dx.doi.org/10.1109/TSE.2011.92
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0060
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0060
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0060
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0060
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0060
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0060
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0060
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0060
http://dx.doi.org/10.1016/j.infsof.2012.03.007
http://dx.doi.org/10.1109/SSBSE.2010.18
http://dx.doi.org/10.1007/s10664-010-9147-3
http://dx.doi.org/10.1007/s10664-010-9147-3
http://dx.doi.org/10.1007/s00766-009-0075-y
http://dx.doi.org/10.1007/s00766-009-0075-y
http://dx.doi.org/10.1145/2537853
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0090
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0090
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0090
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0095
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0095
http://dx.doi.org/10.1145/780542.780578
http://dx.doi.org/10.1145/780542.780578
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0105
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0105
http://dx.doi.org/10.5120/2607-3636
http://dx.doi.org/10.1016/j.infsof.2007.10.017
http://dx.doi.org/10.1016/j.infsof.2007.10.017
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0125
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0125
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0125
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0125
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0125
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0125
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0125
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0125
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0125
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0130
http://dx.doi.org/10.1007/s12532-011-0025-9
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0140
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0140
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0140
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0145
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0145
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0145
http://dx.doi.org/10.1109/TSE.2011.36
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0160
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0160
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0160
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0165
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0165
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0165
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0165
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0165
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0165
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0165
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0165
http://dx.doi.org/10.1007/s10472-011-9235-0
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0175
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0175
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0175
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0180
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0180
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0180
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0180
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0185
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0185
http://dx.doi.org/10.1287/mnsc.25.1.73
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0200
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0200
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0200
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0200
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0200

N. Veerapen et al. / Information and Software Technology 65 (2015) 1–13 13
Computational Intelligence), 2008, pp. 1617–1624. (http://dx.doi.org/10.1109/
CEC.2008.4631008).

[42] G. Fraser, A. Arcuri, The seed is strong: seeding strategies in search-based
software testing, in: 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation (ICST), 2012, pp. 121–130. (http://dx.doi.
org/10.1109/ICST.2012.92).

[43] A. Sayyad, J. Ingram, T. Menzies, H. Ammar, Scalable product line
configuration: a straw to break the camel’s back, in: 2013 IEEE/ACM 28th
International Conference on Automated Software Engineering (ASE), 2013, pp.
465–474. (http://dx.doi.org/10.1109/ASE.2013.6693104).

[44] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, V. da Fonseca, Performance
assessment of multiobjective optimizers: an analysis and review, IEEE Trans.
Evol. Comput. 7 (2) (2003) 117–132, http://dx.doi.org/10.1109/
TEVC.2003.810758.

[45] E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary algorithms
– a comparative case study, in: A.E. Eiben, T. Bäck, M. Schoenauer, H.-P.
Schwefel (Eds.), Parallel Problem Solving from Nature – PPSN V, Lecture Notes
in Computer Science, vol. 1498, Springer, Berlin Heidelberg, 1998, pp. 292–
301.

[46] R.R. Wilcox, Introduction to Robust Estimation and Hypothesis Testing, third
ed., Academic Press, 2012.

[47] A. Liefooghe, L. Jourdan, T. Legrand, J. Humeau, E.-G. Talbi, ParadisEO-MOEO: a
software framework for evolutionary multi-objective optimization, in: C.A.C.
Coello, C. Dhaenens, L. Jourdan (Eds.), Advances in Multi-Objective Nature
Inspired Computing, Studies in Computational Intelligence, vol. 272, Springer,
Berlin Heidelberg, 2010, pp. 87–117.

[48] M. López-Ibáñez, L. Paquete, T. Stützle, Exploratory analysis of stochastic local
search algorithms in biobjective optimization, in: T. Bartz-Beielstein, M.
Chiarandini, L. Paquete, M. Preuss (Eds.), Experimental Methods for the
Analysis of Optimization Algorithms, Springer, Berlin Heidelberg, 2010, pp.
209–222.

[49] P. Runeson, M. Höst, Guidelines for conducting and reporting case study
research in software engineering, Empirical Softw. Eng. 14 (2) (2009) 131–164,
http://dx.doi.org/10.1007/s10664-008-9102-8.

http://dx.doi.org/10.1109/CEC.2008.4631008
http://dx.doi.org/10.1109/CEC.2008.4631008
http://dx.doi.org/10.1109/ICST.2012.92
http://dx.doi.org/10.1109/ICST.2012.92
http://dx.doi.org/10.1109/ASE.2013.6693104
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.1109/TEVC.2003.810758
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0225
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0225
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0225
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0225
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0225
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0225
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0225
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0225
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0225
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0225
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0230
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0230
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0230
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0235
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0235
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0235
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0235
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0235
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0235
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0235
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0235
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0235
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0240
http://refhub.elsevier.com/S0950-5849(15)00065-8/h0240
http://dx.doi.org/10.1007/s10664-008-9102-8

	An Integer Linear Programming approach to the single and bi-objective Next Release Problem
	1 Introduction
	2 Related work
	3 The NRP with one objective
	3.1 General formulation
	3.2 Basic-stakeholder formulation
	3.3 Basic-requirement formulation
	3.4 Constraints
	3.5 NRP transformations
	3.5.1 Transformation 1
	3.5.2 Transformation 2
	3.5.3 Transformation 3

	4 Problem instances
	4.1 Classic instances
	4.2 Realistic instances
	4.3 Real-world instances
	4.3.1 Motorola
	4.3.2 UCL – RALIC

	5 Experiments on the 1-objective NRP
	5.1 Experimental setup
	5.2 Analysis of results

	6 The bi-objective NRP
	6.1 Multi-objective combinatorial optimization
	6.2 Which methods to generate Pareto fronts?
	6.3 The Epsilon-constraint method
	6.4 Anytime Dichotomic Scheme
	6.5 NSGA-II
	6.6 Performance metrics
	6.6.1 Number of exact solutions found
	6.6.2 Hypervolume

	7 Experiments on the 2-objective NRP
	7.1 Statistical methodology
	7.2 Experimental setup
	7.3 Answers to research questions

	8 Threats to validity
	9 Summary and conclusion
	Acknowledgments
	References

