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Abstract A local optima network (LON) compresses relevant features of fit-
ness landscapes in a complex network, where nodes are local optima and edges
represent transition probabilities between different basins of attraction. Pre-
vious work has found that the PageRank centrality of local optima can be
used to predict the success rate and average fitness achieved by local search
based metaheuristics. Results are available for LONs where edges describe
either basin transition probabilities or escape edges. This paper studies the
interplay between the type of LON edges and the ability of the PageRank cen-
trality for the resulting LON to predict the performance of local search based
metaheuristics. It finds that LONs are stochastic models of the search heuris-
tic. Thus, to achieve an accurate prediction, the definition of the LON edges
must properly reflect the type of diversification steps used in the metaheuris-
tic. LONs with edges representing basin transition probabilities capture well
the diversification mechanism of simulated annealing which sometimes also
accepts worse solutions that allow the search process to pass between basins.
In contrast, LONs with escape edges capture well the diversification step of
iterated local search, which escapes from local optima by applying a larger
perturbation step.
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1 Introduction

Local optima networks (Ochoa et al, 2008) can be used to study the struc-
ture of optimization problems. A local optima network (LON) is a compressed
representation of a combinatorial fitness landscape. In particular, a LON is
a directed graph where the vertices are the search space’s local optima. The
edges1 model the transitions between the local optima and are weighted by the
transition probabilities of moving from one basin of attraction to another. In
the literature, we find three types of LON models: edges with basin transition
probabilities (Ochoa et al, 2010; Herrmann and Rothlauf, 2015), escape edges
(Vérel et al, 2012; Herrmann, 2016) and LONs for partition crossover (Ochoa
et al, 2015). LONs can be used to predict the performance of search algorithms
on particular problem instances (search difficulty, Lu et al, 2014; Malan and
Engelbrecht, 2014). This is possible as the network features of LONs like cen-
trality or path length can capture the search difficulty of landscapes (Ochoa
et al, 2014; Herrmann and Rothlauf, 2015).

For simulated annealing (SA) and a steady-state genetic algorithm (GA),
Chicano et al (2012) studied the correlation between network features of land-
scapes and the search difficulty of instances for the quadratic assignment prob-
lem (QAP). They found that the average length of the shortest paths to the
global optimum is a good predictor of search difficulty of SA (R2 ≈ 0.5), al-
though the correlation is lower when predicting GA performance. Daolio et al
(2012) conducted a similar study with the NK model (Kauffman and Wein-
berger, 1989), which is a binary combinatorial optimization problem. They
tried to predict the difficulty of problem instances for iterated local search,
and also found that the average length of the shortest paths to the global
optimum had a high accuracy in predicting difficulty (R2 ≈ 0.5). Herrmann
and Rothlauf (2015) suggested to use the PageRank centrality of the LON
for predicting the expected performance of local search based metaheuristics.
They found that the performance of first-improvement local search as well as
SA can be well predicted using the PageRank centrality of the global opti-
mum for LONs with edges representing basin transition probabilities. For the
NK model, the use of the PageRank explained more than 90% of the variance
of search performance. Furthermore, PageRank centrality is a better predic-
tor of search performance than traditional approaches such as ruggedness,
deceptiveness as well as the length of the shortest path to the optimum. Her-
rmann (2016) took up the idea of using PageRank centrality and found that
the performance of iterated local search (ILS) can be well predicted using the
PageRank centrality of a LON where the edges model the number of escape
edges. Similar to Herrmann and Rothlauf (2015), the PageRank of the global
optimum in the LON with escape edges explains more than 95% of the success
rate of ILS.

1 The edges in a directed graph are usually denoted as arcs. However, to be consistent
with the current terminology in the LON literature, we use the term edge instead of arc
throughout the paper.
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Although the existing exploratory studies gained valuable insights into the
possibilities of LONs and it is now known that PageRank centrality can be an
accurate predictor for the expected performance of local search based meta-
heuristics, our current understanding of how the definition of the LON affects
the prediction quality of the PageRank centrality is still rather vague. Further-
more, there are no studies that directly compare the different types of LON
models in this context.

Consequently, this paper extends previous work (Herrmann and Rothlauf,
2015; Herrmann, 2016) and studies whether and how the definition of LON
edges affects the ability of PageRank centrality to accurately predict the per-
formance of local search based metaheuristics. Furthermore, it directly com-
pares different types of local search based metaheuristics like SA and ILS for
different instances of the Kauffman NK model. As expected, we are able to
confirm the results of previous work and find that PageRank centrality is a
good predictor for search difficulty. The PageRank centrality of the global op-
timum in LONs accurately predicts the success rate (probability of finding the
global optimum) of SA as well as ILS and the average of the fitness values of
the local optima weighted by their corresponding PageRanks is a good predic-
tor of the solution quality at the end of a run (Herrmann and Rothlauf, 2015;
Herrmann, 2016). As a new contribution, we find that LONs are stochastic
models of a search algorithm in a landscape and, to accurately predict search
difficulty, a LON must properly reflect the behavior of the local search based
metaheuristic. We demonstrate for ILS and SA that the definition of the LON
edges must fit to the diversification mechanisms of the metaheuristic. In par-
ticular, LONs with edges representing basin transition probabilities capture
well the diversification mechanism of SA, whereas LONs with escape edges
capture well the search dynamics of ILS. Thus, to ensure high prediction ac-
curacy, the LON type must fit to the search paradigm. For our experiments,
we use instances of the Kauffman NK model as scalable test problems. To
assess the search difficulty of a landscape, we measure the performance of SA
and ILS. As performance measures, we use the success rate, the average fitness
achieved, and the average number of function evaluations (running time).

