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Abstract

This paper uses a knowledge discovery method, Principal Component Analysis (PCA), to gain a deeper
understanding of the structure of bin packing problems and how this relates to the performance of heuristic
approaches to solve them. The study considers six heuristics and their combination through an evolutionary
hyper-heuristic framework. A wide set of problem instances is considered, including one-dimensional and
two-dimensional regular and irregular problems. A number of problem features is considered, which is
reduced to the subset of nine features that more strongly relate with heuristic performance. PCA is used
to further reduce the dimensionality of the instance features and produce 2D maps. The performance of
the heuristics and hyper-heuristics is then super-imposed into these maps to visually reveal relationships
between problem features and heuristic behavior. Our analysis indicates that some instances are clearly
harder to solve than others for all the studied heuristics and hyper-heuristics. The PCA maps give a
valuable indication of the combination of features characterizing easy and hard to solve instances. We found
indeed correlations between instance features and heuristic performance. The so-called DJD heuristics are
able to best solve a large proportion of instances, but simpler and faster heuristics can outperform them in
some cases. In particular when solving 1D instances with low number of pieces, and, more surprisingly, when
solving some difficult 2D instances with small areas with low variability. This analysis can be generalized to
other problem domains where a set of features characterize instances and several problem solving heuristics
are available.

Keywords: heuristics, hyper-heuristics, bin packing problem, principal component analysis, algorithm
selection, knowledge discovery

1. Introduction

The problem of finding an arrangement of pieces to cut or pack inside larger objects is known as the
cutting and packing problem. This NP-hard problem is not only of academic interest; numerous applications
of its many variants can be found in practice. The one-dimensional (1D) and two-dimensional (2D) bin
packing problems (BPP) are particular cases of the cutting and packing problem, which consists of finding
an arrangement of items inside identical bins or objects such that the number of objects required to contain
all pieces is minimum. For the 2D BPP, the case of rectangular pieces is the most widely studied. However,
the irregular case is seen in a number of industries where parts with irregular shapes are cut from rectangular
materials. For example, in the shipbuilding industry, plate parts with free-form shapes for use in the inner
frameworks of ships are cut from rectangular steel plates. Also, in the apparel industry, parts of clothes
and shoes are cut from fabric or leather (Okano, 2002). Other direct applications include the optimization
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of layouts within the wood, plastics, glass, textile, metalware and paper industries (Burke et al., 2006; Yu
et al., 2009). In these industries, small improvements of the arrangement can result in a large saving of
material (Hu-yao and Yuan-jun, 2006).

Within the field of machine learning, the term meta-learning has been associated with the idea of, given
a new dataset, automatically selecting the best learning algorithm for the problem at hand. Meta-learning
ideas have traditionally been applied to learning algorithms to solve classification problems, where the goal
is to relate performance of algorithms to characteristics or measures of classification datasets. In Smith-
Miles (2008a) a framework is presented for the generalization of algorithm selection and meta-learning ideas
to algorithms focused on other tasks such as sorting, forecasting, constraint satisfaction and optimization.
Meta-learning ideas have been only little explored within optimization, although several approaches can be
found in the related area of constraint satisfaction (Leyton-Brown et al., 2002). In Smith-Miles (2008b),
meta-learning ideas are used for modeling the relationship between instance characteristics and algorithm
performance for the quadratic assignment problem. The study considered a set of 28 problem instances
and three metaheuristic algorithms. Both unsupervised and supervised neural network models were used to
learn the relationships in the meta-dataset and automate the algorithm selection process. The unsupervised
model, self-organization maps (Kohonen et al., 2001), was used to select the best algorithm by creating visual
explorations of the performance of different algorithms under various conditions describing the complexity
of the problem instances. Given the limited size of the data, this is a preliminary study, but it demonstrates
the relevance of meta-learning ideas to the optimization domain. In a later study, Smith-Miles et al. (2009)
found correlations between problem features and the effectiveness of scheduling heuristics using a large
collection of instances in a production scheduling problem. Other authors have followed up this type of
study in optimization (Kanda et al., 2011).

This paper proposes using Principal Component Analysis (PCA) for visualizing n-dimensional feature
data related to bin packing problems. The goal is to improve our understanding of the problem structure
and its relationship with heuristic performance. PCA is a mathematical algorithm that reduces the dimen-
sionality of the data while retaining most of the variation in the dataset. It accomplishes this reduction by
converting a set of observations into a set of values of uncorrelated variables called principal components.
This transformation is defined in such a way that the first principal component has as high a variance
as possible (that is, accounts for as much of the variability in the data as possible), and each succeeding
component in turn has the highest variance possible under the constraint that it be orthogonal to (uncor-
related with) the preceding components. Observations can then be plotted, making it possible to visually
assess similarities and differences between observations and determine whether observations can be grouped
(Ringner, 2008). In this study, PCA graphs are used to visually reveal the problem feature combinations
that are mostly related with an improved heuristic performance. The ultimate goal is to inform the design
of effective heuristics and hyper-heuristics (heuristic combination rules) for bin-packing.

