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Abstract. Grid services and web services have similarities but also significant
differences. Although conceived for web services, it is seen how BPEL (Business
Process Execution Logic) can be used to orchestrate a collection of grid services.
It is explained how CRESS(Chisel Representation Employing Systematic Spec-
ification) has been extended to describe grid service composition. The CRESS

descriptions are automatically converted into BPEL/WSDL code for practical re-
alisation of the composed services. This achieves orchestration of grid services
deployed using the widely used Globus Toolkit and ActiveBPEL interpreter. The
same CRESSdescriptions are automatically translated into LOTOS, allowing sys-
tematic checks for interoperability and logical errors prior to implementation.

1 Introduction

1.1 Motivation

This paper presents a unique blend of ideas from different technical areas: distributed
computing, software engineering, service-oriented architecture, and formal methods.
Grid computing has emerged as a leading form of distributed computing. However, grid
computing has largely focused on the development of isolated applications. Service-
oriented architecture provides a framework for combining grid services into new ones.

The emphasis of this paper is on integrating software engineering techniques (vi-
sual programming, formal methods) into an evolving application area of considerable
importance (grid computing). The aim has been to achieve immediate and practical ben-
efits from advanced software techniques. Grid computing is acomparatively new field
that has so far focused mainly on pragmatic, programmatic aspects. The work presented
here offers a number of advantages:

– As with component-based approaches, grid services are combined into new com-
posite services using BPEL as an emerging standard for web services.

– Grid service composition is described graphically, makingit comprehensible to
less technical users. Compared to the automatically generated code, the approach
is compact and much more attractive than writing the raw XML that underlies it.

– A sound technique has been defined, benefiting from formal methods behind the
scenes yet supporting automated implementation.

The approach is therefore application-driven (orchestrating grid services), novel (com-
bining practice and theory), practical (automated implementation and validation), and
integrated (complementing existing grid practice).



1.2 Background to Grid Computing

Grid computing is named by analogy with the electrical powergrid. Just as power sta-
tions are linked into a universal electrical supply, so computational resources can be
linked into a computing grid. Distributed computing is hardly a new area. But the archi-
tecture and software technologies behind the grid have captured the attention of those
who perform large-scale computing, e.g. in the sciences. Grid computing offers a num-
ber of distinctive advantages that include:

– support for virtual organisations that transcend conventional boundaries, and may
come together only for a particular task

– portals that provide ready access to grid-enabled resources
– single sign-on, whereby an authenticated user can make use of distributed resources

such as data repositories or computational servers
– security, including flexible mechanisms for delegating credentials to third parties to

act on behalf of the user
– distributed and parallel computing.

Grid computing is governed by OGSA (Open Grid Services Architecture [8]). Open
standards for the grid are being created by the GGF (Global Grid Forum). Grid applica-
tions often make themselves available via services that arecomparable to web services –
another area of vigorous development. For a time, grid services and web services did
not share compatible standards. The major issue was the needfor stateful services that
have persistent state. A grid-specific solution to this was developed. However, this was
clearly something that web services could also benefit from.

A harmonised solution was defined in the form of WSRF (Web Services Resource
Framework [10]). This is a collection of interrelated standards such as WS-Resource
and WS-ResourceProperties. WSRF is implemented by varioustoolsets for grid com-
puting such as GT4 (Globus Toolkit version 4,www.globus.org).

1.3 Background to Service Orchestration

This paper emphasises thecompositionof grid services, not the description ofisolated
grid services. Composing services has attracted considerable industrial interest. This is
achieved by defining abusiness processthat captures the logic of how the individual
services are combined. The termorchestrationis also used for this. A nice feature of
the approach is that a composed service acts as a service in its own right.

Competing solutions were originally developed for orchestrating web services. A
major advance was the multi-company specification for BPEL4WS (Business Process
Execution Language for Web Services [1]), which is being standardised as WS-BPEL

(Web Services Business Process Execution Language [2]). BPEL is now relatively well
established as the way of composing web services. However, its use for composing grid
services has received only limited attention. The work reported in this paper has used
ActiveBPEL (an open-source BPEL interpreter,www.activebpel.org).



