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ABSTRACT
Local optima networks are a recent model of fitness land-
scapes. They compress the landscape by representing lo-
cal optima as nodes, and search transitions among them as
edges. Previous local optima networks considered transi-
tions based on mutation; this study looks instead at tran-
sitions based on deterministic recombination. We define
and analyse networks based on the recently proposed parti-
tion crossover for k-bounded pseudo-Boolean functions, us-
ing NKq landscapes as a case study. Partition crossover
was initially proposed for the travelling salesman problem,
where it was found to “tunnel” between local optima, i.e.,
jump from local optimum to local optimum. Our network
analysis shows that this also happens for NK landscapes:
local optima are densely connected via partition crossover.
We found marked differences between the adjacent and ran-
dom interaction NK models. Surprisingly, with the random
model, instances have a lower number of local optima on
average, but their networks are more sparse and decompose
into several clusters. There is also large variability in the
size and pattern of connectivity of instances coming from
the same landscape parameter values. These network fea-
tures offer new insight informing why some instances are
harder to solve than others.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search
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1. INTRODUCTION
The number and distribution of local optima are funda-

mental features of fitness landscapes that can impact the
performance of heuristic optimisation methods. In his sem-
inal work [7], F. Glover states: “Perhaps the most conspic-
uous limitation of a heuristic method for problems involving
discrete alternatives is the ability to become trapped at a local
optimum”.

Local Optima Networks (LONs) are a recent network-based
model of combinatorial fitness landscapes capturing the struc-
ture and topology of local optima [12, 13, 16, 17]. They rep-
resent the local optima of the underlying optimisation prob-
lem as vertices; and as edges, possible transitions among
them using a given search operator. Local optima networks
were inspired by work in physics where energy surfaces are
modelled as complex networks [6]. Modelling landscapes as
networks introduces a new set of metrics to analyse com-
putational search spaces and the possibility of visualising
them [9, 10]. Previous work on local optima networks con-
sidered transitions among optima based on mutation opera-
tors; both binary and permutation spaces have been studied
[5, 13]. The main contribution of this article is to instead
consider transitions based on recombination.

Specifically, we consider the partition crossover recently
proposed for k-bounded pseudo-Boolean functions (i.e., real-
valued functions over binary strings where the interactions
between variables is bounded by a constant k) [15]. NK
landscapes, MAX-kSAT, and several graph optimisation prob-
lems, such as MAX-CUT, are examples of these functions.
This class of functions is relevant to evolutionary computa-
tion, combinatorial optimisation, and machine learning.

Partition Crossover (PX) was first introduced for the trav-
elling Salesman Problem (TSP) [19]. The operator exploits
the fact that two “parent” solutions can be decomposed into
a number of partial solutions or sub-tours (i.e., tours com-
pressing a subset of the cities). Each partial solution is lin-
early independent from the other partial solutions, which
means that each partial solution can be evaluated indepen-
dently. For a specific pairing of parents, partial solutions
are also modular so that one partial solution from one par-
ent can replace a partial solution from another parent so as
to always yield a feasible offspring.



Whitley et al. [19] have also shown that when partition
crossover is used to recombine parent solutions that are lo-
cal optima, the offspring are also local optima with a high
probability (around 80% for TSP instances). There are two
reasons for this. (i) PX generates offspring that are guar-
anteed to be “piecewise” locally optimal: no single partial
solution that is inherited form a parent can be improved by
local search, because every partial solution has already been
optimized by local search, and each partial solution is inher-
ited as a unit during recombination. Thus, the only way that
local search can improve an offspring is by discovering an im-
proving move that alters two or more partial solutions. This
rarely happens, which may be explained by a more subtle
secondary factor. (ii) PX is respectful and transmits edges
from the parent solutions. Transmission means all of the
edges in the offspring are inherited from the parents, while
respect that all shared edges in the parents are also inher-
ited by the offspring. In the TSP it is the edges that are
inherited from the parents that impacts the evaluation of
the offspring. Thus, if the parents are locally optimal and
have a very good evaluation, the offspring will also likely
have a very good evaluation, which increases the likelihood
that the offspring will also be locally optimal. In a recent
paper, Tinós, Whitley and Chicano [15] have shown that a
similar decomposition exists for NK landscapes into partial
solutions that are modular and which can be independently
evaluated. They also demonstrated the effectiveness of PX,
and again showed that when it is applied to parents that
are locally optimal, the offspring are always locally optimal
in a restricted hyperplane subspace, and are usually local
optimal in the full search space as well.

