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ABSTRACT
Recent work discovered that �tness landscapes induced by Iterated
Local Search (ILS) may consist of multiple clusters, denoted as
funnels or communities of local optima. Such studies exist only
for perturbation operators (kicks) with low strength. We examine
how di�erent strengths of the ILS perturbation operator a�ect the
number and size of clusters. We present an empirical study based on
local optima networks from NK �tness landscapes. Our results show
that a properly selected perturbation strength can help overcome
the e�ect of ILS ge�ing trapped in clusters of local optima. �is
has implications for designing e�ective ILS approaches in practice,
where traditionally only small perturbations or complete restarts
are applied, with the middle ground of intermediate perturbation
strengths largely unexplored.
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1 INTRODUCTION
�e concept of �tness landscapes is frequently used to examine the
structure of problems and the behavior of metaheuristics [25, 33, 36].
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�is is especially relevant for understanding and predicting the per-
formance of metaheuristic search on di�erent problems. Ochoa
et al. [27] introduced local optima networks (LONs), which allow
us to examine the behavior of metaheuristics by network analysis.
A local optima network is a representation of the stochastic pro-
cess of a search algorithm in a particular problem instance. LONs
have been used frequently to predict the performance of di�erent
metaheuristics [7, 9, 13, 16]. A number of studies indicate that local
optima in �tness landscapes are distributed among multiple clus-
ters. Such structures have been observed in the �eld of continuous
optimization [20, 22, 24], denoted as “funnels”. Earlier [5, 12], as
well as recent work with local optima networks [28, 29], show that
this phenomenon occurs in combinatorial optimization too.

A study by Herrmann et al. [14] shows that there is a strong
relationship between the occurrence of a multi-cluster structure
and the performance of iterated local search (ILS). �e fraction
of independent runs in which ILS �nds the1 global optimum (hit
rate) correlates with the size of the cluster of the global optimum
(peak cluster), and also with the total number of clusters. ILS is a
search strategy which combines local search with a perturbation
operator to overcome the situation where the algorithm gets stuck
in a local optimum. A key factor of using ILS is the strength of
the perturbation, which is the number of solution components
that are modi�ed at once [23]. Herrmann et al. used a �xed, low
perturbation strength for their study. �us, it is unclear how the
strength of the perturbation operator in�uences the occurrence of
a cluster structure. Here, we intend to overcome this limitation
and present results from a follow-up experiment based on local
optima networks. For our experiment, we study a large number of
LONs with escape edges [40]. Escape edges re�ect the perturbations
of ILS. As �tness landscapes, we used instances of the Kau�man
NK model [17, 19], which is a binary combinatorial optimization
problem.

Another limitation in the literature is that we can only explain
the hit rate of metaheuristics by network features of LONs (e.g. by
the centrality of the global optimum [7, 9, 13, 16], or the number of

1Many optimization problems have multiple global optima. We assume that there is
a single global optimum. �e Kau�man NK model used in [14] and in our study has
“a single sequence which is the only and global optimum” [19, p.218].
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clusters [15]). Yet, no network feature is known which su�ciently
explains another important measure of performance: the search
costs necessary to �nd the global optimum. Our study also pro-
vides some indication that it is possible to predict this performance
measure with LONs.

Our paper is structured as follows: Sections 2–3 describe the
fundamentals2. In Section 2, we explain the concept of �tness
landscapes and local optima networks with escape edges. Sec-
tion 3 summarizes the principle of iterated local search. Section 4
describes our experimental setup, i.e. the Kau�man NK model,
the methodology for analyzing local optima networks, and our
approach to determine the performance of ILS empirically. Our
results are presented and discussed in Section 5. A brief summary
and our conclusions are in Section 6.

2 FITNESS LANDSCAPES & LOCAL OPTIMA
NETWORKS

�e notion of �tness landscapes was introduced to describe the
dynamics of adaptation in nature [42]. Fitness landscapes are also
well suited to describe the structure of problems and the dynam-
ics of heuristic search in combinatorial optimization. Formally, a
�tness landscape is a triplet {S,N , f }, where S is the search space,
f is a �tness function, and N (S) a neighborhood structure. �e
search space S contains all valid candidate solutions. �e �tness
function f : S → R≥0 assigns a �tness value3 to each s ∈ S . �e
neighborhood function N : S → P(S) assigns a set of neighbors
N (s) to every s ∈ S . �e neighborhood is usually de�ned as the
set of solutions that are reachable by single applications of a given
move operator.