A large testbed is employed with 1417 instances including 1D and 2D bin packing problems (rectan-
gular, convex and non-convex). Several types of bin packing problems are considered in order to enhance
the generality of the analysis. There is a recent trend to produce more generally applicable methodolo-
gies to solve combinatorial optimization problems. For example, Ochoa et al (2012a) proposed a software
framework HyFlex (Hyper-heuristic Flexible framework) for developing cross-domain search methodologies.
The framework features a common software interface for dealing with different combinatorial optimization
problems, and provides the algorithm components that are problem specific. In this way, the algorithm
designer does not require a detailed knowledge of the problem domains, and thus can concentrate his/her
efforts on designing adaptive general-purpose optimization (Burke et al., 2010a; Ochoa et al, 2012b). Six
problem domains are currently implemented: boolean satisfiability, one dimensional bin packing, permuta-
tion flow shop, personnel scheduling, vehicle routing and traveling salesman problems (Ochoa and Hyde,
2011). In another study, Burke et al. (2012) proposed a general packing methodology that includes 1D, 2D
(orthogonal) and 3D (orthogonal) bin packing and knapsack packing. They present a genetic programming
system to automatically generate a good quality heuristic for each instance among the different problems
considered.

Section 3 describes both the set of packing heuristics and the evolutionary hyper-heuristic framework
employed. Section 4 describes the PCA technique. The instances testbed and the set of features computed

2



for each instance are described in Section 5. The mapping of all instances through PCA, the core of our
analysis, is presented in Section 6.

2. The bin packing problem

The cutting and packing problem is among the earliest problems in the literature of operations research.
Wäscher et al. (2007) suggested a complete problem typology which is an extension of an earlier typology
(Dychoff, 1990). This paper considers the following three problems in Wäscher et al. typology: (a) the 1D
single bin size bin packing problem, (b) the 2D regular single bin size bin packing problem, and (c) the 2D
irregular single bin size bin packing problem. In the 1D BPP, there is an unlimited supply of bins, each
with capacity c > 0. A set of n items (each one of size si < c) is to be packed into the bins. The task is to
minimize the total number of bins used. In the 2D BPP, there is a set L = (a1, a2, . . . , an) of pieces to cut
or pack and an infinite set of identical rectangular larger elements (called objects). The problem consists
of finding an arrangement of pieces inside the objects such that the number of objects required to contain
all pieces is minimum. A feasible solution is an arrangement of pieces without overlaps and with no piece
outside the object limits. A problem instance or instance I = (L, x0, y0) consists of a list of elements L
and object dimensions x0 and y0. The term 2D regular BPP is mainly used when all pieces are rectangular
although circles and other regular shapes could also fall under this term (Wäscher et al., 2007). Otherwise,
the problem is called 2D irregular BPP. This study considers the offline BPP, in which the list of pieces to
be packed is static and given in advance.

Cheng et al. (1994) and Lodi et al. (2002) reviewed the literature on 1D and 2D bin packing problems,
respectively. Cheng et al. (1994) categorized the research related to the cutting and packing problem in
more than 400 books and articles. A variety of approaches have been applied to tackle the cutting and
packing problem in general, and the BPP in particular. For many real-world problems, an exhaustive search
for solutions is not a practical proposition. Hence, many heuristic approaches have been adopted. Heuristic
approaches for the 2D bin packing problem present at least two phases: first, the selection of the next piece
to be placed and the corresponding object to place it; and second, the actual placement of the selected
piece in a position inside the object. Some approaches consider a third phase as a local search mechanism.
For the 1D BPP, the second phase (placement procedure) is not necessary. Hyper-heuristic approaches for
the BPP have recently been developed (Burke et al., 2007b; Terashima-Maŕın et al., 2010; López-Camacho
et al., 2011; Burke et al., 2012).

3. Heuristics and Hyper-heuristics

This section describes both the base heuristics and the hyper-heuristic model used in this article.

3.1. Set of heuristics

The 1D and 2D bin packing problems share the same selection heuristics. Heuristics are rules to select
the next piece to be placed, and the corresponding object to place it. The following six heuristics were
considered:

1. First Fit Decreasing (FFD). Considers the open objects in the order they were initially opened,
and places the largest piece in the first object where it fits. If the piece does not fit in any open object,
a new object is opened to place it.

2. Filler. Sorts the pieces in order of decreasing area and packs as many pieces as possible within the
open object. When no single piece can be placed in the open object, a new object is opened to continue
packing the pieces from largest to smallest.

3. Best Fit Decreasing (BFD). Sorts the unplaced pieces in order of decreasing area and places the
next piece in the open object where it best fits, that is, in the object that leaves minimum waste. If
the piece does not fit in any open object, a new object is opened to place it.
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4. Djang and Finch with initial fullness of 1/4 (DJD1/4). Places pieces in an object, taking pieces
by decreasing size, until the object is at least one-forth full. Then, it initializes w = 0, a variable
indicating the allowed waste, and looks for combinations of one, two, or three pieces producing a waste
up to w. If any combination fails, it increases w by one twentieth of the object.

5. Djang and Finch with initial fullness of 1/3 (DJD1/3). Same as DJD1/4 when the object is full
until 1/3 before trying combinations of pieces.

6. Djang and Finch with initial fullness of 1/2 (DJD1/2). Same as DJD1/4 when the object is full
until 1/2 before trying combinations of pieces.

The first three heuristics place exactly 1 piece in each application. However, DJD1/4, DJD1/3 and
DJD1/2 may place 1, 2 or 3 pieces at a time. Since DJD heuristics try several combinations before placing
up to 3 pieces, these heuristics are more time consuming. For the 2D BPP, a placement heuristic is also
needed to find a solution. The heuristic called Constructive Approach with Maximum Adjacency
was employed for finding the actual placement of the selected piece in a position inside the object for all
the 2D instances. This heuristic is partially based on the approach suggested by Uday et al. (2001) and
adapted by Terashima-Maŕın et al. (2010). It explores several possible positions and the position with the
largest adjacency (i.e., the common boundary between its perimeter and the placed pieces and the object
edges) is selected as the position of the new piece. This heuristic was chosen because of its good performance
(López-Camacho et al., 2013). We employed only single-pass constructive heuristics for the offline BPP.