This paper defines and analyses local optima networks
where the transitions among optima are based on the ap-
plication of PX over binary spaces such as NK landscapes,
but the results may be extended to MAX-kSAT and other
pseudo-Boolean problems. More specifically, the primary
contributions of the paper are the following:

1. Definition of the mathematical object XLON (cross-
over local optima networks) with a case study consid-
ering PX.

2. Implementation of an effective algorithm for construct-
ing the networks following recent developments which
exploit the structure of k-bounded additive fitness func-
tions, leading to fast deterministic hill-climbing [3].

3. Statistical analysis and visualisation of the extracted
networks.

4. Empirical evidence indicating that the number of local
optima is not necessarily a reliable indicator of search
difficulty in combinatorial optimisation.

2. NK LANDSCAPES
Our study considers the NKq (‘quantized’ NK) family

of landscapes [11], one of several models adding tunnable
neutrality to the standard Kauffman’s NK model [8].
NK landscapes are defined as a real stochastic function

f on binary strings x ∈ BN , f : BN → R. The value of
K determines how many other bits in the string interact
with each bit xi. These bit interactions can be expressed
as sub-functions, fi, where each sub-function takes K + 1
bits as input. These K interacting bits can either be the

nearest neighbours (adjacent model) or selected uniformly at
random (random model). The fitness (evaluation) function
is given by:

f(x) =

N∑
i=1

fi(x|maski), (1)

where maski selects the k = K+1 bits that will be accessed
by sub-function fi. In practice, the mask can be dropped in
as much as it is inherent in the definition of sub-function fi.
In the standard model, the codomain values for each sub-
function fi are randomly generated real numbers from [0, 1].
In NKq landscapes, the fitness contributions are instead in-
tegers drawn from the range [0, q). This allows solutions
with the same fitness (i.e., landscapes with neutrality). Our
study considers a value of q = 100, which produces discrete
landscapes with a very low degree of neutrality. Future work
will study partition crossover local optima networks for neu-
tral landscapes of the type that are common in MAX-kSAT
problems.

It should also be noted that while NK landscapes are the
focus of the current study, the methods used here and the
partition crossover operator can be applied to all pseudo-
Boolean functions with closed form evaluation functions.
Just as every SAT problem can be expressed as a MAX-
kSAT problem, every pseudo-Boolean function with an al-
gebraic evaluation function can be expressed as a quadratic
pseudo-Boolean function [1]. Thus, it should be noted that
NK landscapes where K = 1 are also quadratic pseudo-
Boolean functions (i.e., k = 2). Future work should explore
what happens to the fitness landscape when NK landscapes
with larger values of K are converted into quadratic pseudo-
Boolean functions where k = 2 (K = 1).

3. PARTITION CROSSOVER (PX)
Under partition crossover, the evaluation of the offspring

can be directly obtained from partial evaluations of compo-
nents found in the parents. For NK landscapes, components
are sets of differing bits in the parent solutions with interac-
tions within the sets but no interactions among sets. If the
differing bits found in the two parents can be partitioned
into q components, partition crossover can be used to find
the best of 2q possible offspring. This is done at O(N) cost
per recombination. If the parents are locally optimal, any
offspring must be locally optimal in a (more restricted) hy-
perplane subspace.

Given a subset of variables z of f , we would like to find a
partition π of z such that f can be additively decomposed
into |π| sub-functions gi for i = 1 to |π|, where each gi de-
pends on the variables in the subset πi but does not depend
on the variables in z − πi.