1.4 Background to CRESS

CRESS(Communication Representation Employing Structured Specification) was de-
veloped as a general-purpose graphical notation for services. Essentially, CRESSde-
scribes the flow of actions in a service. It thus lends itself to describing flows that com-
bine grid services.

CRESS has been used to specify and analyse voice services from the Intelligent
Network, Internet Telephony, and Interactive Voice Response. It has also been used to
orchestrate web services [19]. In the new work reported here, CRESShas been extended
to the composition of grid services. The present paper discusses how the same approach
can be used for practical but formally-assisted development of grid services. Formally-
based investigation of composite grid services will be reported in a future paper.

The work reported in this paper has been undertaken in the context of the GEODE

project (Grid Enabled Occupational Data Environment,www.geode.stir.ac.uk). This
project is researching the use of grid computing in social science, specifically grid ser-
vices for occupational data analysis. The authors have investigated how services from
this domain can be composed, formalised and rigorously analysed.

Service descriptions in CRESS are graphical and accessible to non-specialists. A
major gain is that descriptions are automatically translated into implementation lan-
guages for deployment, and also into formal languages for analysis. CRESSoffers ben-
efits of comprehensibility, portability, automated implementation and rigorous analysis.

CRESSis extensible, with plug-in modules for application domains and target lan-
guages. Although web service support had already been developed for CRESS, it has
been necessary to extend this significantly for use with gridservices. In addition, grid
services have specialised characteristics that require corresponding support in CRESS.

CRESS is intended as part of a formally-based method for developing services. In
the context of grid computing, the steps are as follows:

– The desired composition of grid services is first described using CRESS. This gives
a high-level overview of the service interrelationships. Because the description is
graphical, it is relatively accessible even to non-specialists.

– The CRESSdescriptions are then automatically translated into a formal language.
CRESSsupports standardised formal languages such as LOTOS(Language Of Tem-
poral Ordering Specification [11]) and SDL (Specification and Description Lan-
guage [12]), though this paper uses only LOTOS. Obtaining a formal specification
of a composite service is useful in its own right: it gives precise meaning to the
services and their combination.

– Although CRESS creates an outline formal specification for each of the partner
services being combined, it defines just their basic functionality. This is sufficient
to check basic properties such as interoperability. However for a fuller check of
composite functionality, a more realistic specification isrequired of each partner.
This allows a rigorous analysis to be performed prior to implementation.

– A competent designer can be expected to produce a satisfactory service imple-
mentation. However, combining services often leads to unexpected problems. The
services may not have been designed to work together, and maynot interoperate
properly. The issues may range from the coarse (e.g. a disagreement over the inter-
face) to the subtle (e.g. interference due to resource competition). This is akin to the



feature interaction problem in telephony, whereby independently designed features
may conflict with each other. CRESSsupports the rigorous evaluation of composite
services. Problems may need to be corrected in either the CRESSdescriptions or in
the partner specifications. Several iterations may be required before the designer is
satisfied that the composite grid service meets its requirements.

– The CRESSdescriptions are then automatically translated into an implementation
language. The interface to each service is defined by the generated WSDL (Web
Services Description Language [22]). The orchestration ofthe services is defined
by the generated BPEL. The partner implementations must be created indepen-
dently, hopefully using the formal specifications already written. However, CRESS

can generate outline code that is then completed by the implementer. This avoids
simple causes of errors such as failing to respect the service interface.

1.5 Relationship to Other Work

As noted already, orchestration of web services has been well received in industry.
Scientific workflow modelling has been studied by a number of projects. The MyGrid
project has given an overview of these (http://phoebus.cs.man.ac.uk/ twiki/bin/view/
Mygrid). Only some of the better known workflow languages are mentioned below.

JOpera [16] was conceived mainly for orchestrating web services, though its appli-
cability for grid services has also been investigated. JOpera claims greater flexibility
and convenience than BPEL. Taverna [15] was also developed for web services, partic-
ularly for coordinating workflows in bioinformatics research. The underlying language
SCUFL (Simple Conceptual Unified Flow Language) is intended to be multi-purpose,
including applications in grid computing.

