
On Recombination and Optimal Mutation Rates
Gabriela Ochoa, Inman Harvey, Hilary BuxtonCentre for Computational Neuroscience and RoboticsSchool of Cognitive and Computing SciencesThe University of SussexFalmer, Brighton BN1 9QH, UKAbstractWe present empirical evidence, from a widerange of problem characteristics, suggestingthat the value of optimal mutation rates inGAs di�ers according to whether recombi-nation is used or not. Without recombina-tion, a regime that starts with a high muta-tion rate, decreasing it towards the end of therun, appears to be optimal. With recombina-tion, however, the optimal strategy proves tobe a constant, su�ciently low mutation rate.Moreover, when recombination is used, thechoice of an excessively high mutation ratemight degrade the algorithm's performanceconsiderably. These results are supported byrecent knowledge from the �eld of molecularevolution about the e�ect of recombinationon the so called error thresholds. We con-clude by proposing a novel argument favor-ing the use of recombination in GAs. Thisargument, which we call the dual-role of re-combination, sheds new light on the role ofthis operator in genetic search.1 INTRODUCTIONIt has long been acknowledged that a GA's perfor-mance depends heavily on the choice of its main pa-rameters: mutation rate, crossover rate, and popula-tion size. These parameters typically interact with oneanother in a nonlinear fashion, so they cannot be in-dependently optimized. Optimal parameter settingshave been the subject of numerous studies in the GAliterature, but there is no conclusive agreement onwhat is best; most people use what has worked wellin previously reported cases.Particular emphasis has been placed on �nding opti-

mal mutation rates [Fogarty, 1989, M�uhlenbein, 1992,Hesser and M�anner, 1991, B�ack, 1993]. Most theoret-ical studies aimed at �nding optimal mutation values,however, neglect recombination in order to simplifythe analysis [B�ack, 1993, Hesser and M�anner, 1991,M�uhlenbein, 1992]. On the other hand, classical em-pirical studies aimed at �nding optimal parameter set-tings, use a �xed set of test problems [DeJong, 1975,Grefenstette, 1986, Scha�er et al., 1989]. One weak-ness with these classical studies is that their resultsmay not generalize beyond the test problems used.According to Spears [Spears, 1998] there are two waysto strengthen the results obtained from empirical stud-ies. The �rst is to remove the opportunity to hand-tune algorithms to a particular set of problems. Thesecond is to always show results over the running timeof a GA (see section 3). In this paper we use thesemethodological guidelines to show that the choice of anoptimal mutation scheme depends on whether recom-bination is used or not. For a GA without recombina-tion, the optimal strategy appears to be the generallyacknowledged heuristic of starting with a relativelyhigh mutation rate, reducing it over the course of a sin-gle run [Fogarty, 1989, M�uhlenbein, 1992, B�ack, 1991,B�ack, 1993]. However, when recombination is used, a�xed, su�ciently low mutation rate proves to be theoptimal strategy. Moreover, with recombination, theGA performance is more sensitive to the use of an in-appropriately high mutation rate.These are more than just empirical results: theoreticalknowledge from the �eld of molecular evolution sup-port them. The argument, explained in more detail insection 2, is that the notion of optimal mutation ratesis related to the so called \error thresholds". And thusthe e�ects of recombination on error thresholds are re-ected on optimal mutation rates.This explanation and further insight, lead us toproposing a new argument favoring the use of recom-