We will use the Variable Interaction Graph (VIG) pro-
posed by Chicano et. al. [3], where the vertices of the graph
are the N variables, and two variables (vertices) are con-
nected by an edge if they appear together in the same sub-
function fi. Note that we can potentially remove additional
edges from the Variable Interaction Graph if the variable
interactions do not result in a nonlinear interaction; this
can be determined by taking the Walsh transforms of the
sub-functions: if i and j appear together in any Walsh coef-
ficient that is non-zero, edge e(vi, vj) is added to the VIG,
otherwise it can be removed. However, in most cases, vari-



ables that appear together in some sub-function also have a
nonlinear interaction.

We are interested in how partition crossover can be used
to partition the VIG.

Proposition 1 ([15]). For any pseudo-Boolean func-
tion with VIG G, V the set of variables of f and z a subset
of V . The most fine grain partition π of z that additively
decomposes f is given by:

f(x) = c+

|π|∑
i=1

gi(x|maski), (2)

where πi ⊆ maski, (z − πi) ∩maski = ∅ and the constant c
does not depend on any variable in z, is the partition induced
by the connected components in the subgraph G[z].

Proposition 1 defines the most fine grain way to additively
decompose f when we are interested in separating the vari-
ables in a subset z. In partition crossover the set of variables
z in which we are interested is the set of differing variables
in the two parent solutions. Thus, instead of the VIG of the
function f , it will be useful in the following to work with a
reduced graph: the recombination graph. Prior to applying
partition crossover it is necessary to construct the VIG, but
the same VIG is common to all recombinations for the same
objective function.

Definition 1 (Recombination Graph [15]).
Let f : BN → R be a pseudo-Boolean function with Vari-
able Interaction Graph G and x, y ∈ BN two solutions. We
define the recombination graph of function f for solutions x
and y as G[x ⊕ y] (where ⊕ denotes the exclusive OR bit-
wise operation), that is the subgraph of G composed of the
variables in which x and y differ.

The first step of the operator is to transfer all common
bits to the offspring. Next, using the two parents x and y,
determine the recombination graph and use Breadth First
Search to find the connected components of the recombina-
tion graph. These connected components form a partition of
the set of variables in x⊕ y (the differing bits in the parent
solutions).

Having determined the partition of variables in x⊕y, test
the two assignments from the two parents. Since this only
includes non-shared assignments to variables, the solutions
from the two parents will be complements. Proposition 1
ensures that we can write f as a linear sum of sub-functions
gi where each one depends on the variables in one compo-
nent πi and not the others. Select the assignment in each
connected component that results in the best evaluation for
the corresponding sub-function gi.

Theorem 1. The Partition Crossover Theorem [15]:
For any k-bounded pseudo-Boolean function f , if the recom-
bination graph of f for solutions x and y contains q con-
nected components, then partition crossover returns the best
of 2q solutions; including the parent solutions.

We will use the following sub-functions to illustrate the
VIG and the construction of a recombination graph. In this
case, N = 10 and K=2 (k=3). The sub-functions are as
follows:
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Figure 1: The upper graph is the Variable In-
teraction Graph (VIG) of the sample function.
When recombining the solutions 0000000000 and
1100011101, the vertices and edges associated with
shared variables 2, 3, 4, 8 are deleted to yield the
recombination graph which is shown below the VIG.
If the recombination graph can be partitioned into q
connected components, then recombination is guar-
anteed to return the best of 2q possible offspring. In
this example, there are only two components.

f0(x0, x1, x6) f1(x1, x4, x8) f2(x2, x3, x5) f3(x3, x2, x6)
f4(x4, x2, x1) f5(x5, x7, x4) f6(x6, x8, x1) f7(x7, x3, x5)

f8(x8, x7, x3) f9(x9, x7, x8)

Each function yields a set of 4 nonlinear Walsh coeffi-
cients. Assume all of the Walsh coefficients are non-zero.
This means that every pair of variables that appear together
in some sub-function are connected by an edge in the VIG.
This set of sub-functions results in the VIG shown in Figure
1.