Local search algorithms iteratively try to improve a solution by
applying small changes. A simple implementation of local search
is the best improvement hill climber as outlined by Algorithm 1.

�e algorithm usually starts with a random solution. It scans the
neighborhood of the current solution and selects the best neighbor
with a superior �tness as the next solution. �is procedure is
repeated until no be�er neighbor is found. �en, the algorithm has
reached a local optimum and terminates.

A local optimum is a solution with higher �tness than all its
neighbors. A greedy search method moving from a solution to a
neighboring solution and accepting only improvements, cannot
overcome local optima [11]. A higher number of local optima leads
to a landscape that is more “rugged”, which o�en indicates a higher
search di�culty for local search [41].

A local optimum is surrounded by a basin of a�raction, i.e., the set
of solutions that will converge to the given optimum a�er running
hill climbing starting from them. �e basin around a local optimum
lo is de�ned as a function

B : lo → P(S\LO) (1)

which assigns an element from the set of all subsets (power set P)
over the solutions in the search space to each local optimum lo ∈ LO
(the set of all local optima).

2For the reader’s convenience, we wanted this paper to be self-contained and as
comprehensible as possible. In the introductory sections, we included descriptions
and formal de�nitions following the explanations in [15].
3We assume that the �tness function returns non-negative values.

Algorithm 1 Best Improvement Hill Climbing (hillClimb)
Require: Solution space S ,

Fitness function f (S),
Neighborhood function N (S),
Initial solution s0

1: i← 0
2: repeat
3: choose x ∈ N (si ) s.t. f (x) =maxx ∈N (si )(f (x))
4: if f (x) > f (si ) then
5: si+1 ← x
6: else
7: si+1 ← si
8: end if
9: i ← i + 1

10: until si is a local optimum: {x ∈ N (si ) : f (x) > f (si )} = ∅
11: return si

A local optima network (LON; [27]) is a compressed representa-
tion of a �tness landscape that can be studied using the complex-
network analysis framework. Complex networks have been used
to study the structure and dynamics of systems arising in almost
every aspect of our life, made of numerous interacting components
[1, 4]. Studies on the dynamics in networks include the in�uence of
nodes (centrality) as well as information �ow and di�usion [6, 38].
LONs are a novel way to examine the trajectory of algorithms in
�tness landscapes.

Mathematically, a network is just a graph G = (V ,E) with the
set of vertices V and the set of edges E. In LONs, the vertex set V
represents all local optima of the �tness landscape. An edge exists
between two nodes (local optima), if there is a potential transition
between them with a given search operator. �e edges are directed
and weighted. �e edge weights wx,y represent the probability
that a search algorithm moves from local optimum lox to a solution
in the basin around loy , assuming that the current state is lox .
Verel et al. [40] introduced the concept of escape edges, which are
de�ned according to the distance function of the �tness landscape
d (minimal number of moves between two solutions). An escape
edge is de�ned as follows: there exists a directed edge exy (escape
edge) from local optimum lox to loy if there is a solution s with

d(s, lox ) = D (2)
and

s ∈ B(loy ). (3)
�e weight wxy of edge exy is the probability that a search algo-
rithm can escape from the local optimum lox into the basin around
loy . �e constant D > 0 determines the distance that is used for the
a�empt to escape from a local optimum basin. A LON with escape
edges is a model to describe the stochastic process of iterated local
search in a �tness landscape [13].

3 ITERATED LOCAL SEARCH
Iterated local search is a simple but successful search strategy. It
operates by iteratively alternating between applying a move opera-
tor to the incumbent solution and restarting local search from the
perturbed solution. �e local search stage focuses on promising
areas of the search space, whereas the perturbation stage diversi�es
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and explores new areas [34]. �is search principle has been redis-
covered multiple times, within di�erent research communities and
with various names, such as the Chained Lin-Kernighan heuristic
for the traveling salesman problem [2]. �e term iterated local
search (ILS) was proposed in [23]. ILS has been used in several local
optima network studies, as the escape-edges closely resemble the
dynamics of this metaheuristic [9, 13, 29, 40].