The work at hand indicates that LONs are a stochastic model of heuristic
search in a fitness landscape and the search process is a random walk through
the LON. Thus, the linkage structure of the LON and the distribution of nodes
allow us to predict search difficulty of the landscape, which is just the prob-
ability that a random walk through the LON visits the node that represents
the global optimum.

Section 2 briefly describes simulated annealing and iterated local search.
Section 3 gives a short introduction to fitness landscapes and provides some
formal definitions. In section 4, we define LONs with either basin transition
probabilities or escape edges. In sections 5 and 6, we describe PageRank cen-
trality, our experimental design, and the search space used (Kauffman NK
family of landscapes). Experimental results are presented in section 7. We end
with some conclusions, limitations, and future work.
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2 Search Algorithms

We summarize the two variants of heuristic optimization methods used as
representatives for local search based methods: simulated annealing (SA) and
iterated local search (ILS).

2.1 Simulated Annealing

Simulated annealing (SA) is a method inspired by statistical mechanics (Kirk-
patrick et al, 1983). Other than standard hill climbing procedures, SA has the
ability to overcome local optima. It is based on an analogy with cooling down
a liquid to a solid substance. Algorithm 1 outlines the basic principle of SA
using a fixed cooling schedule for a maximization problem.

Algorithm 1 Simulated Annealing (SA)

Require: Solution space S,
Fitness function f(S),
Neighborhood N(S),
Initial Temperature T0, Cooling Rate c,
Stopping Threshold t

1: Choose random initial solution s0 ∈ S
2: i← 0
3: repeat
4: choose random si+1 ∈ N(si)
5: if (f(si) < f(si+1)) then
6: si ← si+1

7: else if e
−|f(si)−f(si+1)|

Ti
≥ rand(0, 1) then

8: si ← si+1

9: end if
10: Ti+1 ← c× Ti
11: i← i+ 1
12: until i ≥ t
13: return si+1

Let S be the solution space, i.e. the set of all valid problem solutions.
The function f : S → R≥0 assigns a fitness value to each s ∈ S. SA starts
with a randomly selected solution s0 ∈ S. Then, in iterative steps, SA applies
incremental changes to improve the initial solution: it selects a random solution
si+1 from the neighborhood of si. The neighborhoodN(s) is the set of solutions
that can be reached by applying an incremental change to s. This procedure is
repeated until a fixed limit of iterations has been reached. SA always accepts
better solutions; solutions with a lower fitness are accepted with probability
e−|f(si)−f(si+1)|/Ti. The probability to accept worse solutions decreases with a
higher fitness difference |f(si)− f(si+1)| and a lower temperature Ti. As soon
as the temperature approaches zero (T → 0), SA turns into a standard hill
climber performing local search.
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The initial temperature T0 and cooling rate c are parameters, which must
be set problem-specific. A rule of thumb for a proper starting temperature is
to randomly generate an initial number of solutions and set T0 ≈ σ(f(s))... 2×
σ(f(s)) (where σ is the standard deviation). A proper setting for the cooling
rate is c ∈ (0.9, 0.999) (Laarhoven and Aarts, 1988). For our experiments, we
randomly sampled 1, 000 initial solutions si before each SA run and set the
initial temperature to T0 = 1.5× σ(f(si)). For all runs, we set c = 0.97.

2.2 Iterated Local Search

Iterated local search (ILS, Lourenço et al, 2003) has so far been used in a
variety of studies on local optima networks (Daolio et al, 2012; Vérel et al,
2012; Ochoa et al, 2016; Herrmann, 2016). The concept of ILS is used in many
practically relevant search methods, e.g. the Chained Lin Kernighan heuristic
(Applegate et al, 2003; Lin and Kernighan, 1973).

During intensification, metaheuristics focus search on promising areas of
the search space, whereas during diversification, new areas are explored (Roth-
lauf, 2011). ILS intensifies search by performing a sequence of local search steps
(standard hill climbing). As pure intensification would not allow ILS to escape
local optima, it regularly performs perturbation steps to diversify search and
to explore new areas of the search space. Algorithm 2 outlines the function-
ality of ILS, which starts with a randomly selected solution s0 ∈ S. Then,
the algorithm performs a hill climbing procedure with best improvement as
selection rule (Algorithm 3): from the neighborhood N(s), the solution with
highest fitness is selected. The neighborhood N(s) is the set of solutions that
can be reached by performing an incremental change to s. The effort of this
step depends on the size of the neighborhood |N(s)|, as it requires a scan of
the whole neighborhood of s. This local search step (hill climbing) is repeated
until it reaches a local optimum s∗, i.e no further improvement is possible.
Then, ILS performs a diversification step by applying a limited perturbation
to the local optimum, resulting in s′. As a next step, hill climbing is started
again from s′, until the next local optimum s∗

′
is reached. If the new local

optimum s∗
′

is different from the previous s∗ and has higher fitness, the al-
gorithm has “escaped” to a new local optimum, and the change is accepted.
Otherwise, another perturbation is applied to s∗. This procedure is repeated
until a termination condition is met, e.g. a fixed number of escapes without
any further improvement.