bination in Evolutionary Algorithms (EAs). This ar-gument, which we call the dual-role of recombination,help us in understanding the role of this complex op-eration in EAs (see section 5).In the reminder of the paper we summarize the knowl-edge from molecular evolution relevant to our argu-ment, we describe the empirical methodology used, wepresent the experimental results obtained, and we dis-cuss the insight gained.2 ERROR THRESHOLDSThe error threshold | a notion from molecular evo-lution | is a critical mutation rate beyond whichstructures obtained by the evolutionary process are de-stroyed more frequently than selection can reproducethem. With mutation rates above this critical value,an optimal solution would not be stable in the pop-ulation, i.e., the probability that the population losesthese structures is not negligible.The notion of error threshold, then, seems to be in-tuitively related to the idea of an optimal balance be-tween exploitation and exploration in genetic search.Too low a mutation rate implies too little exploration;in the limit of zero mutation, successive generations ofselection remove all variety from the population, andonce the population has converged to a single point ingenotype space all further exploration ceases. On theother hand, clearly, mutation rates can be too exces-sive; in the limit where mutation places a randomlychosen allele at every locus on an o�spring genotype,then the evolutionary process has degenerated intorandom search with no exploitation of the informationacquired in preceding generations.Any optimal mutation rate must lie between these twoextremes, but its precise position will depend on anumber of factors including, in particular, the struc-ture of the �tness landscape under consideration. Itcan, however, be hypothesized that a mutation ratejust below the error threshold is the optimal mutationrate for the landscape under study. The close corre-spondence between error thresholds and optimal mu-tation rates may be assessed empirically. Given thatmutation rates should not be above error thresholds,it cannot be immediately assumed that optimal mu-tation rates are related to this upper bound; however,experiments where the error threshold and the opti-mal mutation rates could be assessed independentlyshowed that there was such a relationship. These ex-periments will be reported in detail elsewhere.Some biological evidence supports the relationship be-tween error thresholds and optimal mutation rates.

Eigen and Schuster [Eigen and Schuster, 1979] havepointed out that viruses | which are very e�cientlyevolving entities | live within and close to the er-ror thresholds given by the known rates of nucleotidemutations. This correspondence has also been no-ticed before in the GA community: Hesser and Man-ner [Hesser and M�anner, 1991], devised an heuristicformula for optimal setting of mutation rates in-spired by Nowak and Schuster's work on error thresh-olds [Nowak and Schuster, 1989]. Moreover, Kau�-man [Kau�man, 1993] (p. 107), talking about an opti-mum mutation rate, suggests that \That rate is likelyto occur when populations are just beginning to meltfrom peaks".2.1 RECOMBINATION AND ERRORTHRESHOLDSA relatively recent work from the evolutionary biol-ogy literature [Boerlijst et al., 1996], reports interest-ing results about the role of recombination on evolvingpopulation of viruses. In particular, they study the ef-fect of recombination on the magnitude of the errorthreshold. A mathematical model with in�nite popu-lations was used. Their results may be summarized asfollows: for low mutation rates, recombination can fo-cus the population around a �tness optimum and thusenhance overall �tness. For high mutation rates, how-ever, recombination can push the population over theerror threshold, and therefore cause a loss of geneticinformation. In other words, recombination shifts theerror threshold to lower mutation rates, and, in addi-tion, makes this transition sharper. The explanationgiven by the authors to this phenomenon is as follows[Boerlijst et al., 1996] (p. 1581):Near the error threshold, without recom-bination, the �ttest strain only makes upa small percentage of the total population[Eigen and Schuster, 1979]. Under such con-ditions recombination acts as a diverging op-eration, driving the population beyond theerror threshold. There can be selection forrecombination if �tness is correlated and ifthe mutation rate is su�ciently small.In [Ochoa and Harvey, 1998] we reproduce, using GAs| and hence �nite populations | some of the resultsobtained by Boerlijst et al. GA simulation results werestrikingly similar qualitatively to those obtained ana-lytically. Thus, the main results described above forin�nite populations also hold for an evolving (�nite)population of bit-strings using a standard GA.