CRESS is designed for modelling composite services, but was not conceived as a
workflow language. CRESSserves this role only when orchestrating grid or web ser-
vices; its use in other domains is rather different. An important point is that CRESS

focuses on generating code in standard languages. For service orchestration, this means
BPEL/WSDL. This allows CRESSto exploit industrially relevant developments.

Several researchers have used BPEL to compose grid services. [5] describes a graph-
ical plug-in for Eclipse that allows BPEL service compositions to be generated automat-
ically. This work is notable for dealing with large-scale scientific applications. [3] dis-
cusses programmatic ways in which BPEL can support grid computing. [18] examines
how extensibility mechanisms in BPEL can be used to orchestrate grid services. How-
ever, the focus of such work is pragmatic. For example, grid services may be given a
web service wrapping for compatibility. (Semi-)automatedmethods of composing grid
services have been investigated, e.g. work on adapting ideas from the semantic web
[14].

An important advantage of CRESSis that practical development is combined with
a formal underpinning. Specifically, the same CRESSdescriptions are used to derive
implementations as well as formal specifications. The formalisation permits rigorous
analysis through verification and validation. A number of approaches have been devel-
oped by others for formalisingwebservices. However, the authors are unaware of any
published work on formal methods for composinggrid services.



As an example of finite state methods for web services, LTSA-WS (Labelled Tran-
sition System Analyzer for Web Services [7]) allows composed web services to be
described in a BPEL-like manner. Service compositions and workflow descriptions are
automatically checked for safety and liveness properties.WSAT (Web Service Analy-
sis Tool [9]) models the interactions of composite web services in terms of the global
sequences of message they exchange. For verification, thesemodels are translated into
Promela and verified with SPIN. The ORC (Orchestration) language has also been used
to model the orchestration of web services. [17] discusses its translation into coloured
Petri nets. Both this and the alternative translation into Promela support formal analysis
of composed web services. CRESS, however, is a multi-purpose approach that works
with many kinds of services and with many target languages.

As an example of process algebraic methods for web services,automated transla-
tion between BPEL and LOTOShas been developed [4, 6]. This has been used to specify,
analyse and implement a stock management system and a negotiation service. CRESS

differs from this work in using more abstract descriptions that are translatedinto BPEL

and LOTOS; there is no interconversion among these representations.CRESSdescrip-
tions are language-independent, and can thus be used to create specifications in other
formal languages (e.g. SDL). CRESSalso offers a graphical notation that is more com-
prehensible to the non-specialist. This is important sinceservice development often
involves non-computer scientists as well as technical experts.

The CRESSnotation has been previously been described in other papers. More re-
cently, [19] has shown how web services can be modelled by CRESS. Since grid services
are similar, but certainly not the same, this paper focuses on the advances that have been
necessary to model and analyse the composition of grid services.

2 Describing Composite Grid Services with CRESS

CRESSis a general-purpose notation for describing services. Figure 1 shows the subset
of constructs needed in this paper for grid services; CRESSsupports more than this.

2.1 CRESSNotation for Grid Services

External services are considered to bepartners. They offer their services atportswhere
operationsmay be performed. Invoking a service may give rise to afault.

A CRESSdiagram shows the flow among activities, drawn as ellipses. Look ahead
to figures 2 and 3 for examples of CRESSdiagrams. Each activity has a number, an
action and some parameters. Arcs between ellipses shown theflow of behaviour. Note
that CRESSdefines flows and not a state machine; state is implicit.

Normally a branch means an alternative, but following aFork activity it means a
parallel path. An arc may be labelled with a value guard or an event guard to control
whether it is traversed. If a value guard holds, behaviour may follow that path. An event
guard defines a possible path that is enabled only once the corresponding event occurs.

In CRESS, operation names have the formpartner.port.operation. Fault names have
the formfault.variable, the fault name or variable being optional.



CRESS Meaning

/ variable<− value assignment associated with a node or an arc
Catch fault A handler for the specified fault. A fault with name and value

requires a matchingCatch name and variable type. A fault with
only a value requires a matchingCatch variable type. A fault is
considered by the current scope and progressively higher-level
scopes until a matching handler is found.

Compensatescope? Called after a fault to undo work. Giving no scope means
compensation handlers execute in reverse order of being enabled.