3 Fitness Landscape Analysis

3.1 Concept

The notion of fitness landscapes originated from evolutionary biology (Wright,
1932). The idea is that each solution has a corresponding fitness value. Combin-
ing the distances between the solutions with the fitness values of the solutions
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Algorithm 2 Iterated Local Search (ILS)

Require: Solution space S,
Fitness function f(S),
Neighborhood function N(S),
Stopping Threshold t

1: i← 0
2: Choose initial random solution s0 ∈ S
3: s∗ ← hillClimbBI(s0)
4: repeat
5: s′ ← perturbation(s∗)

6: s∗′ ← hillClimbBI(s
′
)

7: if f(s∗
′
) > f(s∗) then

8: s∗ ← s∗
′

9: i← 0
10: end if
11: i← i+ 1
12: until i ≥ t
13: return s∗

Algorithm 3 Best Improvement Hill Climbing (hillClimbBI)

Require: Solution space S,
Fitness function f(S),
Neighborhood function N(S),
Initial solution s0

1: i ← 0
2: repeat
3: choose x s.t. f(x) = maxx∈N(si)

(f(x))
4: if f(x) > f(si) then
5: si+1 ← x
6: else
7: si+1 ← si
8: end if
9: i← i+ 1

10: until si is local optimum: {s ∈ N(si) : f(s) < f(si)} = ∅
11: return si

creates a landscape where each solution’s fitness is the height. In combina-
torial optimization, a motivation to analyze fitness landscapes is to gain a
better understanding of algorithm performance on a set of problem instances.
Landscape characteristics reflect the difficulty for a variety of heuristics (Lu
et al, 2014; Malan and Engelbrecht, 2014), thus problem-specific knowledge
can help construct better search methods (Pitzer and Affenzeller, 2012).

3.2 Neighborhood Structure

In combinatorial optimization, a fitness landscape (Stadler, 2002) is a triplet
of the search space S, the fitness function f , and the neighborhood struc-
ture N(S). S contains all valid solution candidates. The fitness function f :
S → R≥0 assigns a fitness value to each s ∈ S. The neighborhood function
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N : S → P(S) assigns a set of neighbors N(s) to every s ∈ S. The neighbor-
hood structure determines the position of each s in the landscape (Reidys and
Stadler, 2002). We define a distance function between all pairs of solutions si
and sj as

d : (si, sj)→ N0; si, sj ∈ S. (1)

Usually, the distance function depends on the search operator used. For local
search, we apply a small search step to solution si and obtain a new solution
sj , where the distance dsi,sj is small. With dmax being the maximal distance
between two neighboring solutions, we define the neighborhood function for
local search as

N : si → {sj ∈ S : sj 6= si ∧ 0 < d(si, sj) ≤ dmax}. (2)

For simulated annealing, the distance between an existing si and new solution
si+1 (we denote this distance as step size) usually remains constant throughout
a run. The incremental change applied to a solution results in a neighboring
solution with minimal distance, dmax = 1. Iterated local search uses two types
of search operators: for the hill climbing phase (hillClimbBI), the step size is
usually minimal and neighboring solutions with minimal distance are created,
dmax = 1. In contrast, the perturbation step (restart of search) performs
a larger step through the search space where dmax > 1. This larger search
step allows the search process to escape from the local optimum returned
by hillClimbBI. This continuous switch of landscapes during a run makes a
static analysis of ILS difficult. Despite that, it is generally accepted to study
a landscape defined by a fitness function and one or several neighborhood
functions (Pitzer and Affenzeller, 2012).

3.3 Local Optima

A fitness landscape can have one or more local optima. A local optimum
is a solution that has no neighbors with higher fitness. For a maximization
problem, we define a function

Nsup(s) = {n ∈ N(s) : f(n) > (f(s)} (3)

which returns the neighbors n of a solution s ∈ S that have higher fitness. As
local optima have no neighbors with higher fitness, the set

LO = {lo ∈ S : Nsup(lo) = ∅}. (4)

contains all local optima, which also includes one or more global optima.
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3.4 Basins of Attraction

A basin of attraction is defined as the set of solution candidates from which a
best improvement hill climbing algorithm converges to the same local or global
optimum. Extracting the basins of a fitness landscape is required in order to
calculate the edges of LONs. The function

B : lo→ P(S\LO) (5)

assigns a subset from the power set P of solutions over the search space to
each local optimum lo ∈ LO, which is the basin around lo. Consequently, we
use B as a function which returns the basins.

3.5 Landscape Features

Structural features of fitness landscapes are often used to predict the per-
formance of algorithms. A well-elaborated collection of such features is given
by Kallel et al (2001). Two frequently used features are ruggedness (Wein-
berger, 1990) and deceptiveness (Jones and Forrest, 1995). The idea of rugged-
ness is that the smoother the landscape is, the easier it is to search the land-
scape in order to find the global optimum. Ruggedness is a consequence of
modality, i.e. the presence of local optima. The higher the number of local
optima, the more rugged is the landscape. Ruggedness is usually measured
as the correlation ρnn of fitness values between pairs of neighboring solutions
(nearest-neighbor-correlation). A common way to determine an approximation
of ρnn is to perform random walks across the search space and draw samples
of the fitness of neighboring solutions.

A landscape is deceptive if the structure of the search space leads a search
process that is guided by the fitness of solutions away from the global optimum.
A common measurement for deceptiveness is the correlation ρfd between the
fitness of the solutions and their distance to the global optimum (Jones and
Forrest, 1995). For the calculation of the fitness-distance correlation ρfd, the
global optimum must be known in advance. Often, ρfd is approximated by
drawing a random sample of solutions determining the correlation between
their fitness and their distance to the global optimum. A misleading landscape
with a fitness-distance correlation ρfd ≈ −1 is often referred to as a trap.