3.2. The hyper-heuristic method

A hyper-heuristic is a search method or learning mechanism for selecting or generating heuristics to
solve computational search problems (Burke et al., 2010b). A hyper-heuristic can be regarded as a high-
level approach that, given a particular problem instance and a number of low-level heuristics, selects and
applies an appropriate low-level (single) heuristic at each decision point (Ross, 2005). López-Camacho et al.
(2011) proposed a method that produces general hyper-heuristics for 1D and 2D BPP instances. A hyper-
heuristic in this context is a condition-action rule that relates each possible instance state (condition) with a
single heuristic to be applied (action). Once a hyper-heuristic is developed, it is able to solve any 1D or 2D
instance without further parameter tuning. The proposed method (López-Camacho et al., 2011) is based on
a genetic algorithm (GA) that evolves combinations of condition-action rules after going through a learning
process which includes training and testing phases (the evolutionary model is described by Terashima-Maŕın
et al. (2010)). Hyper-heuristics are sometimes described as heuristics that search over a space of heuristics.
The GA in that hyper-heuristic approach itself searches a space of particular ways of combining heuristics.
Thus, the reader might regard either the chromosomes themselves, or the whole search process itself, as
being hyper-heuristics. In this paper we choose to refer to the chromosomes as being hyper-heuristics.

The structure or characterization of 1D and 2D problem instances can be summarized by several features
in a numerical vector. This vector represents the condition according to which the hyper-heuristic chooses
the heuristic to apply. The numerical representation is applied to both unsolved instances (where no piece
has been placed yet) and partially solved instances (where some pieces have already been placed). Therefore,
for a given problem instance, the value of the numerical representation is computed in every intermediate
state until it is completely solved.

Each chromosome in the GA is composed of a series of blocks (see Figure 1). Each block contains
one representative vector R and also an associated choice of heuristic (López-Camacho et al., 2011). The
numerical vector R represents an instance state. The label is the last number, which identifies a single
heuristic from a predefined heuristic repository. A chromosome consists of a number of points in a simplified
state space, each point being labeled with a single heuristic. A chromosome solves a problem instance as
follows: given an instance and having computed its numerical representation P , find the closest block R
in the chromosome (with Euclidean distance) and apply the single heuristic recorded on the label. This
will place one or several items and will produce a new problem-state representation P ′. The process is
repeated until all pieces are placed and a complete solution has been constructed. The GA’s task is to find
a chromosome (a hyper-heuristic) that is capable of obtaining good solutions for a wide variety of problems.
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Figure 1: A chromosome is a set of blocks.

The problem instances are divided into training and testing sets. The GA is used with the training set
until a termination criterion is met and a general hyper-heuristic has been evolved. All instances in the
testing set are then solved with this hyper-heuristic. The quality of a solution, produced by either a single
heuristic or a hyper-heuristic, is based on the percentage of usage for each object and is given by:

Q =

∑N
i=1 U

2
i

N
. (1)

where N is the total number of objects used and Ui is the fractional utilization for each object i. Note that
0 < Q ≤ 1. The result of the best single heuristic for each instance is stored (BSH). The fitness function
of a chromosome is the average difference between the solution qualities obtained by the chromosome with
respect to the quality of the best single heuristic for every particular instance:

f =

∑m
k=1 (Qk −BSHk)

m
(2)

where BSHk is the best quality solution obtained by a single heuristic for the k-th assigned instance, Qk is
the quality solution obtained by the hyper-heuristic for the k-th assigned instance and m is the number of
instances solved so far. f is to be maximized. BSHk and Qk are computed using Equation 1.

4. Principal component analysis (PCA)

PCA is a useful multivariate statistical technique that has found application in fields such as face recogni-
tion and image compression. It is a common technique for finding patterns in high dimensional data (Smith,
2002). The general idea behind PCA has been rediscovered and renamed several times. For example, it is
called the Karhunen Loeve method in electrical engineering, empirical orthogonal functions in geophysical
areas, proper orthogonal decomposition in applied mathematics, and factor analysis in many other fields
(Zhao et al., 2004). Moreover, PCA is often used as a clustering technique (Luss and d’Aspremont, 2007;
Anzanello and Fogliatto, 2011).

PCA identifies new variables, called the principal components, which are linear combinations of the
original variables. For visualization purposes, the first two (or three) components are usually chosen as
new axis for plotting all observations. However, as much information will typically be lost in two or three-
dimensional visualizations, it is important to systematically try different combinations of components. Each
component can be interpreted as the direction which maximizes the variance of the observations when
projected onto the component. As the principal components are uncorrelated, they may represent different
aspects of the observations. The computation of the principal components for a dataset is based on linear
algebra operations. If data are standardized (with zero average and standard deviation of one unit), the
principal components are normalized eigenvectors of the covariance matrix of the instances and ordered
according to how much of the variation present in the data they contain.

As a brief example, let us consider a 2-variable dataset plotted in Figure 2, in which the four larger
points are special observations in some way. The vector showing the first principal component (PC1) goes
through the cloud of points in the direction where the points are most spread. The second and last principal
component (PC2) is orthogonal to the first. The projection of the observations over PC1 is shown in Figure
2b. The closeness of the four larger points is partially preserved in this dimensionality reduction from two
dimensions to one. For 3D data, the plane through the data where the points are most spread is built by
the first two principal components. This is the plane that minimizes the sum of squares of the orthogonal
distances from all points to the plane. A two-dimensional visualization of the 3D data is the orthogonal
projection of the points over the plane.
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Figure 2: An example of principal component analysis for a dataset of 2 variables. (a) PCA identifies the two orthogonal
directions (PC1 and PC2) along which the data have the largest spread. (b) Observations plotted in one dimension using their
projections onto PC1.