Compensation A handler that defines how to undo work after a fault. A
compensation handler is enabled only once the corresponding
activity completes successfully. When executed, it expects to see
the same process state as when it was enabled.

Fork strictness? Used to introduce parallel paths; further forks may be nested to
any depth. Normally, failure to complete parallel paths as
expected leads to a fault. This is strict parallelism (strict , the
default). Matched byJoin.

Join condition? Ends parallel paths. An explicit join condition may be defined
over the termination status of parallel activities. This gives the
node numbers of immediately prior activities, e.g. ‘1 && 2’
means these (and the prior ones) must succeed.

Invoke operation output
(input faults*)?

An asynchronous (one-way) invocation for output only, or a
synchronous (two-way) invocation for output-input with a partner
service. Potential faults are declared statically, thoughtheir
occurrence is dynamic.

Receiveoperation input Typically used at the start to receive a request for service.An
initial Receivecreates a new process instance. Usually matched
by aReply for the same operation.

Reply operation output|
fault

Typically used at the end to provide an output response.
Alternatively, a fault may be thrown.

Terminate Ends a process abruptly.

Fig. 1. CRESSNotation (using BNF)

A CRESSrule-box, drawn as a rounded rectangle, defines variables and subsidiary
diagrams (among other things). Simple variables have typeslike Float f or String s.
CRESSalso supports grid computing types such asCertificate (a digital security certifi-
cate),Name(a qualified name) andReference(an endpoint reference that characterises
a service instance and its associated resources).

Structured types are defined using ‘[...]’ for arrays and ‘{...}’ for records. For exam-
ple, the following defines the variablescores. This is a record with fields: floatlength
and string arrayfrequency. A typical value would be the stringscores.frequency[2].

{ Float length [String word] frequency} scores

2.2 Content Analysis using Grid Services

The examples in this paper are drawn from the field of documentcontent analysis (e.g.
[13]). This is used for many purposes such as investigating disputed authorship of a



document, analysing different versions of a document to identify likely antecedents,
or comparing two documents for plagiarism. This is a rich field, so only a simplified
version is described in order to illustrate how orchestrated grid services can be used.

In the example of this paper, documents are compared for similarity using the fol-
lowing two metrics that lie in the range [0, 1]. For both of these, identical documents
have a ‘distance’ of 0. Documents with a ‘distance’ of 1 are maximally different.

Clause Length:The average number of words per clause is computed for each docu-
ment. Suppose the numbers are 6 and 8. The ‘distance’ betweenthe documents is
the difference between these divided by the larger value:8−6

8
, i.e. 0.25.

Word Frequency:the instances of each word are counted (disregarding commonwords)
and the words are placed in order of decreasing frequency. This gives an ordered list
of words for each document (truncated to some practical limit such as 50 words).
The ‘distance’ between the two word lists is then computed from the relative po-
sitions of each word in the two lists (counting the first as 0).Suppose ‘grid’ is the
second most frequent word in one list (i.e. position 1) but the fourth most frequent
in the other (i.e. position 3). The distance for this word is the difference between
their positions:3 − 1, i.e. 2. If a word does not appear in the other list, its position
there is notionally the length of that list. Thus if ‘grid’ did not appear in the second
list (of size 50), the distance would be50 − 1 or 49. This ensures that if a more
frequent word is missing, it has a greater distance. The total distance between two
word vectors is the sum of the distances for all the individual words, normalised to
yield a value between 0 and 1.

The content analysis example makes use of two external partner grid services that
could exist already or should be developed separately because they are generally useful:

Counter: This calculates various measures over a document. Theclauseoperation com-
putes the average clause length. Theword operation determines the words in de-
creasing frequency. Thedistanceoperation computes the metrics explained above
from the raw clause and word information.

Parser: This handles word lists for a document. Theparseoperation takes a document
as a string of text and splits it up into words (consecutive letters and possibly dig-
its), disregarding white space. Consecutive punctuation marks (e.g. ‘:-’) are also
grouped as ‘words’. Like many grid services, the parser holds its results in persis-
tent storage and just returns an endpoint reference for the word list. This reference
can be used by other services to perform further analyses. The deleteoperation
removes a stored word list.