4 Local Optima Networks

LONs have been inspired by the study of energy landscapes in chemical physics
(Stillinger, 1995) and used for the analysis of fitness landscapes (Ochoa et al,
2008).
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4.1 Concept

A LON is a graph representation of a fitness landscape. A directed graph
G = (V,A) is defined by its set of vertices V and its set of directed edges (arcs2)
A. In a LON graph, V contains all the local optima of the fitness landscape.
The edge set A contains the directed, weighted edges that model transitions
between the local optima. A variety of approaches have been proposed to
compute A. For our experiments, we used the two most-studied models: LONs
with edges modeling basin transition probabilities (LONbtp, Ochoa et al, 2010)
and LONs with escape edges (LONee, Vérel et al, 2012). When analyzing
fitness landscapes, we compute both LON variants per landscape. Both have
the same set of nodes V , but different edge sets Abtp and Aee, resp. For a
visualization of both LON models, we refer to Figure 2, where the nodes
represent local optima and edges represent either basin transition probabilities
(left) or escape edges (right). The following two sections give some details on
how the two LON models are computed.

4.2 LONs with Edges Representing Basin Transition Probabilities

The initial approach of local optima networks (Ochoa et al, 2008) was defined
for edges that represent basin transition probabilities. Given Abtp as the set
of directed edges, there is a weighted edge from a local optimum lox to a local
optimum loy if local search can move from the basin of attraction B(lox) to the
basin B(loy). For such a transition, both basins must be connected through a
solution on the border between the two basins, such that a solution in B(loy)
with a high fitness is a neighbor to a solution in B(lox) with lower fitness. The
more such connections between two basins exist, the higher is the transition
probability between their corresponding local optima, and the higher is the
corresponding edge weight.

We use the following rule set for the calculation of the edge weights (Ochoa
et al, 2008): the probability to perform a move from any solution sx to another
neighbor sy depends on the number of superior neighbors of sx. For example,
simulated annealing selects a random neighbor and replaces the current so-
lution if the neighboring solution has higher fitness. Thus, the probability to
move from any solution sx to a neighbor solution sy can be calculated as

p(sx, sy) =
1

|Nsup(sx)|
. (6)

To determine the probability that the algorithm moves from sx to any solution
in the basin around loy, we compute the fraction of superior neighbors of sx
belonging to B(loy) as

p(sx, B(loy)) =
|Nsup(sx) ∩B(loy)|
|Nsup(sx)|

· (7)

2 We follow the standard LON terminology and denote A as the set of directed edges.
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For LONs with basin transition probabilities (LONbtp), the edge weight be-
tween nodes lox and loy is the overall probability to move from one basin
B(lox) to another basin B(loy). We calculate it by summing up the probabil-
ities to move from any si ∈ B(lox) to B(loy):

p(B(lox), B(loy)) =

∑
si∈B(lox)

p(si, B(loy))

|B(lox)|
· (8)

We calculate the transition probabilities between all local optima basins,
and obtain the weights for the edges ex,y ∈ Abtp (x, y ∈ LO)

|ex,y| = p(B(x), B(y)); x, y ∈ LO. (9)

4.3 LONs with Escape Edges

An alternative model to analyze a fitness landscape using LONs was introduced
by Vérel et al (2012): LONs with escape edges. Like in the model with basin
transition probabilities, V contains all the local optima of the fitness landscape.
The escape edges are defined according to the distance function d of the fitness
landscape (minimal number of moves between two solutions). To compute the
escape edges, we need to define an integer D > 0, which is the step size
(distance) of the perturbation steps that are, for example, used in ILS to
escape from a local optimum. Consequently, there is a directed edge Ex,y > 0
between local optimum lox and loy if there exists a solution s such that

d(lox, s) ≤ D ∧ s ∈ B(loy). (10)

The weight of an escape edge should reflect the probability that an algorithm
escapes from lox to loy. It is determined by the number of solutions that can be
reached by one escape step (perturbation step) and belong to the basin around
loy. Thus, the edge weight between lox and loy is calculated as the number
of solutions in the basin around loy that can be reached by a perturbation
step. This number is normalized by the total number of solutions in the basin
around lox that can be reached. As a result, the edge weights of the edges
ex,y ∈ Aee, where x, y ∈ LO are calculated as

|ex,y| =
|{s ∈ S | d(s, lox) ≤ D ∧ s ∈ B(loy)}|

|{s ∈ S|d(s, lox) ≤ D}|
; x, y ∈ LO. (11)

5 PageRank Centrality

In network analysis, the concept of centrality describes how important or influ-
ential a node is. The importance of a node depends on the network’s topology
and the position of the node in the network (Borgatti, 2005). For instance,
Google uses the concept of PageRank centrality to assess the importance of
websites (Brin and Page, 1998; Franceschet, 2011). The PageRank centrality,
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which is a variant of the Eigenvector centrality, is based on the model of a
user who surfs the web by randomly clicking links. The PageRank value of a
website reflects the probability that the surfer currently is on this web page.
There are three factors determining the PageRank of a website: the number of
links it receives, the number of outgoing links of the linking web pages, and the
PageRank of the linking web pages. Thus, PageRank is a recursively defined
concept. For detailed information on the notion and application of PageRank,
we refer to Franceschet (2011).

To calculate the PageRank of the LON nodes, we need a transition matrix
Πbtp or Πee (here denoted as Π, as the procedure is the same for both LON
models). The size of Π is |LO| × |LO|. The entries πx,y (x, y ∈ LO) of Π are
the edge weights |ex,y| of the edges ex,y ∈ Abtp or ex,y ∈ Aee, resp. As the
matrix Π is stochastic, all rows and columns are normalized to sum up to 1.