Algorithm 2 outlines the functionality of ILS. �e process starts
with a randomly selected solution s0 ∈ S , and follows with a hill
climbing procedure with best improvement as selection rule (algo-
rithm 1): from the neighborhood N (s), the solution with highest
�tness is selected. �e neighborhood N (s) is the set of solutions
that can be reached by performing an incremental change to s . �e
e�ort of this step depends on the size of the neighborhood |N (s)|, as
it requires a scan of the whole neighborhood of s . �is local search
step (hill climbing) is repeated until it reaches a local optimum s∗,
i.e no further improvement is possible. �en, ILS performs a diversi-
�cation step by applying a perturbation with strength γ to the local
optimum, resulting in s ′. �e strength is the number of solution
components that are changed during this step, e.g. the number
of bits that are randomly �ipped. As a next step, hill climbing is
started again from s ′, until the next local optimum s∗

′ is reached. If
the new local optimum s∗

′ is di�erent from the previous s∗ and has
higher �tness, the algorithm has “escaped” to a new local optimum,
and the change is accepted. Otherwise, another perturbation is
applied to s∗. �is procedure is repeated until a termination con-
dition is met, e.g. a �xed number of escapes without any further
improvement.

Algorithm 2 Iterated Local Search (ILS)
Require: Solution space S ,

Fitness function f (S),
Neighborhood function N (S),
Perturbation strength γ ,
Stopping threshold t

1: Choose initial random solution s0 ∈ S
2: s∗← hillClimb(s0)
3: i ← 0
4: repeat
5: s ′← perturbation(s∗, γ )
6: s∗

′ ← hillClimb(s′ )
7: if f (s∗′) > f (s∗) then
8: s∗ ← s∗

′

9: i ← 0
10: end if
11: i ← i + 1
12: until i ≥ t
13: return s∗

4 EXPERIMENTAL SETUP
4.1 Kau�man NK Model
For our experiments, we calculated the local optima networks for
1, 200 instances of the Kau�man NK model [18]. �e NK model
is a combinatorial optimization problem from the class of pseudo-
Boolean functions. An instance is de�ned by two parameters: N is

the number of binary optimization variables, andK is the number of
co-variables per variable. �e size of the search space S is |S | = 2N .
�e �tness function

fNK : {0, 1}N → [0.0, 1.0] (4)

assigns a value to each combination of bits. �e �tness fNK (s) of
a solution s is the average of the values of N sub-functions (one
for each bit). Each sub-function fi assigns a �tness contribution
for each bit i , depending on the value of bit i and K other bits
(co-variables) that were randomly selected before instantiation:

fi : {0, 1}K+1 → [0.0, 1.0]. (5)

�e parameter K determines the number of co-variables per opti-
mization variable (epistasis). All values of the �tness functionfNK
are normalized to values between 0.0 and 1.0, with fNK (sopt ) = 1
as the �tness of the global optimum sopt . In general, a higher
value of K leads to a landscape that has more local optima and is
more rugged [41]. Landscapes with higher values of K are more
di�cult for evolutionary algorithms [26]. �e distance between
two solutions x ,y ∈ S is calculated by the Hamming distance
d(x ,y) =

n∑
i=0
|xi −yi |, i.e., the number of bits that are set to di�erent

values when comparing two solutions.
We randomly generated 3x400 NK �tness landscapes with N =

15 optimization variables and di�erent values of K ∈ {3, 6, 9}. �us,
we have 400 problems instances each for the three levels of epistasis
K . �e size N of our problem instances is relatively low, since the
computational e�ort for the experiments grows factorially by the
problem size N (especially calculating the local optima networks is
time-consuming).

4.2 Analysis of Local Optima Networks
For each problem instance, we extracted 15 local optima networks
with escape edges, one for each value of the distance parameter
D = [1, 2, ..15]. In order to study the in�uence of the distance D,
we analyzed and compared the structural properties of the di�erent
LONs. We calculated the following measures:

• #cl : the number of clusters detected by a community de-
tection algorithm (MCL, see below),

• clpeak: the size of the global optimum’s cluster (i.e., the
number of nodes) over the total number of local optima,

• rwdist : the average random walk distance in the LON
(considering edge weights) until the global optimum is
found (the distance is the number of nodes traversed),

• dens: the graph density of the LON, i.e. the number of
actual edges (arcs) by the number of potential edges.