3 METHODSRecently, De Jong, Spears, and Potter proposed anew empirical methodology for studying the behaviourof EAs [DeJong et al., 1997, Spears, 1998]. This ap-proach employs the so called problem generators. Aproblem generator is an abstract model capable of pro-ducing randomly generated problems on demand. Theadvantages of using problem generators are two-fold.First, they allow us to report results over a randomlygenerated set of problems rather than a few hand-chosen examples, increasing in this way the predictivepower of the results for the problem class as a whole.Secondly, problem generators are quite easy to param-eterize, allowing the design of controlled experimentswhere particular features of a class of problems can bevaried systematically to study the e�ects on the EAbehavior.For our study, we adopted this methodology andselected two problems generators: (i) the NK-Landscape generator (section 3.1), and (ii) the Mul-timodal generator (section 3.2).3.1 THE NK-LANDSCAPE GENERATORKau�man [Kau�man, 1989], describes a family of �t-ness landscapes determined by two parameters: N andK. The points of the NK-Landscape are bit stringsof length N . The parameter K represents the degreeof epistatic interaction between the bits, that is, thenumber of linkages each locus has to other loci in thesame string. To compute the �tness of the entire strings, the �tness contribution from each locus is averagedas follows:f(s) = 1N PNi=1 f(locusi),where the �tness contribution of each locus, f(locusi),is determined by using the (binary) value of gene i to-gether with values of theK interacting loci as an indexinto a table Ti of size 2k+1 of uniformly distributedrandom numbers over [0:0; 1:0]. For a given locus i,the set of K linked loci may be randomly selected orconsist of the immediately adjacent loci.An interesting property of the NK-landscapes is thatthe ruggedness of the �tness landscape can be tunedby changing the parameter K. From a practical per-spective, however, the NK-landscape presents somedi�culties (in particular the large space required tostore the tables to compute the �tness) which restrictits use to relative small models.

3.2 THE MULTIMODAL GENERATORThe multimodal generator was proposed recently byDe Jong, Potter, and Spears [DeJong et al., 1997].The idea is to generate P random N -bit strings, whichrepresent the location of the P peaks in the space. Toevaluate any bit string s, �rst locate the nearest peak(in Hamming space). Then the �tness of s is the num-ber of bits s has in common with that nearest peak,divided by N .f(s) = 1NmaxPi=1(N �Hamming(s; Peaki))Problems with a small/large number of peaks areweakly/strongly epistatic. The multimodal generatoris very e�cient in terms of memory storage (only theP peaks need to be stored). However, the computationof �tness becomes very slow as the number of peaks isincreased.4 EXPERIMENTAL RESULTSFollowing the guidelines of De Jong et al., theexperimental methodology used was as follows[DeJong et al., 1997]: for each of the selected settingsof the problem generator parameters, 20 problemswere randomly generated. The GA was run once perproblem, and the results were averaged over those 20problems.For all the experiments, a standard generational GAwith �tness proportional selection was employed. Pop-ulation size and chromosome length were set to 100.Two-point crossover and the standard bit mutationoperation were used. For the GA with recombination,a crossover rate of 0.6 was selected. These are quitetypical settings for GAs. Experiments were run for amaximum of 1000 generations.To see how the mutation rate value a�ects the GA per-formance with and without recombination, we selectedthree mutation rates (0.001, 0.005, and 0.01), and ranthe algorithm in two modes. In the �rst mode (GA)both mutation and recombination were used. In thesecond mode (GA-m) only mutation was used. Table1 summarizes the GA parameter setting used for theexperiments.The performance metric we monitored is well-known {namely \best-so-far" curves that plot the �tness of thebest individual that has been seen thus far by genera-tion n. Each curve plots the average best-so-far valuesof 20 runs. For the sake of clarity, the standard devia-tions for these curves were not plotted. However, theyall showed to be quite low | in the range of [0.01,0.02].



Chromosome length 100Population size 100Crossover rate 0.6 (GA), 0.0 (GA-m)Mutation rate 0.001, 0.005, 0.01Generations 1000No. of Problems 20Table 1: GA parameters4.1 NK EXPERIMENTS 1Given that we selected relatively long chromosomes,the storage requirements for the NK tables make itdi�cult to explore large values of K. Thus, we testedNK landscapes for K = 0, and K = 2. For more com-plex landscapes we relied on the multimodal problemgenerator results (section 4.2). The NK model withK = 0, produces a very trivial \Mount Fuji" land-scape. We used it, however, as a baseline comparisonbefore moving on to more interesting landscapes.Figures 1 and 2 illustrate results for GA and GA-m onthe NK landscape with K equals zero.