For the calculation of the PageRanks, we have to consider a damping factor
α, which reflects the fact that a random surfer may—instead of following
links—visit a totally random page at some point. This probability is calculated
as 1−α. A typical value is α = 0.85, which says that a surfer instead of following
a page link chooses a random page after about six page visits. The local search
algorithms used in our experiments do not perform any random jumps in the
search space, thus we set α = 1.0 for analyzing both the LONs with basin
transition probabilities and LONs with escape edges. Although ILS uses a
perturbation operator, which can be viewed as a surfer that visits a random
page, the escape edges in the corresponding LON model already reflect this
behavior, leading to α = 1.0.

The PageRank vector, which contains the centralities of all nodes of a LON
(local optima), is the vector P , which is the Eigenvector of Π:

P = Π × P. (12)

If Π is a strongly connected graph, there exists a solution for P (Frobenius,
1912; Perron, 1907). These conditions are fulfilled in our case, since no negative
probabilities occur by definition of the LON transition matrix. In addition,
there can be no disconnected components in our LONs (i.e., all LONs were
connected graphs). As P contains the PageRank centralities of all local optima,
we define Popt,btp as the PageRank value of the global optimum in the LON
with basin transition probabilities, and Popt,ee as the PageRank value of the
global optimum in the LON with escape edges.

6 Experiments

6.1 Search Space: Kauffman NK Model

We used the well-known NK model (Kauffman and Weinberger, 1989), which
is a family of combinatorial optimization problems from the class of pseudo-
Boolean functions. Each instance of the model can be generated by the two
parameters N and K. Each solution s ∈ S consists of N binary decision
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variables, forming a search space of |S| = 2N possible states. The fitness
function

fNK : [0, 1]N → [0, 1] (13)

assigns a score to every combination of bits. It consists of N sub-functions,
which assign a fitness for each bit i, depending on the state of bit i and the
states of K other bits

fi : [0, 1]K+1 → [0, 1]. (14)

The total fitness fNK(s) is the average of the values of the N sub-functions.
All function values are normalized between 0 and 1, with 1.0 as the fitness of
the global optimum. The parameter K determines the number of co-variables
per decision variable and thus the complexity of an instance (epistasis). A
value of K = 0 results in a decomposable and easy problem solvable with
polynomial effort. K = N − 1 leads to a difficult problem where each decision
variable can only be set to the optimal value if all other N − 1 co-variables
are considered. Even though it is commonly accepted that a higher level of
epistasis leads to higher search difficulty of landscapes, it is only a rough
measure for difficulty (and an exogenous parameter in our case). Landscapes
with an identical level of epistasis (same K) can have a significant variety of
search difficulty. Our results on the performance of SA and ILS in Section 7.1
underpin this assumption.

The distance between two binary solutions x, y ∈ S is calculated by the
Hamming distance

d(x, y) =

n∑
i=0

|xi − yi| (15)

which is the number of bits that are set to different values when comparing two
solutions. For our implementation of SA and for the hill climbing procedure
in ILS, we assumed that two solutions x, y are neighbors if their Hamming
distance equals one (dmax = 1). Thus, a local search step flips exactly one bit
of the current solution. As perturbation operator in ILS, we flip two bits in
one step.

6.2 Experimental Setting

We generated 300 instances in total of the NK model with N = 20 bits. To
test different levels of epistasis, we used 100 instances each for K ∈ {3, 7, 10}.
Each search space contained 220 ≈ 1.4M solutions, which is a rather small
size, but allowed us to fully determine the LONs with reasonable effort. Using
larger problem sizes would exponentially increase the effort for determining
the LONs.

The objective of our experiments is to predict the search difficulty of land-
scapes for SA and ILS and to study how the choice of the LON edges affects the
accuracy of performance prediction of local search based metaheuristics using
PageRank centrality. In order to determine the search difficulty, we measure
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Performance Variable Description

hitsa and hitils the success rate, defined as the fraction of the 1,000 indepen-
dent runs that hit the global optimum

fitsa and fitils the average fitness (solution quality) achieved

costsa and costils the average number of fitness function evaluations performed
by the algorithm in those runs in which the global optimum
was found

Table 1: Performance measures for SA and ILS

Landscape Feature Description

ρnn the ruggedness of the fitness landscape, measured by the Pear-
son correlation between the fitness of nearest neighbors (Wein-
berger, 1990)

ρfd the deceptiveness of the landscape, measured by the Pearson
correlation between fitness and distance to the global optimum
(Jones and Forrest, 1995)

Popt,btp, Popt,ee the PageRank value of the global optimum for the LONbtp

and the LONee model

Flo = avg(Flo) the average fitness of all local optima

Flo,btp and Flo,ee the expected PageRankFitness (solution quality) as average
fitness of the local optima weighted by their corresponding
PageRank

Table 2: Variables to predict the performance of SA and ILS

the empirical performance of both metaheuristics. For each problem instance,
we performed 1,000 independent runs of SA and ILS. The initial solutions were
randomly selected. As a stopping threshold, we limited the running time by
a reasonable number of function evaluations, which was 1/5th of the search
space size (Daolio et al, 2012). For each NK fitness landscape, we determined
three measures of performance for SA and ILS, respectively: the success rate
hit, the average solution quality fit at the end of a run, and the average
number cost of fitness functions evaluations (cf. Table 1).

Furthermore, for each instance of the NK model, we computed the fitness
landscape, the LON with basin transition probabilities, the LON with escape
edges and calculated the following vectors for further analysis of the LONs:

1. Pbtp and Pee: the PageRank vectors for both LON models and
2. Flo: the vector containing the fitness values of all the local optima.