To detect the clusters in the LONs, we used the Markov cluster
algorithm (MCL [39]) for community detection, which has already
been tested in earlier studies on LONs [8, 15]. Community detec-
tion is a relaxed variant of graph partitioning [37] and a rather
exploratory method of network analysis. A community detection
algorithm is free in determining the number of communities or the
number of nodes per community. A very general de�nition of a
community is a group of nodes that have more links among each
other than to nodes in other communities. However, the de�nition
of a community depends on the discipline applied and there ex-
ists a variety of algorithms that have been validated for di�erent
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purposes [10, 31]. MCL is an appropriate method since it is based
on the idea of stochastic �ows in a network. �is matches recent
�ndings [13] that a LON represents the stochastic process of an
algorithm in a particular �tness landscape.

Algorithm 3 Markov Cluster Algorithm (MCL)
Require: Graph G,

Power Parameter p,
In�ation Parameter r

1: E = AdjacencyMatrix(G)
2: repeat
3: {Expand Matrix}
4: E = Ep

5: for all Ai ∈ E do
6: {In�ate Columns}
7: Ei = Ari
8: Ei = normalizeVector (Ei )
9: end for

10: until E has converged
11: return E

A description of MCL is given in Algorithm 3. LetG be the graph
of a LON. E is the adjacency matrix containing the weights of the
directed edges in G. Since the edge weights are the non-negative
probabilities to move from a given local optimum into the basin
around another local optimum, the probabilities of all columns in E
sum up to 1. �us, E is a stochastic matrix, i.e., a transition matrix
in a discrete-time Markov chain.

To identify communities inG , MCL applies two mechanisms: ex-
pansion and in�ation. �e expansion operator raises the adjacency
matrix E to a non-negative power p. �is ensures that di�erent re-
gions of the graph stay connected. �e second mechanism is the in-
�ation operator. In�ation raises each column Ei from the adjacency
matrix E to a non-negative power r . �is increases the weights of
heavy-weighted edges, whereas the weights of low-weighted edges
are reduced. Subsequently, a re-normalization ensures that each
column again sums up to 1, which is a constraint for a stochastic
matrix of a Markovian process. Both mechanisms are repeated
until the algorithm converges, i.e., the transition matrix E reaches
a steady state. For our NK landscapes with N = 15, this state is
usually reached a�er 20 − 30 iterations.

4.3 Determining Empirical Performance of ILS
We applied ILS to all our problem instances to study the behavior
and performance by statistical analysis of a large sample. For each
problem instance, we performed 15 × 10, 000 independent runs. In
each set of 10,000 runs, we used a �xed perturbation strength with
γ ∈ [1, 2, ..15]. For the hill climbing steps procedure in ILS, we
assumed that two solutions x ,y are neighbors if their Hamming
distance is equal to one (dmax = 1). �us, a local search step �ips
exactly one bit of the current solution.

In analogy to our network analysis, we determined the following
empirical measures for each �tness landscape, and each value of γ :

• hitils: �e fraction of independent runs which found the
global optimum,

• costils: �e average number of �tness function evaluations
used in those independent runs which found the global
optimum4,

We used a Java implementation to generate the NK landscapes,
to extract the LONs, and to apply ILS. We ran the experiments
on a cluster using 64 cores with 256 GB of RAM per node. �e
running time per �tness landscape was approx. 30 minutes in the
case of low epistasis, and 1.5 hours in the case of high epistasis. We
implemented the Markov cluster algorithm using Numerical Python
[30]. Statistical analysis was done with R [32], visualizations of the
networks in Figure 1 with Gephi [3].