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Figure 1: Average best-so-far curves. GA with distinctmutation rates on the NK landscape (K = 0)Figures 3 and 4 show the average best-so-far curvesfor a level of epistasis K of two, with and withoutrecombination.When recombination is used, it can be clearly noticedthat the lowest mutation rate explored (0:001) pro-1For the NK experiments, we used the freeware imple-mentation due to M. Potter
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Figure 2: Average best-so-far curves. GA-m with dis-tinct mutation rates on the NK landscape (K = 0)
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Figure 3: Average best-so-far curves. GA with distinctmutation rates on the NK landscape (K = 2)duces the best results over the entire algorithm run(Figures 1 and 3). This is more evident for the moreepistatic landscape | when K equals two (Figure 3).On the other hand, for the GA without recombination(GA-m), the higher mutation rates (0:005 and 0:01)speed up noticeably the search process at the begin-ning and intermediate stages of the search (Figures 2and 4), however, by the �nal stages of the run the low-est mutation rate curve (0:001) approaches the other
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Figure 4: Average best-so-far curves. GA-m with dis-tinct mutation rates on the NK landscape (K = 2)two, and �nally reaches the highest �tness values.4.2 MULTIMODAL GENERATOREXPERIMENTS 2Experiments were run for 1, 100, and 500 peaks prob-lems. Figures 5 and 6 show the average best-so-farcurves for a GA with and without recombination on1 peak problems. Figures 7 and 8 show the averagebest-so-far curves for for GA and GA-m on 100 peaksproblems, whereas Figures 9 and 10 do so on 500 peaksproblems.Again, when recombination is used, the lowest muta-tion rate explored (0:001) produces the best perfor-mance over the entire algorithm run for 1, 100 and500 peaks problems (Figures 5, 7, and 9). Moreover,it can be clearly seen that while increasing the num-ber of peaks, the e�ect is more pronounced. In otherwords, the di�erence between the best-so-far curves ismore noticeable.Without recombination, again, the higher mutationrates explored (0.005 and 0.01) increased performanceat early stages (Figures 6, 8 and 10). Note, however,that eventually the performance curves for the low-est mutation rate (0:001) pick up in later generations.This occurs earlier for the more complex landscapes(those with 100 and 500 peaks | Figures 8 and 10).What appears to be happening is that at later stages2For the multimodal generator experiments, we used thefreeware implementation due to W. Spears
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Figure 5: Average best-so-far curves. GA with distinctmutation rates on the multimodal landscape (1 peak)
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Figure 6: Average best-so-far curves. GA-m with dis-tinct mutation rates on the multimodal landscape (1peak)of the search, only a few bits need to be changed, anda high mutation rate might have a disruptive e�ect.5 DISCUSSIONIn this paper we used the so-called problem generatorsto empirically explore optimal mutation rates for GAswith and without recombination. The main conclusion
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Figure 7: Average best-so-far curves. GA with dis-tinct mutation rates on the multimodal landscape (100peaks)
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Figure 8: Average best-so-far curves. GA-m with dis-tinct mutation rates on the multimodal landscape (100peaks)holds for all the scenarios studied: the optimal muta-tion scheme for a genetic algorithm di�ers according towhether recombination is used or not. For a GA withmutation and selection only, the search process bene-�ts from starting with a relatively high mutation rate,decreasing it towards the �nal stages of the search.These results are in agreement with previous observa-
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Figure 9: Average best-so-far curves. GA with dis-tinct mutation rates on the multimodal landscape (500peaks)
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Figure 10: Average best-so-far curves. GA-m withdistinct mutation rates on the multimodal landscape(500 peaks)tions reported in the literature that a time-dependentvariation of the mutation rate may improve GA perfor-mance [Fogarty, 1989, M�uhlenbein, 1992, B�ack, 1991,B�ack, 1993].On the other hand, when recombination is used, aconstant, relatively low mutation rate seems to be