Assume we wish to recombine two solutions 0000000000
and 1100011101; the variables are numbered from 0 to 9 from
left to right. These two solutions reside in the hyperplane
subspace **000***0* because these zero bits are shared in
common by the parents. If the parents are locally optimal
solutions, then any offspring are provably locally optimal in
the reduced hyperplane subspace (but may or may not be
locally optimal in the full search space).

From the VIG, we will generate the recombination graph
by deleting the variables that share a common value assign-
ment. The edges connected to the variables with common
values are also deleted. We next ask if deleting these vari-
ables and edges “partitions” the recombination graph. In
our example, the variables with shared values are 2, 3, 4
and 8. The variables that have different assignments are 0,
1, 5, 6, 7 and 9. The recombination graph is partitioned
into two independent subgraphs, as illustrated in the lower
graph in Figure 1. This means a new evaluation function
can be constructed:

g(x) = c+ g1(x5, x7, x9) + g2(x0, x1, x6)



For any string that resides in the subspace **000***0*,
f(x) = g(x), therefore g(x) can be used to evaluate any
offspring produced from the parent strings using partition
crossover. Furthermore, in the example shown here, all off-
spring that are produced by partition crossover must also be
locally optimal for the sub-functions g1 and g2.

In general, for every subgraph in the recombination graph,
there will exist a sub-function gi and every offspring gener-
ated by partition crossover will be locally optimal with re-
spect to every sub-function gi. In most cases, the offspring
will also be locally optimal in the full search space. If the
offspring is not a local optima in the full search space, the
offspring can only be improved by first flipping one of the
bits that was shared in common by the parents (meaning
that one cannot flip any bit evaluated by a sub-functions gi
to obtain an improvement.)

4. CROSSOVER NETWORKS (XLON)
In order to produce the crossover networks, PX is applied

to solutions that are locally optimal. To find a useful recom-
bination graph, two parent solutions must share a significant
number of bits in common. Random solutions tend to have
fewer bits in common compared to parents that are local op-
tima. Partition crossover is both deterministic and greedy.
Given two parents, it deterministically generates the recom-
bination graph, and then greedily returns the best possible
partial solution for every sub-function gi. In some cases, the
best possible offspring is one of the parents.

In the XLON model, the nodes will be the set of all local
optima in the landscape with respect to a given neighbour-
hood. As neighbourhoods, we will consider the Hamming
distance 1 and 2 neighbourhoods (i.e., 1-flip and 2-flip). Di-
rected edges will go from parents to their offspring using
partition crossover. Formal definitions and the algorithmic
procedure to construct the networks are detailed below.

4.1 Definitions
A fitness landscape [14] is a triplet (S,N , f) where S is a

set of potential solutions i.e., a search space, N : S −→ 2S , a
neighbourhood structure, is a function that assigns to every
s ∈ S a set of neighbours N (s), and f : S −→ R is a
fitness function that can be pictured as the height of the
corresponding solutions.

In our study, the search space is BN , i.e. the space of
binary strings of length N , so its size is 2N . As neighbour-
hoods, we consider the Hamming distance 1 and 2 neigh-
bourhoods, that is, the set of all solutions at most Hamming
distance 1 or 2, respectively from the current solution.
Vertices (V ): Is the set of local optima in the search space.
A local optimum, which is taken to be a maximum here, is
a solution s′ such that ∀s ∈ N , f(s) ≤ f(s′). Local optima
are exhaustively obtained with Algorithm 1.
PX Edges (EPX): Is the set of directed edges between
parents and offspring after partition crossover. Specifically,
there is an edge ex,z between local optima x and z in V if
x is member of a crossover pair producing z. Either z is a
local optimum directly after applying crossover, or it is the
result of improving the offspring with a next improvement
hill-climber. Multiple edges are possible between a pair of
vertices (x, z) when z is produced by more than one crossover
pair involving x. Partition crossover is not always possible,
that is, for some pairs of local optima no new offspring is
produced and the operator returns the best parent. This

can happen for two reasons. (i) There is no partition of the
VIG (Figure 1) for a pair of parents. (ii) Recombination is
possible, but one of the two parents is better than any off-
spring. These unsuccessful pairings are not captured in the
network-based model; there are no self-loops in the network.
Crossover Local Optima Network (XLON): Is the
graph XLON = G(V,EPX) where nodes are the local op-
tima V , and edges EPX link parents to offspring after parti-
tion crossover. The network is directed, without self-loops,
and can have multiple edges.