5 RESULTS
5.1 Visual Inspection of the LONs and the Data
First, we take a look at our visualization of three LONs in Figure 1.
All the three LONs have been extracted from the same NK �tness
landscape, using di�erent values for the escape distance D. �e
node color shows the clusters as obtained by community detec-
tion. Apparently, the number of clusters is high when D is low
or high. An intermediate value of D leads to a LON in which all
the local optima belong to the same, giant cluster (including the
global optimum). Coincidentally, we observe a similar pa�ern for
the number of edges: a LON extracted with low or high values of
D has a sparse connection structure, whereas the network with
D ≈ N /2 exhibits a strongly interconnected structure with many
edges. �e lack of edges in the case where D is low or high o�ers
a possible explanation for the occurrence of clusters: networks
with few connections are more likely to decompose into several
components. �e data in Table 1 con�rm our observations: for
all values of K , the average network density 〈dens〉 �rst increases
with D, reaching a maximum at D = 8 and then again decreases.
�e same holds for the average number of clusters 〈#cl〉 and the
average size of the global optimum’s cluster 〈clpeak〉.

A possible explanation for the curvilinear progression of the net-
work density over the escape distance D is that the number of po-
tentially possible bit �ips follows a binomial distribution:

(N
D
)
, with

N as the number of binary optimization variables (here: N = 15),
and D as the distance of the escape step used when computing the
LON (here: D ∈ [1, 2, ..15]). �is is an important �nding, since
the literature generally assumes that a stronger perturbation op-
erator introduces more diversi�cation [23], leading to a random
search in the extreme cases. Our �ndings indicate that this does
not necessarily apply to problems with a binary representation.

5.2 Hit Rate of ILS
Next, we study how the perturbation strength γ in�uences the prob-
ability to �nd the global optimum with ILS. We intend to explain
the behavior of ILS by our results obtained from the analysis of the
LONs. Figure 2 (top) shows the empirical average hit rate of ILS

4We did not consider the costs of the runs which did not �nd the global optimum. We
used a large number of �tness function evaluations as a stopping criterion for ILS to
simulate a theoretically unlimited search time available to the algorithm (10× the size
of the search space). However, it is impossible to predict whether or not the algorithm
will eventually terminate even a�er a large number of iterations. �us, these runs had
to be excluded from our cost statistics.
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(a) LON with D = 2 (b) LON with D = 8 (c) LON with D = 14

Figure 1: �ree LONswith escape edges, extracted from the sameNK�tness landscape (N = 15,K = 3), but with di�erent values
for the escape distance D. Each node represents the basin around a local optimum. �e nodes are colored by their community
membership (the red clusters contain the global optimum). �e node size represents the �tness of the local optimum. �e
networks have the highest graph density (number of edges by the number of potential edges) for D ≈ N /2. �e density
decreases to both sides with a higher or lower value of D.

K γ = D 〈hitils〉 〈costils〉 〈#cl〉 〈clpeak〉 〈rwdist〉 〈dens〉
3 2 0.77 0.04 1.66 0.78 2.17 0.16
3 4 0.99 0.06 1.02 0.99 2.47 0.41
3 6 1.00 0.03 1.00 1.00 2.40 0.49
3 8 1.00 0.03 1.00 1.00 2.37 0.49
3 10 0.99 0.10 1.02 0.99 2.35 0.45
3 12 0.88 0.11 1.32 0.90 2.19 0.32
3 14 0.50 0.01 4.22 0.52 1.45 0.10
6 2 0.55 0.06 3.09 0.56 2.76 0.08
6 4 0.97 0.14 1.07 0.97 3.43 0.32
6 6 1.00 0.06 1.00 1.00 3.41 0.47
6 8 1.00 0.09 1.00 1.00 3.40 0.48
6 10 0.95 0.22 1.10 0.96 3.36 0.41
6 12 0.79 0.13 1.66 0.82 3.06 0.21
6 14 0.33 0.02 9.10 0.36 2.01 0.03
9 2 0.37 0.07 5.01 0.38 3.00 0.05
9 4 0.93 0.24 1.18 0.93 4.03 0.26
9 6 0.99 0.13 1.01 0.99 4.12 0.44
9 8 1.00 0.15 1.00 1.00 4.11 0.47
9 10 0.94 0.21 1.13 0.94 4.05 0.36
9 12 0.74 0.16 1.79 0.76 3.69 0.15
9 14 0.21 0.02 16.61 0.23 2.23 0.02
Table 1: For each combination of K and γ = D (le� columns),
we show the data from the empirical performance of ILS
(columns in themiddle) and the data obtained from the anal-
ysis of the LONs (right columns). All values have been aver-
aged across all landscapes, forming groups for all combina-
tions of the parameter K and γ= D. To reduce the size of the
table, we only show the data for even values of γ = D.

over the strength of the perturbation operator. We observe a distri-
bution that exhibits a maximum for γ ≈ N /2, and monotonously
decreases towards high and low values of D.