5. Experimental Setup

This section describes the set of instances and the problem features computed for each instance.

5.1. Testbed instances

Our experimental testbed comprises 1417 instances of different types, which are summarized in Table 1.
The one-dimensional problem instances (397 in total) were drawn from the literature as follows. The first
eight types in Table 1 (named DB1 and DB2) are taken from Scholl et al. (1997), where we chose one out of
every four instances in Scholl’s databases 1 and 2. Wäscher instances come from Wäscher and Gau (1996),
and the last four types are triplets from Falkenauer (1996) whose optimal solutions have exactly 3 items per
bin with zero waste. The testbed includes 540 two-dimensional instances with convex polygonal pieces that
were randomly generated by Terashima-Maŕın et al. (2010). It also contains 30 rectangular instances (type
Conv I from Table 1). The 480 2D instances containing some non-convex polygons were randomly produced
(López-Camacho et al., 2011). The optimum of the 480 instances has zero waste since all objects can be
completely filled. The first half of these instances were generated by splitting at least five pieces from each
instance from types Conv A, Conv B, Conv C, Conv F, Conv H, Conv L, Conv M, Conv O, respectively.
Convex pieces from these instances were randomly selected and were split in one convex and one non-convex
polygon. The other half of the non-convex instances was produced by creating new convex instances and
then splitting some of the pieces into non-convex polygons.

The experimental testbed exhibits a variety of feature values. For example, there are instances whose
pieces have an average size of 1/30 of the object, while others have huge pieces (averaging almost 2/3 of
object size). The optimum number of objects (or best known results) ranges from 2 to 373. Rectangularity
represents the proportion between the area of a piece and the area of a horizontal rectangle containing it.
Among the 2D instances, the average rectangularity varies between 0.35 and 1.0.

5.2. Meta-data for the bin packing problem

A critical part of the proposed analysis is the identification of suitable features that might explain
heuristic performance. The bin packing problem is a source of many possible features. Twenty three
numerical features were computed for each instance (see Table 2).

For 1D instances, the area is computed assuming that all items and bins have a fixed width (i.e their
width variance is zero), which means that their area is proportional to the height. For 2D instances, the
width variance is greater than zero. All 1D items and 2D rectangles have rectangularity of one. According
to Wang (1998), the degree of concavity is defined as the concaveness of the largest internal angle and it
can be computed by DC = B

A (see Figure 3). For 1D items and 2D convex polygons (including rectangles),
the degree of concavity is equal to one. The degree of concavity for a concave polygon is more than one.

The convex hull of a given set S of points in the plane, is the smallest convex polygon that contains all
of the points of S. The convex hull may be easily visualized by imagining an elastic band stretched open
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Table 1: Characteristics of the problem instances.
Number Number Average Piece Average Percen- Percenta- Average Average of Optimal

of of piece size rectan- tage of ge of or- of con- ratio area (number
instan- pieces size standard gularity right thogonal cavity / convex of
ces deviation angles sides degree hull objects)

1D problem instances
minimum 0.106 0.011 6
average 0.359 0.128 81.4
maximum 0.669 0.322 373

Average of instances per type
DB1 n1 45 50 0.485 0.199 26.6
DB1 n2 45 100 0.487 0.202 51.8
DB1 n3 45 200 0.489 0.203 102.7
DB1 n4 45 500 0.488 0.202 254
DB2 n1 30 50 0.199 0.060 10.5
DB2 n2 30 100 0.201 0.062 20.7
DB2 n3 30 200 0.199 0.061 40.2
DB2 n4 30 500 0.198 0.060 99.8
Wäscher 17 57 - 239 0.255 0.062 unknown
Trip60 20 60 0.333 0.077 20
Trip120 20 120 0.333 0.075 40
Trip249 20 249 0.333 0.075 83
Trip501 20 501 0.333 0.074 167
Convex 2D problem instances
minimum 0.033 0.014 0.35 11 34 1 1 2
average 0.154 0.100 0.68 42 65 1 1 5.94
maximum 0.354 0.280 1 100 100 1 1 15

Average of instances per type
Conv A 30 30 0.100 0.069 0.70 42 68 1 1 3
Conv B 30 30 0.333 0.162 0.87 67 84 1 1 10
Conv C 30 36 0.167 0.124 0.68 36 63 1 1 6
Conv D 30 60 0.050 0.036 0.57 23 51 1 1 3
Conv E 30 60 0.050 0.035 0.41 12 38 1 1 3
Conv F 30 30 0.067 0.050 0.59 29 57 1 1 2
Conv G 30 36 0.332 0.156 0.87 67 83 1 1 unknown
Conv H 30 36 0.333 0.158 0.86 67 84 1 1 12
Conv I 30 60 0.053 0.017 1 100 100 1 1 3
Conv J 30 60 0.067 0.034 0.83 68 83 1 1 4
Conv K 30 54 0.154 0.150 0.63 34 60 1 1 6
Conv L 30 30 0.100 0.075 0.51 23 50 1 1 3
Conv M 30 40 0.125 0.102 0.55 28 55 1 1 5
Conv N 30 60 0.033 0.024 0.62 32 60 1 1 2
Conv O 30 28 0.250 0.223 0.57 27 58 1 1 7
Conv P 30 56 0.143 0.173 0.49 17 43 1 1 8
Conv Q 30 60 0.250 0.053 0.89 51 76 1 1 15
Conv R 30 54 0.167 0.153 0.63 36 62 1 1 9
Non-convex 2D problem instances
minimum 0.044 0.036 0.38 6 27 1.004 0.834 2
average 0.160 0.135 0.59 26 50 1.130 0.930 5.9
maximum 0.333 0.314 0.84 60 74 1.560 0.987 12