4.2 Construction
The construction of the crossover networks proceeds in

two steps: (i) all the vertices (i.e., the set V of local optima)
are identified, (ii) all the pairs of local optima are recom-
bined with partition crossover. That is, if nv = |V | is the
number of vertices, all the nv× (nv− 1)/2 pairs are consid-
ered. If the resulting offspring after crossover is not one of
the parents, then two directed edges are added to the net-
work, both ending in the resulting local optimum and start-
ing from each of the parents. Most successful crossover pairs
produce local optima (between 70% and 90% in our study,
as can be seen in rows named ppx in Table 2). To further
increase the number of local optima an efficient determinis-
tic next-ascent hill climber is started from the non-optima
offspring.

4.2.1 Local optima identification
In order to efficiently identify all the local optima in the

search space we use the concept of Score as defined in [3]. We
will use Si(x) to denote the change in the objective function
when we move from solution x to the one obtained from x
by flipping the i-th bit. Formally:

Si(x) = f(x⊕ 1i)− f(x), (3)

where ⊕ denotes the exclusive OR bitwise operation and 1i
denotes a binary string with 1 in the i-th bit and 0 in the
other bits. A solution x will be a local optimum if there
is no Score Si(x) greater than zero (we are maximising).
Algorithm 1 describes this procedure.

Algorithm 1 Identification of local optima (V )

Output: V (set of local optima)
1: V ← ∅
2: for x ∈ Bn do
3: if Si(x) ≤ 0 for all 1 ≤ i ≤ n then
4: V ← V ∪ {x}
5: end if
6: end for

Two aspects of the implementation of Algorithm 1 make
it very efficient. First, the Scores are computed from scratch
only for the first solution, and thereafter, they are stored in
a vector and updated incrementally. Second, solutions are
explored following a Gray code order; the move from one
solution to the next in the sequence flips only a single bit.
Under this scenario, we can use the algorithms proposed by
Chicano et al. [3], Whitley and Chen [18] or Chen et al. [2] to
update the Score vector in constant time for pseudo-Boolean
problems with bounded epistasis. Thus, the complexity of
running Algorithm 1 in an NK landscape is O(2N ), propor-
tional to the size of the search space. It is worth mention-
ing that these speed ups allow the exhaustive exploration of



larger landscapes than was possible before. Our study con-
siders N values up to 30, while a maximum of N = 18 was
considered in previous mutation based local optima network
studies for NK landscapes [13, 17].

4.2.2 Network construction
Once all the local optima are identified, the edges are

computed following Algorithm 2, which uses the partition
crossover proposed by Tinós et al. [15], and the next im-
provement deterministic hill-climber proposed by Chicano
et al. [3]. Two local optima x and z are connected by an
edge ex,z if z can be obtained from x by applying partition
crossover to x and another solution y and then running the
hill-climber to reach z.

Algorithm 2 Network construction

Input: V
Output: XLON = G(V,EPX)
1: for {x, y} ⊆ V do {All pairs of local optima}
2: w ← PartitionCrossover(x,y)
3: z ← HillClimber (w)
4: if z 6= x and z 6= y then
5: EPX ← EPX ∪ {(x, z), (y, z)}
6: end if
7: end for