2.3 CRESSDescription of The Scorer Service

The scorer is an auxiliary service that supports the main content analysis application.
Its CRESSdescription appears in figure 2. The rule-box to the bottom right of the figure
defines types and variables. The raw data iswords– a reference to the word list being
analysed. The result isscores– the average clause length and word frequency list.

Initially the scorer receives a request to perform ascoreoperation on the words list
(node 1). Since calculating the two distance metrics may be time-consuming, each is



Fig. 2. CRESSDescription of The Scorer Service

computed concurrently (node 2). In one parallel branch, thecounter service is invoked
to calculate the average clause length (node 3). In another parallel branch, a different
instance of the counter service is invoked to determine words in decreasing order of
frequency (node 4). Where both paths converge at node 5, theymust have produced a
successful result (‘3 && 4’). The two metrics are combined into one record (arc leading
to node 6). Finally, the scores are returned by the scorer to its caller (node 6).

The scorer must allow for the counter process faulting. For example, the word list
may be empty or may contain only punctuation. Both invocations of the counter stat-
ically declare that acounterErrormay occur (node 3 and 4). If this happens, the fault
is caught (arc leading to node 7). The scorer then returns thefault reason to its caller
(node 7) and terminates (node 8).

2.4 CRESSDescription of The Matcher Service

The matcher offers the primary content analysis service to the user. Its CRESSdescrip-
tion appears in figure 3. The rule-box at the bottom right again defines types and vari-
ables. The raw data istexts– text strings containing the two documents. The analysis
yieldsmetrics– the clause length and word frequency distances. The final entry in the
rule-box ‘/ SCORER’ indicates that the matcher depends on the scorer service.

Initially the matcher receives a request to perform thematchoperation on the texts
(node 1). Since the documents are independent and may be large, their metrics are
computed separately on two parallel paths (node 2). Each starts by setting the relevant



Fig. 3. CRESSDescription of The Matcher service

text (text1/text2on the arc leading to node 3/4). The parser is invoked to create a word
list from a document (node 3/4). The word lists are held by theparser, and returned
as endpoint references (words1/words2). The scorer is then invoked to compute the
metrics (scores1/scores2in node 6/7). The word lists have now served their purpose
and are deleted (node 9/10). The converging paths must both be successful (‘9 && 10’
in node 11). The separately computed scores are combined (arc leading to node 12) and
passed the counter to compute distances (node 12). The matcher returns the resulting
metrics to its caller (node 13).

The matcher allows for faults in the services it calls: either of two invocations of
the parser or the scorer may fail. Any such fault is caught (arc leading to node 14). The
use of a fault variable (reason) without a fault name means that only a fault value is
required: eitherparserErroror scorerError is caught. Compensation is invoked by the



fault handler to undo any actions that have been taken (node 14). The matcher returns
the fault to its caller (node 15) and terminates (node 16).

Compensation may be needed after invoking an external partner, since this is of-
ten where work needs to be undone after a fault. The parser invocations to store data
(node 3/4) make permanent changes and so have associated compensation: the cor-
responding word list is deleted (node 5/8). A compensation handler is enabled once
its associated activity completes. If compensation is invoked without an explicit scope
(node 14), compensation handlers are invoked in reverse order (most recent first). If one
parser invocation succeeds but the other fails, only the former will be compensated.

As has been seen, the matcher service orchestrates the actions of two external part-
ner services (counter and parser) as well as the scorer service (figure 2). In turn, the
scorer service orchestrates further operations of the counter partner. Although four ser-
vices now have to cooperate, the user of the matcher service sees it as a whole. This is
a major advantage, because the detailed design of the service is then hidden.

The major issue is whether the services work together smoothly, or whether there
are interoperability problems. Even though this is a comparatively small example, it
will be appreciated that there are many possibilities for error. It is very easy to make a
mistake when calling a service, for example supplying an integer where a float is ex-
pected. Deadlocks are also a risk. Many more subtle problemscan arise from semantic
incompatibilities among the services. For these reasons, it is highly desirable to embed
grid service development within a rigorous methodology.