Average of instances per type
Nconv A 30 35 - 50 0.074 0.062 0.60 28 52 1.12 0.935 3
Nconv B 30 40 - 52 0.214 0.158 0.69 38 58 1.22 0.923 10
Nconv C 30 42 - 60 0.123 0.111 0.59 25 49 1.11 0.939 6
Nconv F 30 35 - 45 0.051 0.045 0.53 20 46 1.10 0.940 2
Nconv H 30 42 - 60 0.245 0.163 0.73 46 64 1.15 0.944 12
Nconv L 30 35 - 45 0.076 0.065 0.47 16 41 1.10 0.941 3
Nconv M 30 45 - 58 0.099 0.092 0.50 20 46 1.07 0.956 5
Nconv O 30 33 - 43 0.186 0.190 0.51 19 46 1.10 0.940 7
Nconv S 30 17 - 20 0.106 0.097 0.45 10 33 1.16 0.918 2
Nconv T 30 30 - 40 0.293 0.239 0.60 26 51 1.24 0.916 10
Nconv U 30 20 - 33 0.197 0.161 0.55 17 44 1.19 0.888 5
Nconv V 30 15 - 18 0.306 0.236 0.62 27 54 1.09 0.936 5
Nconv W 30 24 - 28 0.155 0.097 0.78 53 69 1.12 0.931 4
Nconv X 30 25 - 39 0.097 0.072 0.66 32 53 1.17 0.895 3
Nconv Y 30 40 - 50 0.135 0.129 0.61 25 51 1.09 0.943 6
Nconv Z 30 60 0.200 0.234 0.54 19 45 1.09 0.940 12
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Table 2: Total set of 23 numerical features computed for the bin packing instances.

1. Number of pieces,

2. Mean number of sides for the instance pieces,

3. Variance of the number of sides of all instance pieces,

4. Mean area for the instance pieces (area for each piece is
measured as a fraction of the object total area),

5. Variance of the area of all instance pieces,

6. Mean height for the instance pieces (height for each piece
is measured as a fraction of the object height with the
difference between its maximum and minimum y coordi-
nates),

7. Variance of the height of all instance pieces,

8. Mean width for the instance pieces (width for each piece
is measured as a fraction of the object width with the
difference between its maximum and minimum x coordi-
nates),

9. Variance of the width of all instance pieces,

10. Mean rectangularity for the instance pieces,

11. Variance of the rectangularity of all instance pieces,

12. Mean ratio (largest side)/(smallest side) for the instance
pieces,

13. Variance of the ratio (largest side)/(smallest side) of all
instance pieces,

14. Percentage of large pieces (whose area is greater than 1/2
of the object total area),

15. Percentage of small pieces (whose area is less than or
equal to 1/4 of the object total area),

16. Percentage of right internal angles (respect to the total
angles of all pieces of the instance),

17. Percentage of vertical/horizontal sides (respect to the to-
tal sides of all pieces of the instance),

18. Percentage of high rectangularity pieces (items which
rectangularity is greater than 0.9),

19. Percentage of low rectangularity pieces (items which rect-
angularity is less than or equal to 0.5),

20. Percentage of non-convex pieces,

21. Average of the largest internal angle of all instance pieces,

22. Mean of the degree of concavity of the instance pieces
(explained below),

23. Average of the proportion (area of piece)/(area of convex
hull) for all instance pieces (explained below).

Figure 3: Degree of concavity.

to encompass the given object. When released, it will assume the shape of the required convex hull. The
convex hull of a given polygon is defined as the convex hull of all its vertices.

Twenty three is a large number of features. Therefore we consider the data-mining methodology proposed
in (López-Camacho et al., 2010) for selecting the most relevant features related to heuristic performance.
The methodology requires solving all instances with all heuristics in the repository H, calculating their
performances Q (using Equation 1). For a given instance, q is the performance vector for a set of heuristics
H, q = {q1, q2, · · · , qH}. These performance vectors are normalized using their norm: |q| =

√
q21 + . . .+ q2H .

The normalized performance q∗ is given by:

q∗ =
q

|q|
(3)

This normalization helps to reduce the effect of easy and hard instances. As further discussed in the
example below, an instance is considered easy to solve if it obtains high performance values, and hard to
solve if it obtains performance values.

Heuristics’ performance example. Let qa and qb be the performance vector for two given instances
evaluated with H = 6 heuristics. Let

qa =
[
0.906 0.906 1.000 0.918 0.918 0.922

]
with length |qa| = 2.275, and

qb =
[
0.604 0.614 0.613 0.616 0.619 0.617

]
with length |qb| = 1.503.

The third heuristic is the best for instance a as it gets the maximum performance (1.000), meaning that
all objects could be filled at 100%. For instance b, the fifth heuristic is the best (performance = 0.619),
followed by the sixth heuristic (performance = 0.617). In this example, all six heuristics obtain higher
performance in instance a compared to instance b, indicating that instance a is easier to solve than instance
b. The vectors of normalized performance are given by:
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Table 3: Features selected by a data-mining methodology as the most related to heuristic performance. These features were
selected out from a total of 23 characteristics (listed in Table 2).

Feature Description
1 Number of pieces.
2 Mean of the pieces area.
3 Variance of the area.
4 Mean of the rectangularity.
5 Variance of the rectangularity.
6 Mean of the height.
7 Variance of the width.
8 Percentage of huge pieces (whose area is above 1/2 of the object area).
9 Mean of degree of concavity.

q∗
a = qa

|qa| =
[
0.398 0.398 0.439 0.403 0.403 0.405

]
, and

q∗
b = qb

|qb| =
[
0.402 0.408 0.408 0.410 0.412 0.410

]
.