5. NETWORK ANALYSIS
Our study considers both random and adjacentNKq land-

scapes. Random NKq landscapes are NP-hard problems.
However, the adjacent NK landscapes can be solved to opti-
mality in polynomial time. In the adjacent NK landscapes,
two adjacent sub-functions, fi and fi+1 share k − 1 = K
variables.
NKq landscapes were generated for values of q = 100,K ∈
{2, 3}, and N ∈ {20, 25, 30}. In addition, Hamming distance
neighbourhoods of size r ∈ {1, 2} were considered. When
r = 1 the neighbourhood is the standard bit flip neighbour-
hood. Up to two bits are flipped when r = 2, yielding the
Hamming distance 2 neighbourhood. Since the local optima
networks with r = 2 were small and very sparsely connected,
most of the network analysis is done for r = 1. N = 20 still
allows easy visual inspection, and 30 is (approximately) the
maximum size for which the networks can be extracted in
reasonable time. K values of 2 and 3 produced networks
which are not too sparse and have a small number of con-
nected components. Larger values of K produced sparsely
connected networks, specially for the random model, which
indicates that finding successful partition crossover pairs
(i.e., pairs producing offspring different than their parents)
is harder as K increases.

A first approach to analyse the structure of a network
is often to visualise it. Software for analysing and visu-
alising networks is currently available in various languages
and environments. Here we use the R statistical language
together with the igraph package [4]. Figure 2 illustrates
two examples of local optima networks for the studied NKq
landscapes with r = 1 and adjacent (left plot) and random
interaction (right plot). Nodes are local optima, their area
is proportional to fitness and the global optimum is high-
lighted in red (darker color). Edges link parents to offspring
after partition crossover. Dark (black) edges indicate those

cases where the result of crossover was not a local optimum
and thus required improvement with hill-climbing. Notice
that this only happens in few cases. Our statistical analy-
sis revealed than 70% to 90% of the edges represent local
optima obtained directly after partition crossover, with the
percentage being higher for the adjacent model (rows named
ppx in Table 2).

The networks in Figure 2 illustrate a marked difference
we observed between the random and adjacent NK models.
Networks for the adjacent model have on average a larger
number of nodes under the Hamming distance 1 neighbour-
hood (r = 1), are densely connected and feature a single
or a very small number of connected components. On the
other hand, networks for the random model have on average
fewer nodes, tend to be sparser, and decompose into several
clusters.

Visualisation is only useful for small networks, we there-
fore turn to the statistical analysis of larger networks. Since
the mid-1990s, there has been an explosion of interest in net-
works and network-based approaches to the modelling and
analysis of complex systems. Among the many features and
metrics that can be collected from complex networks [9], we
selected only a few after some preliminary experiments, in-
cluding those that better distinguish among the landscape
classes, and intuitively may impact the dynamic of search
(Table 1).

Table 1: Selected metrics.
nv Number of vertices (local optima).
ne Number of edges.
f̄ Average fitness of local optima.
nc Number of connected components (or clusters).
δ̄ Average in-degree (incoming edges).
ppx Proportion of edges where the offspring was a local

optimum immediately after PX.

For each landscape parameter set 30 instances were gen-
erated (with different random seeds) and their recombina-
tion local optima networks extracted following the procedure
described in Section 4.2. Table 2 summarises the network
metrics as mean and standard deviation values (X̄σ) on the
select sets of landscape parameters (i.e., N ∈ {20, 25, 30},
K ∈ {2, 3}, and q = 100) and the two interaction models:
adjacent and random. The first half of the table shows the
landscapes for K = 2, while the bottom half those with
K = 3. The top part of each half of Table 2 shows the met-
rics for a Hamming neighbourhood of radius r = 1, while
the bottom part for r = 2. For r = 2 only the 3 most basic
network metrics, namely number of nodes and edges (nv,
ne) and the average fitness of local optima, are shown as
these are small and sparse networks.

As expected, for a fixed K the number of local optima
(nv) increases steadily with increasing N . Similarly, for a
fixed N , the number of local optima increases rapidly with
increasing K. What is surprising is that the number of local
optima is consistently (i.e., for all landscape parameters)
larger for the adjacent model as compared to the random
model for a Hamming distance 1 neighbourhood. To the
best of our knowledge this has not been reported before.