For increasing K , the graph becomes more narrow, i.e. the av-
erage hit rate is constantly lower for any perturbation strength γ .
In general, the hit rate is lower for higher values of K , which is as

expected, since a higher K makes heuristic search more di�cult
(cf. Section 4.1). For intermediate values of γ , the average hit rates
approach a plateau of 100% in all three cases. �e curves in Figure 2
(bo�om) show the average size of the global optimum’s cluster and
the number of clusters over the distance D in the LONs. We can
observe a nearly identical shape of the curves. �e multi-cluster
structure disappears for intermediate values of D. Simultaneously,
the average hit rate of ILS increases. Apparently, a lower number of
clusters increases the chances to �nd the global optimum. On the
other hand, a multi-cluster structure occurs when the perturbation
operator is too weak (or too strong) to introduce enough diversi�-
cation in order to scan the whole search space. �e intermediately
strong perturbation maximizes the diversi�cation, connecting the
landscape to a giant cluster and thus maximizing the chance to �nd
the global optimum. �e similarity between the global optimum’s
size and the hit rate is no surprise, as this close relationship has
already been observed in [14].

Another observation is that the curves in Figure 2 are not per-
fectly symmetric, despite being an indirect consequence of the
binomial distribution for the number of potential edges (arcs). For
instance, we compare the global optimum’s cluster size for D = 1
to its binomial counterpart5, which is D = N − 1 = 14. We can
see that all the values are higher for D = 14 (which holds for the
clustering over γ , too). Even though we have not included further
systematical statistical evidence, we can observe this e�ect for the
other value pairs of D or γ that are binomial counterparts: a sup-
posedly equally strong operator seems to achieve a slightly higher
hit rate when it is chosen from the right side of the curve. As an
explanation, we assume that a low perturbation strength kicks ILS
into the same basin of a�raction with a higher probability than a
very strong operator. �us, despite the nearly symmetric cluster
structure, the hit rate is biased by properties of the landscape (e.g.
locality).

5 (N
D
)
=

( N
N−D

)
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Figure 2: Top: �e average hit rate (hitils, fraction of runs
which found the global optimum) over the strength of the
perturbation operator γ of ILS. Bottom: the average size of
the cluster containing the global optimum clpeak over the es-
cape distanceD used to calculate the LONswith escape edges.
�enode size indicates the average number of clusters in the
LONs (#cl). Lines are for visual guidance.

We conclude that the best hit rate is achieved for γ ≈ N /2
(ignoring search costs). Moreover, choosing a very high strength is
superior to choosing a very low perturbation strength.

5.3 Search Costs of ILS
We will now have a look at the search costs of ILS (number of
function evaluations), and again try to explain them by the results
from our network analysis of the LONs. Figure 3 (top) shows the
average search costs of the independent runs which found the global
optimum. For low and high strengths of the search operator, the
search costs are low. Moving towards the middle, the average costs
increase at �rst, but then decrease again, leading to a minimum
where γ ≈ N /2. �e higher the value of K , the higher are the
average search costs. A possible explanation for this shape of the
curves is that in the case of low and high γ , there is a sample bias,
since we had to calculate the average costs from the runs which

found the global optimum only. In an extreme case, the landscape is
totally clustered, meaning that the global optimum will most likely
be found by chance, rather than by heuristic search. In such cases,
the costs will be very low. With increasing cluster size of the global
optimum (or decreasing number of clusters), the chances to �nd the
global optimum increases, but so do the search costs. In this region,
there is a trade-o� between the chance to �nd the global optimum
and the necessary search costs. When the landscape merges into
one giant cluster (4 < D,γ < 10), the perturbation operator with
γ ≈ N /2 seems to minimize the costs. We think that this is because
in this case, the LON density is maximized, which probably reduces
the average path lengths to the global optimum’s cluster.