Vectors q∗
a and q∗

b still indicate the heuristics producing the best and worst results for a particular
instance, but without distinguishing which instance gets the higher absolute performance.

The normalized performance vectors are then used for clustering all instances, so that clusters group those
instances better solved by the same heuristics, regardless of their difficulty. Additional steps in the feature-
reduction methodology require pruning highly correlated features as they carry redundant information, and
applying statistical regressions methods to identify the features which better predict the instance clusters
(López-Camacho et al., 2010).

Upon applying this methodology (López-Camacho et al., 2010) to all the testbed instances (Table 1) and
the 23 features computed (Table 2), nine features were obtained (see Table 3), which are used for the PCA
discussed below. The objective of the analysis is to determine whether and how these nine features relate
with the performance of both the single heuristics and hyper-heuristics described in Section 3.

6. Results and Analysis

The PCA was conducted using the R package (R Development Core Team, 2011), considering 1417
problem instances of different types (Table 1) and 9 variables per instance (Table 3). All variables were
standardized (average of zero and standard deviation of 1) to ensure magnitude consistency. The analysis
reveals that the first two principal components explain 42.7% and 22.3% of the variance, respectively. That
is, 65% of the data variation is maintained by the plot in Figure 4a. The third principal component explains
11% of the dataset variance while the remaining 6 principal components explain jointly the remaining 24%.
We select the first two principal components to plot all the dataset (Figure 4a). The three graphs below
(Figure 4b.1, 4b.2 and 4b.3) show the location of the three main instance categories (1D, convex 2D and
non-convex 2D). The 540 2D convex instances include 30 rectangular cases, which are concentrated in the
circle of Figure 4b.2. In these plots, close points represent instances that are similar according to the 9
variables.

Each principal component is a linear combination of the 9 variables. The coefficients (called loadings)
for each of the two main principal components are shown in Table 4. Loadings with the largest absolute
value provide an interpretation for the new variables PC1 and PC2.

The PC1 and PC2 scores, representing the horizontal and vertical coordinates in Figure 4, are obtained
by multiplying the standardized variables by the respective vector of loadings. Let x be the vector of the
nine standardized variables for a given instance, and α1 and α2 be the vectors of loadings for PC1 and PC2,
respectively. For example, a 2D regular instance has

x′ =
[
−0.25 −1.12 −0.97 1.28 −1.3 −0.54 −0.95 −0.57 −0.5

]
. Then,

x′α1 =
[
−0.25 −1.12 · · · −0.5

] 
−0.34
−0.42
· · ·
0.19

 = −0.72
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Figure 4: (a) The whole set of 1417 instances plotted along PC1 (horizontal axis) and PC2 (vertical axis). (b.1) 397 1D
instances. (b.2) 540 convex 2D instances, including the 30 rectangular instances, which are concentrated in the place indicated
by the circle. (b.3) 480 irregular 2D instances (non-convex).

is the instance horizontal coordinate (PC1 score). The vertical coordinate is given by x′α2.
As indicated in Table 4, variables variance of rectangularity (0.42) and variance of width (0.34) have

a positive projection onto the first component. In consequence, the largest positive values of PC1 refer
to instances with high variability of shapes and pieces width. Variance of width measures variability only
for 2D instances, as 1D instances have a constant value for this metric (zero). Variables number of pieces
(−0.34), mean area (−0.42), mean rectangularity (−0.44) and percentage of huge pieces (−0.36) have a
negative projection onto the first component. In consequence, instances with many items and large regular
pieces have negative PC1 values. PC1, then, almost perfectly separates the 1D instances (plotted in the left
side, see Figure 4b.1) from the 2D instances (plotted in the right side, see Figures 4b.2 and 4b.3).

On the second principal component, PC2, variable variance of area (−0.63) has the highest negative
projection. This variable measures variability in item sizes for both 1D and 2D instances. Since the loading
is negative (−0.63), the greater the variability the lower the PC2 score. Therefore, instances with huge
variety of items sizes tend to be plotted lower in Figure 4a. Variables mean area (−0.34), variance of

Table 4: Loadings for the two main principal components of the data. Features 1 through 9 are those referred in Table 3.
Figures with largest absolute values are in bold font.

1 2 3 4 5 6 7 8 9
Feature Number Mean Variance Mean rec- Variance of Mean Variance % of Concavity

of pieces area of area tangularity rectangularity height of width huge pieces degree
PC1 -0.34 -0.42 -0.15 -0.44 0.42 0.18 0.34 -0.36 0.19
PC2 0.15 -0.34 -0.63 0.17 -0.13 -0.13 -0.42 -0.42 -0.22
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width (−0.42) and percentage of huge pieces (−0.42) also have a negative projection onto PC2. Therefore,
instances with the largest items tend to be plotted lower in the plots of Figure 4. All 2D regular instances
have high positive values for PC2, thus, they are plotted in the upper part of the plot (inside the circle in
Figure 4b.2).

6.1. Distribution of features across the PCA map

The nine plots in Figure 5 illustrate the distribution of the selected nine features’ values on the PCA
map, respectively. The darker the color the higher the feature value. Each section of the plot represents a
different combination of features. For example, the coloring patterns across the plots in Figure 5 indicate
that the bottom-left portion contain instances with high number of pieces, high mean area, high variance of
area, high mean rectangularity, and low variance of rectangularity.
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Figure 5: Distribution of feature values across the PCA map for the nine selected instance features (the darker the color the
higher the value). The horizontal axis represents PC1 scores, while the vertical axis PC2 scores.