the optimal strategy. In this case, selecting an exces-sively high mutation rate | over the error threshold| considerably degrades the algorithms performance.This e�ect was shown to be more pronounced for more\complex" landscapes (i.e. with higher levels of epis-tasis or multimodality or both).The proposed explanation for the observed e�ect of re-combination on optimal mutation rates, is as follows:the notion of optimal mutation rates is related to thenotion of error thresholds. Thus, the e�ects of recom-bination on error thresholds, described in some de-tail in section 2.1, occurs as well on optimal mutationrates.Here, we highlight our interpretation of the observedresults, which proposes a novel argument about theimportant role of recombination in EAs. Recombina-tion performs a dual-role in genetic search according tothe level of genetic convergence of the population. Atthe beginning of the algorithm's run, when the popula-tion is scattered over the search space, recombinationacts as a diverging operation, thus increasing the algo-rithm's search power and speeding up the process. Inthis role, it can be said that recombination acts as asort of \macro-mutation" operator. Towards the �nalstages of the search, however, when the population ismore genetically homogeneous, recombination can fo-cus the population around the �tness optimum. Inthis second role, recombination acts as an error repairmechanism, helping in getting rid of deleterious mu-tations. We conclude, then, that there is no need ofimplementing a time-dependent mutation regime whenrecombination is used: recombination implicitly doesthis job for us. This confers a great advantage andencourages, in our opinion, the use of recombinationin EAs.About the generality of these results, we must addthat some other more traditional test functions werealso investigated: the one-max function, the royal roadfunction, and some functions from classical optimiza-tion test suites. Due to space limitations, we can onlybriey state that similar results were obtained. Weknow, however, that despite all these e�orts, it cannotbe categorically assured that these results apply to allproblem domains. It would be interesting to test theseideas on some real-world applications.Another scenario where this ideas should be exploredis on landscapes with neutrality (the extent to whichdistinct genotypes have the same or very similar �tnessvalues) [Barnett, 1997]. The concept of error thresh-olds can be extended to such landscapes, and futurework will investigate whether there is a similar corre-lation with optimal mutation rates in this scenario.

Preliminary experiments suggest that these resultsalso hold for other crossover operators, such as one-point and uniform crossover. Higher crossover rateswere also tested, and results suggest that the mainconclusions not only hold but are more pronounced.What remains to be studied is the e�ect of chang-ing both population size and chromosome length. Westrongly believe that optimal mutation rates dependon the values of the above two parameters. However,the main conclusions presented here, most probablyhold qualitatively.In the light of these results, we propose two generalheuristics for setting GA parameters:� When recombination is used, the mutation ratemust be su�ciently small and constant over theentire run.� When recombination is not used, a regime thatstarts with a high mutation rate, decreasing ittowards the end of the run, may accelerate thesearch process.We argue that these heuristics have to be speciallyconsidered when empirically comparing the relativeimportance of mutation and recombination in geneticsearch. To be fair, comparisons should be made select-ing the optimal mutation scheme for each strategy.Some �nal words about methodology are worth men-tioning. We strongly support the use of \test-problemgenerators" as an empirical methodology, due to its ad-vantages mentioned above. In particular, we stronglyagree that from both an engineering and scienti�cstandpoint, it is crucial to consider the dynamic as-pects of EAs by including results throughout their en-tire run.AcknowledgementsThanks are due to A. Meier and M. Sordo for help andsupport during this e�ort. Thanks to L. Mauro forvaluable suggestions and critical reading. Thanks alsoto M. Potter and W. Spears for making their sourcecode available through the Internet.References[B�ack, 1991] B�ack, T. (1991). Self-adaptation in ge-netic algorithms. In Varela, F. J. and Bourgine, P.,editors, Proceedings of the First European Confer-ence on Arti�cial Life. Toward a Practice of Au-tonomous Systems, pages 263{271, Paris, France.MIT Press, Cambridge, MA.
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