To study the relationship between fitness landscape features and the search
difficulty for SA and ILS, we used the statistical measures described in Table 2.
We examined two relations: first, we studied whether the PageRank values of
the global optimum Popt,btp and Popt,ee, respectively, predict the success rates
hitsa and hitils in the different problem instances. Furthermore, we compared
the PageRank values to the average number of function evaluations costsa and
costils that were used in those runs in which the global optimum was found.
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Second, we aimed to predict the solution quality of SA and ILS (the average
fitness). To achieve this, we calculated the fitness vectors Fbtp and Fee of the
local optima as well as the PageRank vectors Pbtp and Pee for each search
space, resp. We assume that the use of the PageRank vector allows us to assess
the centrality of all local optima in the search space. We use the normalized
PageRank centrality values (

∑
P = 1) to calculate a weighted average of the

fitness of the local optima as either

Flo,btp = Pbtp × Flo or (16)

Flo,ee = Pee × Flo (17)

for both the LONbtp and LONee model, respectively. The result is a scalar value
which we call the expected PageRankFitness Flo,btp and Flo,ee, respectively.
We calculate the expected PageRankFitness for all problem instances.

In our data set, each NK fitness landscape is a single observation. We as-
sessed the predictive power of the different predictor metrics by computing
one univariate, linear regression model for each combination of predictor and
performance measure. This gives us a determination coefficient R2 for each
relationship between predictor and performance. The R2 indicates the pro-
portion of the variance in the dependent variable (in our case: performance)
that is predictable from the independent variable (here: landscape feature).
The R2 value is equivalent to the squared Pearson correlation coefficient be-
tween two variables. As a benchmark, we have also calculated the regression
models between the performance measures and the classical metrics from fit-
ness landscapes analysis (ruggedness and deceptiveness).

We implemented our generator for NK landscapes, the extraction proce-
dure for LONs, and the ILS algorithm in Java. For computation, we utilized
150 nodes of a HPC cluster with each 64 cores and 256 GB of RAM. We
reserved one node for each instance. The computation time was approx. 1h
per instance, depending on the number of local optima. To calculate the Page-
Rank values of the nodes, we used the NetworkX Library (Hagberg et al, 2008).
Our statistical analysis was conducted using the R framework (R Core Team,
2014).

7 Results

7.1 Performance of SA and ILS

As a pre-test of our experiments, we compared the performance of SA and
ILS. Figure 1 plots the success rate (left), average fitness (middle), and the
number of fitness function evaluations to find the global optimum (right) for
ILS over SA. Each dot represents one fitness landscape, and the color (green,
blue, red) indicates the level of epistasis (K). We plot results for three different
levels of epistasis K ∈ {3, 7, 10}. The gray crossing line is a 45 degree bisector.
A dot on the gray line would indicate that the performance of SA and ILS is



PageRank Centrality for Performance Prediction 15

Fig. 1: The three performance measures of SA vs. ILS in 300 instances of
NK-landscapes. The color indicates the level of epistasis (green: K = 3, blue:
K = 7, red: K = 10): success rate (left), average fitness (middle) and running
time measured as the number of fitness evaluations (right).

identical (averaged over 1,000 runs each) for this particular instance. Since the
dots are all above the gray line, ILS outperforms SA in the majority of cases,
which holds for success rate and average fitness. In terms of running time, ILS
requires more function evaluations to locate the global optimum. Regarding
the exogenous parameter for epistasis K, we can see that both algorithms
have high success rates and we can expect to solve the problem with high
probability if K is low (green dots). The average running time of ILS is low
in such landscapes, as well. Higher values of K (blue and red dots) generally
lead to lower performance.

All of these observations are as expected: higher epistasis leads to a higher
search difficulty, and thus lead to a lower success rate, a lower average fitness
and longer running times. The distribution of the dots also indicates that there
is a high variance of all the performance measures within the different classes
of K, indicating that epistasis has only limited explanatory power for search
difficulty.

7.2 Visual Inspection

We exemplarily study the local optima networks of two instances of the NK
model with fixed epistasis (K = 7). The first instance has a low difficulty for
both SA and ILS, and the second has a higher difficulty. Figure 2 plots the
structure of the resulting LONee (left) and LONbtp (right). Comparing both
LON models, we can see that LONbtp has more links than LONee, which is in
conjunction with previous studies, e.g. Vérel et al (2012).

Another observation is that in the LONs of the easy instance, there are
only a few central nodes, whereas in the case of the hard instance, there are
multiple central nodes. We assume that if there are many other local optima
in the landscape with high fitness and central location, it is harder to find the
global optimum among them. The next section performs a more systematic
study of this observation.
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(a) LONee of an easy instance (b) LONbtp of an easy instance

(c) LONee of a hard instance (d) LONbtp of a hard instance

Fig. 2: Visualization of LONs with basin transition probabilities and LONs
with escape edges. Each node is a local optimum. Node size indicates fitness,
the color saturation ranging from white to green represents the PageRank of
the local optimum (dark green indicates high PageRank). For selected nodes
with high PageRank, we plot the PageRank within the circle. Figures (a) and
(b) show both LONs for an NK landscape in which ILS and SA achieved high
success rates (0.5 and 0.06, respectively). Figures (c) and (d) show the LONs
for an NK landscape in which ILS and SA achieved significantly lower success
rates (0.29 and 0.01, respectively). Both instances were chosen such that the
number of local optima is similar (approx. 1000). The plots show only the best
10% of nodes in terms of fitness.