The box plots in Figure 3 show the distribution of the
number of local optima across the 30 instances for a selected
landscape class, namely N = 20,K = 3. Each plot reports
the two models (adjacent and random). The top plot refers



Figure 2: PX local optima networks for two selected instances with values N = 20, K = 2, q = 100. Nodes are
local optima and edges connect parents to offspring after partition crossover (black edges indicate PX followed
by hill-climbing). Vertex area is proportional to their fitness and the global optimum is highlighted in red
(darker color). Left: Adjacent model, the network has 60 nodes and features a single connected component.
Right: Random model, the network has 50 nodes (local optima) and features 7 connected components, 4 of
which are isolated nodes.

to the Hamming distance 1 neighbourhoods (r = 1) and the
bottom plot to distance 2 (r = 2). The number of local
optima is substantially lower for r = 2, but their average
fitness is higher as can be seen in Table 2 (rows f̄ and f̄r=2).

The number of local optima is often considered to corre-
late with problem difficulty. However, this is not necessarily
the case as our results indicate. The number of local op-
tima is higher for the adjacent model and the distance 1
neighbourhood (Figure 3, top plot). But we know that: (i)
the adjacent NK landscapes admit a polynomial time solu-
tion; (ii) empirical results indicate that a simple GA using
partition crossover can easily find the global optimum for
adjacent NK landscapes [15]. This is also confirmed by
the experiments reported in section 6. Furthermore, when
a Hamming distance 2 neighbourhood (r = 2) is used on
exactly the same problems, there are more local optima for
the random NK landscapes when r = 2 (Figure 3, bottom
plot). Thus, while the adjacent NK landscapes yield more
local optima for r = 1, most of these are“weak” local optima
and disappear when r = 2.

The number of edges also clearly separates the adjacent
from the random model. Networks are more densely con-
nected for the adjacent model, which indicates a larger num-
ber of successful crossover pairs in this case. For r = 2, net-
works are sparsely connected (have a low number of edges),
specially for the random model. The remaining 3 network
features, number of components (nc), average in-degree (δ̄)
and proportion of crossover pairs producing local optima
(ppx), were only computed for r = 1. These metrics also
clearly separate the two landscape models.

On one hand, the adjacent model shows an average num-
ber of components very close to one or even exactly one
(i.e., a single connected component) for the larger networks
(N ∈ {25, 30},K = 3), and a noticeable higher average in-
degree (δ̄), indicating that each node is produced by a larger
number of crossover pairs. For both values of K the propor-
tion of edges directly producing local optima after crossover
(ppx) is higher. On the other hand, the random model re-
veals a much higher number of connected components, close
to 100 on average for the landscapes with K = 3; and the
in-degrees (δ̄) are around an order of magnitude lower as
compared to those for the respective adjacent landscapes.
For both values of K the proportion of edges directly pro-
ducing local optima after crossover (ppx) is lower.

Our analysis suggests that the adjacent model is easier
to solve by a PX-based GA as compared to the random
model, despite the former producing a larger number of local
optima on average. We hypothesise that search difficulty
for a PX-based algorithm on the random model is related to
the decomposition of the network into clusters and the low
average in-degree.

6. ALGORITHM PERFORMANCE
An empirical study was conducted on the largest instances

used in the network analysis, i.e., with N = 30, the two val-
ues of K ∈ {2, 3} and the two landscape models. The hybrid
genetic algorithm using partition crossover implemented in
[15] was used. This implementation applies bit-flip local
search with first improvement to random solutions in order
to generate the initial population. Elitism is used to preserve



Table 2: Network metrics (as described in Table 1) for both random and adjacent NKq landscapes with
N ∈ {20, 25, 30} and q = 100. Top: K = 2. Bottom: K = 3. For each set of landscape parameters, results are
mean and standard deviations (X̄σ) of 30 networks produced with different random seeds. Unless otherwise
stated metrics refer to local optima networks with a Hamming distance neighbourhood r = 1.