6.2. Distribution of heuristic performance across the PCA map

The six plots in Figure 6 illustrate the distribution of the six heuristics performance values (calculated
with Equation 1) on the PCA map, respectively. Again, the darker the color, the higher the performance
value and thus the easier to solve the instance. The color pattern is very similar across the six plots,
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indicating that instance difficulty is almost independent from the heuristic used to solve it. The left portion
of the plots, which represents the 1D instances, contain the higher proportion of darker (easy to solve)
instances. The hardest to solve instances (lighter dots) are located at the top-right portion of the plots.
These instances have high PC1 and PC2 scores. According to Figure 5, this portion of the plots represents
instances with low number of pieces which are small in size, with reduced variance of area, low value but
high variance of rectangularity, minimum percentage of huge pieces and high average of concavity degree.
In other words, the hardest to solve instances for the six heuristics studied are those with a low number of
small and highly irregular shapes. More specialized heuristics should be considered when solving this type
of instances.

Figure 7 is analogous to Figure 6 but reports the normalized performances (calculated with Equation 3).
Darker points in this case correspond to instances that are better solved by a particular heuristic compared
to the rest. Different color patterns can now be found across the six subplots. For example, heuristics
DJD1/4 and DJD1/3 show low performance for instances in the bottom-left portion of the map (very light
dots), when compared with the performance of the other four heuristics. This suggests that instances with
low PC1 and PC2 scores are not especially suited for heuristics DJD1/4 and DJD1/3. According to Figure
5, low PC1 and PC2 values characterize instances with many large and regular pieces from the complete
dataset. In general, these instances are better solved by simpler and faster heuristics such as FFD, Filler,
BFD and even DJD1/2 (which is faster than DJD1/4 and DJD1/3).
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Figure 6: Distribution of performance values across the PCA map for the six heuristics considered (the darker the color the
higher the value). The horizontal axis represents PC1 scores, while the vertical axis PC2 scores. Similar color patterns are
observed across all heuristics, suggesting that instance difficulty has a high degree of independence from the heuristic used to
solve it.

6.3. Normalized performance clustering
All testbed instances were grouped into 8 clusters according to the vectors of normalized performance.

The k-means algorithm was used as it minimizes the variance within instances in each cluster, even though
the number of observations in each cluster is unbalanced. The number of clusters was chosen according to
the Hartigan criteria, described by Chiang and Mirkin (2007). Broadly speaking, instances with the same
best and worst performing heuristic appear in the same cluster.
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Figure 7: Distribution of normalized performance values across the PCA map for the six heuristics considered (the darker
the color the higher the value). The horizontal axis represents PC1 scores, while the vertical axis PC2 scores. Different color
patterns are now observed across all heuristics, suggesting that some heuristics are better suited to solve some types of instances.

Figure 8 illustrates the 8 instance clusters plotted against the PCA map. The first cluster (top left plot
in Figure 8) is the most populated, and the remaining clusters concentrate a particular portion of instances.
It is worth emphasizing that clusters were built considering heuristic performance only, while the PCA
considered only instance features. However, for most clusters, instances are concentrated in a particular
portion of the PCA map. As an example, only the first cluster (top left plot in Figure 8) contains instances
belonging to the bottom-left PCA map (Figure 4a). This is a confirmation that instance features are indeed
correlated with heuristic performance.

6.4. Identifying the best-performing heuristic

If the number of objects is considered as the heuristic performance metric, our study indicates that in
96% of the instances more than one heuristic will be the best performing. The quality metric expressed
by Equation 1 is sometimes preferred (Terashima-Maŕın et al., 2010; Burke et al., 2007a; Falkenauer and
Delchambre, 1992), as it distinguishes solutions with the same number of objects, rewarding solutions with
filled or nearly filled objects. This is relevant because empty space concentrated in one or few objects is more
likely to be useful later. With this metric, our study still produces more than one best performing heuristic
(ties) in 58% of the instances. A more detailed analysis revealed that most of these ties occur among either
the three 1-piece heuristics (FFD, Filler or BFD) or the three DJD heuristics. Therefore, we divided the
heuristics into two classes: 1-piece and DJD. Figure 9 illustrates the distribution of the best-performing
heuristic classes (1-piece in light color, DJD in dark color) on the PCA map. For this analysis, we discarded
16.4% of the instances as they were best solved by both a 1-piece and a DJD heuristic. We found that 15.2%
of the instances are best solved by a 1-piece heuristic, while DJD heuristics are the best for the remaining
68.3% cases, indicating the effectiveness of this latter class of heuristics.

Some patterns can be observed in Figure 9. The oval encloses a group of light points, i.e instances
which are best solved by 1-piece heuristics. These are 1D instances (see Figure 4b.1). However, not all 1D
instances are best solved by 1-piece heuristics (note that the oval covers the bottom-right portion of the 1D
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Figure 8: Clustering of instances according to heuristic normalized performance (8 clusters) and their distribution on the PCA
map. The horizontal axis represents PC1 scores, while the vertical axis PC2 scores.

instances, which are in the left the PCA map). For a low and intermediate PC2 values, 1D instances with
high PC1 scores (compared to other 1D instances) are best solved by 1-piece heuristics. High PC1 values
are related to reduced number of items. Therefore, many of the 1D instances with fewer items, compared to
other 1D instances, are best solved by 1-piece heuristics. The instances in the oval have an average number
of pieces of 107, less than the half of the 1D average, but this number is higher than the overall average for
our dataset.