Before we have a deeper look into the network perspective, we
can again observe a bias in the symmetry of the chart: for low
strengths, the average costs to �nd the global optimum are lower
than in the symmetric cases with high strengths. Like explained
above, the strong perturbation operator probably kicks the search
algorithm further away from the current local optimum than the
corresponding symmetric weak perturbation operator. Because of
the locality in the search space, it is more likely to be kicked into a
basin di�erent from the basin of the current local optimum. �is
means that more hill climbing needs to be performed to �nd the
next local optimum than in a case where the perturbation operator
kicks the algorithm somewhere in the middle of the basin around
the current local optimum.

Last, we intend to �nd an explanation for the distribution of the
search costs by a network metric. Towards this, we measured the
average random walk distance to �nd the global optimum (Figure 3,
bo�om). Even though it takes some imagination to see a dent in
the middle of the curves, we can see that the curves at the bo�om
have a quite similar shape to the curves at the top. A possible
explanation why a minimum in the middle is not as pronounced
as in the top �gure could be because the average random walk
distance is a very rough measure: it only considers the number of
edges passed in the LON to reach the global optimum. �e actual
number of function evaluations necessary to perform hill climbing
in ILS is not considered here. Instead, it is assumed that the costs
are uniformly distributed among all potential kick operations. For
a deeper analysis, we have calculated a linear regression between
the logarithmized average search costs and our network measure,
i.e. the average random walk distance. Figure 4 shows the result.
We can see that there is a strong statistical relationship, since the
average random walk distance explains nearly 68% of the variance
of the average search costs. �is is an interesting �nding, since no
network measure is known so far that predicts the expected search
costs of metaheuristics with such high accuracy [9, 15].

6 CONCLUSION
We conducted an empirical study based on a large sample of in-
stances of the Kau�man NK model. Using local optima networks
and several measures from network analysis (e.g. community de-
tection), we intended to gather a deeper understanding of the role
of the perturbation strength of iterated local search. In particular,
we compared statistical measures from our network analysis to the
empirical performance of ILS (hit rate and search costs), depending
on di�erent levels of perturbation strength.
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Figure 3: Top: �e average search costs (costils, number of
�tness function evaluations) over the strength of the pertur-
bation operator γ of ILS. Bottom: the average random walk
distance to the global optimum rwdist over the escape dis-
tance D used to calculate the LONs with escape edges. Lines
are for visual guidance.

Our results suggest that the occurrence of clusters in �tness
landscapes is a peculiarity of the perturbation strength used by ILS.
Very low and very high strengths lead to a situation with many
clusters, restricting the size of the global optimum’s cluster, which
is connected to a poor hit rate.

Our �ndings complement Lourenço et al. [23], stating that a
stronger perturbation makes search completely random. In a bi-
nary search space, a very strong perturbation operator has (almost)
the same e�ect as a weak perturbation operator. �is is because
the perturbation strengths that lead to a nearly equal number of
potential perturbation moves (they are symmetric in the binomial
distribution) cause an almost equally large second order neighbor-
hood (the neighborhood of the perturbation operator). However,
there is a bias because the strong operator has the potential to lead
the search algorithm further away from the current local optimum.
In the case of weak perturbation strengths, the local optima in the
LON are connected to local optima that are close in the search space.

Figure 4: A linear regression model to predict the average
search costs costils by the average random walk distance to
the global optimum rwdist . Each dot is a combination of K
and D, cf. also Table 1.

In the case of strong perturbation, the local optima are connected
to local optima that are further away. We assume that this e�ect
might depend on the locality structure of the search space.

Considering search costs, we have shown that it is possible to
predict these by statistical network measures, i.e. the random walk
distance in a local optima network. When using a weak or very
strong perturbation operator, there is a trade-o� between the hit
rate and the search costs. An intermediately strong perturbation
operator seems to guarantee a high hit rate and minimizes the
search costs in our experiments. However, we think that further
analysis is necessary to understand this phenomenon. In summary,
our results show that the role of perturbation strength is much
more nuanced than previously thought.
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