PageRank Centrality for Performance Prediction 17

Performance of SA Predictor ∀K K = 3 K = 7 K = 10

NN Correl.: ρnn 0.581 0.228 0.135 0.073
Success Rate: hitsa FD Correl.: ρfd 0.52 0.162 0.061 0.034

PageRank: Popt,btp 0.937 0.863 0.872 0.841
PageRank: Popt,ee 0.504 0.144 0.307 0.095
NN Correl.: ρnn 0.546 0.035 0.001 0.001

Avg. Fitness: fitsa FD Correl.: ρfd 0.78 0.111 0.009 0.004

Avg. Fitn.: Fbtp 0.901 0.513 0.85 0.964

Exp. PRFitn. : Flo,btp 0.988 0.914 0.978 0.994

Exp. PRFitn. : Flo,ee 0.741 0.196 0.518 0.802

NN Correl.: ρnn 0.353 0.075 0.057 0.021
Running time: costsa FD Correl.: ρfd 0.406 0.042 0.013 0.023

PageRank: Popt,btp 0.394 0.325 0.445 0.359
PageRank: Popt,ee 0.335 0.04 0.111 0.01

Performance of ILS

NN Correl.: ρnn 0.648 0.265 0.217 0.056
Success Rate: hitils FD Correl.: ρfd 0.613 0.168 0.033 0.003

PageRank: Popt,ee 0.996 0.986 0.998 0.998
PageRank: Popt,btp 0.493 0.126 0.216 0.048

NN Correl.: ρnn 0.438 0.241 0.026 0.005
Avg. Fitness: fitils FD Correl.: ρfd 0.529 0.205 0.013 0.002

Avg. Fitn.: Fee 0.608 0.026 0.328 0.748

Exp. PRFitn. : Flo,ee 0.998 0.976 0.998 0.99

Exp. PRFitn. : Flo,btp 0.710 0.099 0.443 0.781

NN Correl.: ρnn 0.066 0.004 0.02 0.001
Running time: costils FD Correl.: ρfd 0.106 0.007 0.012 0.003

PageRank: Popt,ee 0.0 0.103 0.276 0.323
PageRank: Popt,btp 0.104 0.064 0.002 0.053

Table 3: R2 values for all linear regressions between the different performance
measures (first column from left) and predictor metrics (second column from
left). For example, the PageRank of the global optimum in the LON with basin
transition probabilities explains 93.7% of the variance of the success rate of
SA (cell is in bold and italic).

7.3 Prediction Accuracy of PageRank and Influence of LON Edges

To confirm the predictive quality of PageRank, we calculated all coefficients of
determination (R2) for each combination of predictor metric, algorithm (SA
and ILS) and performance measure. Following previous work (Ochoa et al,
2014; Herrmann and Rothlauf, 2015; Herrmann, 2016), we assumed linear re-
lationships between the two variables. We have also made separate calculations
for different levels of epistasis. Table 3 presents results (R2 values) for all com-
binations.

To be able to assess the prediction quality of PageRank, we compare it to
the standard metrics ruggedness and deceptiveness. Over all K, ruggedness
and deceptiveness explains between 52% and 62% of the variance of success
rate of ILS and SA. For the average fitness, the R2 values range from 55% to
78%. This indicates a medium to strong statistical correlation and explains
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why these measures are frequently used in the literature. However, these cor-
relations are significantly weaker with a maximum of 0.26 when the level of
epistasis (K) is fixed. Moreover, this effect becomes stronger with higher levels
of epistasis. If K is large (K = 10), the traditional metrics fail to explain the
variance in the performance of SA and ILS (over all metrics, the maximum
R2 = 0.073). An explanation for this could be that the landscapes with high
epistasis have a low variance in their ruggedness ρnn and deceptiveness ρfd.
A low variance in the regressor variables then results in a low R2.

Next, we study the prediction quality of PageRank centrality. In analogy
with Herrmann and Rothlauf (2015) and Herrmann (2016), we expect a high
correlation between the PageRank of the global optimum and success rate,
as well as between the expected PageRankFitness (average of fitness of local
optima weighted by PageRank) and the average fitness achieved by SA and
ILS. We observe the following results:

– First, we study the prediction of problem difficulty by PageRank centrality.
The PageRank of the global optimum in the LON with basin transition
probabilities Popt,btp explains approx. 94% of the variance in the success
rate of SA. Obviously, the PageRank obtained from the LONbtp model is
an accurate indicator of the search difficulty for SA. The same holds for
the combination of the PageRank in the LON with escape edges Popt,ee

and the success rate of ILS: over 99% of the variance is explained.
– The expected PageRankFitness values Flo,btp and Flo,ee explain more than

98% of the average fitness achieved by SA and ILS (avg(f)). This prediction
is significantly more accurate than using the average fitness Flo of the local
optima. Thus, weighting the fitness values by their PageRank makes the
prediction more precise since it considers the stationary probability of the
algorithm visiting the local optima.

– These results for the average fitness values are robust for different levels
of epistasis K. For high values of K, the R2 is slightly reduced for both
predictors, we still observe a very high correlation significantly better than
traditional landscape metrics.

– Over all values of K, the number of fitness evaluations needed to locate the
global optimum (costsa and costils) is only weakly correlated to all of the
predictor metrics. Surprisingly, in the case of medium and high epistasis,
the PageRank seems to predict 30-40% of the variance of running time by
ILS. An explanation for this could be that in cases of high epistasis, the
basins are very small. In landscapes with small basins, the running time of
ILS is mainly dominated by perturbation steps, and there is nearly no hill
climbing. Since the escape edges in the LONee consider such perturbations,
the LONee well matches the stochastic process of ILS in such cases. Then,
the LON is more likely to reflect the running time than in cases where ILS
needs to spend many function evaluations for the hill climbing procedure.