Another concentration of light points (and thus instances best solved by the 1-piece heuristics) can be
observed on the top-right of the plot (enclosed by the rectangle in Figure 9). This portion corresponds to
2D instances, and includes a mixture of convex and non-convex instances. These instances, however, share
some features. Specifically, they have small pieces with low variance of area (this can be seen in Figure
5, and was verified by inspection). The non-convex instances in the rectangle have a low concavity degree
compared to the rest of non-convex instances. Both convex and non-convex instances on the rectangle tend
to have a smaller mean area. According to Figure 6, these instances in the rectangle are among the hardest
to solve (the studied heuristics produced the lowest performance). It is therefore, surprising, that many of
these instances are best solved by the simplest and fastest 1-piece heuristics (FFD, Filler or BFD).

6.5. Hyper-heuristic performance

Twenty hyper-heuristics were generated with different training and testing sets using the evolutionary
framework described in Section 3.2. The best hyper-heuristic for each instance (that solving the instance
with the least number of objects) was selected for the analysis. Figure 10 indicates with letters b (for
best) and w (for worse) those instances whose best hyper-heuristic obtained a different performance when
compared to the best performing simple heuristic. These cases seem to be concentrated on particular sections
of the PCA map. For the 1D, however, the best and worst cases are mixed in these sections. Therefore, this
particular analysis seems to identify different hyper-heuristic performances but does not clearly distinguish
between solving cases with fewer or more objects. The rectangle in Figure 10 encloses fifteen b’s and three
w ’s that corresponds to 1D instances. These have the highest PC1 and PC2 values for 1D instances (see
Figure 4b.1), which correlates with instances with both small value and variation of items areas. Therefore,
the rectangular region encloses instances with small items of similar sizes. These are likely to be best solved
by hyper-heuristics. A closer analysis revealed that 10 of the b’s in the rectangle represent instances with
501 items whose optimum has 3 items per bin (type Trip501 in Table 1). Hyper-heuristics, then, found a
better result for half of the Trip501 instances. The other 1D cases in the rectangle are instances of DB2
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Figure 9: Identifying the best-performing heuristic. Light grey dots represent instances better solved by 1-piece heuristics
(FFD, Filler or BFD), while dark dots represent instances better solved by the DJD heuristics.

and Trip249, all with smaller items than the 1D average. The b’s and w ’s on the right portion of the plot
correspond to 2D convex and non-convex instances. Most of them with PC2 values close to 0 (inside the
circle).

For some instances, hyper-heuristics achieve better results than the best single heuristic for that instance.
These cases support the use of hyper-heuristics, since for some applications, any reduction in material is
extremely valuable. For most instances, the evolved hyper-heuristic produces the same quality than the
best single heuristic. This is also beneficial, as the choice of best heuristic varies from instance to instance,
and this is not known in advance. Using a hyper-heuristic may be, therefore, preferable than selecting a
single heuristic for all problem instances (López-Camacho et al., 2011). After the hyper-heuristic is evolved,
the computational cost of applying a generated hyper-heuristic to a problem is lower than the time used in
applying all the heuristics and selecting the best result (Terashima-Maŕın et al., 2010).

7. Conclusions

This analysis constitutes a first step into the multivariate nature of the bin packing problem structure.
PCA is applied for the first time to further compress the instance feature space and understand the impact of
problem structure on the performance of packing heuristics and hyper-heuristics. A large testbed of instances
of different types is considered, which makes the analysis reliable and robust. The dataset contains both one-
dimensional and two-dimensional regular and irregular problems; and encompasses a wide range of feature
values.

Our analysis indicates that some instances are clearly harder to solve than others for all the studied
heuristics and hyper-heuristics. The PCA maps give a valuable indication of the combination of features
characterizing easy and hard to solve instances. The hardest instances are those with a small number of
both huge and small pieces, a low value but high variance in rectangularity, and high concavity degree
(i.e instances with some small and highly irregular shapes). However, more than one heuristic can equally
solve most of the instances. The DJD heuristics are able to best solve most of the instances (around 70%),
but simpler and faster 1-piece heuristics can outperform them in some cases. In particular, our analysis
revealed that DJD heuristics are not well suited for solving 1D instances with low and moderate number
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Figure 10: Visualizing the instances that were solved differently by hyper-heuristics. 28 instances were solved with fewer objects
by the best hyper-heuristic (b letters), while in 9 instances, the best hyper-heuristic could reach the best single heuristic result
(w letters). For the remaining instances, the best hyper-heuristic obtained the same number of objects than the best performing
heuristic.

of pieces. More surprisingly, DJD heuristics are also outperformed by simpler and faster 1-piece heuristics
when solving some difficult convex and non-convex 2D instances with small areas with low variability.

The bin packing problem has a complex structure. Our analysis suggests that there are indeed correla-
tions between instance features and heuristic performance. However, few simple rules can be formulated. It
is necessary to consider feature combinations and their interactions in order to have a clearer insight into
performance prediction. This contrasts with other more structured problems such as constraint satisfaction,
where a couple of well selected features (density and tightness) is enough to predict which of two heuristics
will be the best (Ortiz-Bayliss et al., 2010).

It is important to carefully choose the set of features to describe the problem structure. They should
be able to both characterize problem instances and differentiate algorithm performance (Smith-Miles et al.,
2009). Furthermore, features must avoid redundancy and show different aspects of the problem structure.
For example, in the bin packing problem, it is possible to have different features related to the size of the
items, such as average item area, percentage of small items, etc. Future work will characterize BPP with
different sets of features and employ different BPP datasets. This analysis can be generalized to other
problem domains where a set of features characterizes instances, and several heuristics are available to solve
the problem.
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