K = 2

N = 20 N = 25 N = 30
Adjacent Random Adjacent Random Adjacent Random

nv 69.8732.61 58.3027.30 216.40120.86 166.5398.53 705.87545.48 448.53254.65
ne 688.83556.39 179.73206.19 6869.477291.94 1950.502473.02 80106.23139938.45 12683.7013913.89
f̄ 1363.8847.95 1352.4746.60 1701.8455.19 1680.7772.68 2045.0858.09 2033.9482.76
nc 1.470.68 8.405.61 1.600.50 4.903.12 1.430.50 2.572.08
δ̄ 8.363.54 2.461.73 25.2412.30 8.646.26 75.5351.18 21.3713.80
ppx 0.870.08 0.810.13 0.900.07 0.800.11 0.880.08 0.770.08
nvr=2 6.203.43 6.972.86 10.577.99 13.606.91 14.7010.63 23.5715.01
ner=2 5.006.90 0.872.40 23.5743.88 4.607.39 47.4363.44 21.2334.04
f̄r=2 1450.7368.80 1419.5859.02 1805.5469.20 1764.6778.27 2173.3762.41 2129.0191.14

K = 3

nv 265.2086.40 171.53350.78 1105.97505.38 648.33172.17 4386.402274.61 2452.20803.55
ne 3730.632088.81 154.80146.32 77707.7069844.47 2176.802519.51 1321295.271298347.89 27912.1028985.72
f̄ 1346.8436.88 1341.5039.92 1676.0143.18 1670.2341.44 2004.2144.46 2002.8844.95
nc 1.900.10 88.5024.95 1.170.38 111.5355.92 1.100.31 83.3758.24
δ̄ 12.963.88 0.800.61 60.1323.23 3.102.65 245.87111.32 10.427.21
ppx 0.810.07 0.740.12 0.800.06 0.690.09 0.790.05 0.680.07
nvr=2 15.905.78 23.107.05 36.8015.74 53.6713.49 67.8739.60 128.6746.54
ner=2 11.839.63 0.301.02 120.2093.54 8.8017.23 514.33523.32 57.07146.34
f̄r=2 1450.5547.64 1411.4346.77 1795.3455.11 1761.9242.94 2154.8755.59 2111.6252.77

r=1, Adj r=1, Rnd
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Figure 3: Distribution of the number of local op-
tima for NKq landscapes with N = 20,K = 3, and
Hamming distance neighborhoods r ∈ {1, 2}
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Figure 4: Distribution of the number of generations
to find the global optima for a hybrid GA ruling on
NKq landscapes with N = 30, K ∈ {2, 3} and the two
epistatic models.

the current best solution, while binary tournament selection
is used to select parents for crossover and mutation. The
population size was set to 10 individuals, given the small
search spaces.

Instances are small and the global optimum was quickly
found in all of them. Therefore, performance differences
among landscape classes were not easy to assess. Figure 4
shows box-plots with the distribution of the number of gen-
erations before finding the global optimum when running
the hybrid GA on the four landscape classes indicated. The
values summarise the medians of 50 runs on each of the 30
instances for each landscape class. The number of genera-
tions to find the optimum is shorter for the adjacent model
as compared to the random model (for both values of K),
despite the former having a larger number of local optima.



7. CONCLUSIONS
We defined and analysed local optima networks with edges

based on the recently proposed partition crossover for pseudo-
Boolean optimisation, using the NKq landscape as a case
study. Our network analysis revealed that for fixed N and
K parameters and the 1-flip neighbourhood, the adjacent
epistatic model produces much larger networks (i.e., with a
larger number of local optima) as compared with the random
model. It is well known that the adjacent model is easier to
solve, which indicates that the number of local optima in a
landscape is not necessarily a reliable indicator of difficulty.
Our study of networks with Hamming distance 2 neighbour-
hood (r = 2) revealed that this reverses, i.e., the number
of local optima for the random model is higher than for the
adjacent model. Thus, while the adjacent NK landscapes
yield more local optima for r = 1, most of these are “weak”
local optima and disappear when r = 2.

The empirical results also show that the crossover net-
works for the random model are more sparsely connected
than for the adjacent model. This means partition crossover
does not as easily move between all local optima on random
NK landscapes.

Future work will study crossover local optima networks for
larger instances (by adequate sampling of the search space)
and other combinatorial optimisation problems. The ulti-
mate goal is to have a deeper understanding of the topo-
logical features of combinatorial search spaces over different
search operators, which can help to predict performance and
improve the design of heuristic search algorithms.
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