Next, we examine the interplay between the type of LON edges and the ability
of the PageRank centrality for the resulting LON to predict the performance of
local search based metaheuristics. Here, we observe that to achieve an accurate
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Fig. 3: The success rates of SA (left) and ILS (right) over the PageRank of the
optimum. The LON model corresponds to the search operator. Each of the
dots represents a single problem instance.

prediction, the definition of the LON edges must properly reflect the type of
diversification steps used in the metaheuristic. This can be seen when studying
the R2 values for the combination of the success rate of SA and Popt,ee, as well
as ILS and Popt,btp, which are significantly lower (approx. 50%) than the results
on PageRank with corresponding LON models. The explanation is that LONs
with basin transition probabilities better reflect the behavior of simulated
annealing than escape edges. This is also true the other way round as escape
edges better capture the dynamics of ILS in comparison to edges with basin
transition probabilities.

We study this observation in more detail. Figure 3 plots the empirical
success rates of SA and ILS over the PageRank of the optimum. For SA, we
use a LON with edges modeling basin transition probabilities; for ILS, we use a
LON with edges representing escape edges. Thus, the definition of the LON fits
well to the corresponding local search based metaheuristic. Each dot in the
plot represents one problem instance (search space). As expected, both are
strongly correlated. In contrast, Figure 4 plots the empirical success rates of
SA and ILS over the PageRank of the optimum, where the PageRank values are
calculated for the non-corresponding LON model. This means that the success
rate of SA is predicted for a LON with escape edges and the success rate of ILS
is predicted using a LON with edges modeling basin transition probabilities.
The results show that when using the non-corresponding LON model, the
PageRank is no accurate predictor of expected search performance any more.
With R2 ≈ 0.5 the prediction quality is similar to traditional measures like
ruggedness or deceptiveness and quite lower in comparison to the case where
the definition of the LON edges fits well to the search behavior of the local
search based metaheuristic.
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Fig. 4: The success rates of SA (left) and ILS (right) over the PageRank of the
optimum. In contrast to Figure 3, the PageRank values were obtained from the
non-corresponding LON models. Each of the dots represents a single problem
instance.

In summary, we find that the PageRank of the global optimum in LONs
very well predicts the search difficulty of landscapes, i.e. the empirical success
rate. Moreover, we found that the stationary distribution of the PageRank
vector over all local optima is useful to make better predictions about the
expected solution quality obtained when running SA or ILS. Both predictions
work for all levels of epistasis (minimal R2 = 0.841), which is a clear advantage
to the concepts of ruggedness and deceptiveness. However, it is important to
choose the appropriate model for the edges in the LON. Since the edges repre-
sent probabilistic transitions between local optima basins, they must properly
reflect the behavior of the search algorithm.

8 Conclusions, Limitations, and Future Work

This work focused on the PageRank centrality of local optima and studied
how the definition of the LON edges affects the accuracy of the PageRank
centrality to predict the success rate and average fitness achieved by local
search based metaheuristics like iterated local search and simulated annealing.
Furthermore, the study summarized and extended previous work on PageRank
centrality for LONs (Ochoa et al, 2014; Herrmann and Rothlauf, 2015) and
directly compared the prediction quality of PageRank for LONs where edges
describe either basin transition probabilities or escape edges.

We find that in order to achieve accurate predictions, the LON edges must
properly reflect the diversification mechanisms of the search algorithm. In
particular, LONs with edges for basin transition probabilities capture well
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the diversification mechanism of simulated annealing. SA mainly relies on lo-
cal search by always accepting improvements and only sometimes accepting
worse solutions. This is well captured by the concept of basin transition proba-
bilities, which measure the probability that local search passes from one basin
of attraction to a different one. On the other hand, LONs with escape edges
well capture the search dynamics of iterated local search. Like SA, iterated
local search mainly relies on local search, however, the mechanism of escaping
from local optima is different from SA. After finding a local optimum, ILS
performs some perturbation step. This behavior of ILS to escape from local
optima is well captured by LONs with escape edges since the probability to
escape from a local optimum is determined by the number of possible escape
edges.

The findings confirm that the PageRank centrality of local optima can
be an accurate predictor of the success rate and average fitness achieved by
metaheuristics. This is because LONs are an approximation of the fitness land-
scape’s Markov chain, and the PageRank vector reflects the stationary distri-
bution of the states in this chain. However, as LONs are stochastic models of
an algorithm in a landscape, the LON edges must reflect the behavior of the
algorithm. If the LON edges properly capture the diversification mechanisms
of the local search based metaheuristic, PageRank centrality can be a high-
quality predictor of search difficulty; contrary, if there is a mismatch between
the definition of LON edges and a metaheuristic’s diversification mechanism,
the prediction accuracy of PageRank (like all other measures based on network
analysis) will be quite low.

An obvious limitation of our study is the size of the problem instances used.
Even though we are convinced that our results also hold for larger instances, it
would be interesting to perform further examinations on this, e.g. by sampling
the local optima instead of evolving the whole search space.

Another limitation is of more fundamental nature: our cross-check clearly
indicates that it is not possible to make general statements on the performance
of an algorithm with an arbitrary LON model. Instead, the LON model must
closely match the dynamics of the search method. For instance, in the case
of ILS, the definition of the escape edges must properly consider the dis-
tance of the perturbation step. Our finding that the definition of LON edges
is metaheuristic-specific can also be used for a more thorough studying and
understanding of the search dynamics of other or new local search opera-
tors. If the PageRank is a good predictor of the expected search performance
when applying metaheuristics to combinatorial optimization problems, then
the metaheuristic’s diversification mechanism is well captured by the defini-
tion of the LON edges. Contrary, if the prediction quality of the PageRank
centrality is low for some given definition of LON edges, then the assump-
tions made for the definition of LON edges do not fit to the diversification
mechanisms of the metaheuristic. Thus, we encourage researchers to come up
with more and different types of LON types and to study to which types of
metaheuristic they fit.
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