2.5 The CRESSService Configuration

Now that the various services have been introduced, the CRESSconfiguration diagram
can be shown. Figure 4 shows how the services here are described. TheDeploysclause
lists the tool options and, following ‘/’, the services to bedeployed. Although only
MATCHERis named, this implicitly includes all of the other servicesbecause of the
inferred dependencies. The parameters of each service thenfollow in the configuration
diagram. All services, such asCOUNTER, have a namespace prefix (‘cntr’), a names-
pace URI (Uniform Resource Name, ‘CounterPoint’), and a base URI where they are
deployed (‘localhost:8880/wsrf’). As can be seen, in this case the services were de-
ployed on the local computer. However, they can be deployed anywhere in the network.

Fig. 4. CRESSDescription of The Service Configuration

Grid services (counter, parser here) may have resources, declared after the other
parameters. The counter has no resources (shown as ‘-’). Theparser has a resource: the



word list it stores, identified bytextName. Every instance of the parser has a unique
resource value, identified by itsresource keyin grid terminology. A composite service
may also have resources. For example, if the matcher servicewere stateful then it too
would have resource declarations.

2.6 Translation of The CRESSDiagrams

Translating the CRESS representation ofwebservices has been described previously
for BPEL [20]. However, the work reported in this paper has considerably extended and
specialised this to handlegrid services:

– A wider range of data types is now supported, including arrays and arbitrarily
nested structured types. Specialised types have been addedfor dealing with grid
services, such as certificates and endpoint references.

– Additional orchestration constructs have been added to match BPEL better.
– Support has been introduced for external partners shared amongst a number of ser-

vices. Special treatment is needed to merge such descriptions in different diagrams.
– Grid service resources are now handled.

The CRESSdiagrams (scorer, matcher, configuration) hold all that is needed to au-
tomatically generate a BPEL implementation and a LOTOSspecification. Figure 5 com-
pares translations of the content analysis example in figures 2 to 4:

– The fixed code is the framework common to all grid applications. This is substantial
in the case of LOTOSbecause it contains many complex data types.

– The automatically generated code is shown for data types andbehaviour. The BPEL

translation yields many files: one BPEL file per service, one WSDL file per ser-
vice/partner, and several deployment files. In addition, the WSDL files are automat-
ically converted into Java. The LOTOS translation is a single file.

– The code for the external partners (counter, parser) has to be written manually. The
Java coding conventions for grid services require several files per partner.

Target Fixed Code Generated Code Partner Code Total
Files TypesBehaviourFilesBehaviour

BPEL 20 51 14570 1640 10 283019060
LOTOS 840 1 530 400 2 290 2060

Fig. 5.Comparison of BPEL and LOTOSTranslations(lines of code except for Files columns)

The BPEL implementation is substantially larger than the LOTOSspecification, de-
spite the fact that the LOTOShas a significant common overhead in data types. LOTOS

has to explicitly specify functions on numbers, strings, etc. that would be expected in
an implementation language. With larger examples, LOTOSis even more compact com-
pared to BPEL. The most striking difference is in the large number of files required to
support BPEL.
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Fig. 6. Content Analysis Service Deployment

3 Translating Web Services to BPEL

Once the CRESSservice diagrams have been created, their translation intoBPEL/WSDL

is automatic. The principles behind translatingwebservices are outlined in [20]. Only
a high-level description is given here, particularly covering wheregrid services differ.

3.1 Service Creation

Orchestrating grid services require a considerable amountof XML that is generated
automatically by CRESS. Translation and deployment of a CRESSdiagram is entirely
automated, except for the one-off implementation of partner grid services. Partner ser-
vices are automatically deployed using GT4 (Globus Toolkitversion 4), while the or-
chestrating process is automatically deployed using ActiveBPEL.

The most important generated code is the BPEL that describes the orchestration. A
WSDL definition is created for this process since it is a grid service in its own right.
A WSDL file is also created for message and type definitions that are common to the
process and its partners.

The translation from CRESSto BPEL is complex, partly because BPEL needs to be
defined in a particular order, and partly because a lot of information has to be inferred.

3.2 Service Deployment

The deployment architecture is shown in figure 6. The grid services (counter, parser) are
executed with GT4. Their orchestration (matcher, scorer) is handled by ActiveBPEL2.0.
Both GT4 and ActiveBPEL deploy services within a container that uses AXIS (the
Apache SOAP engine). In principle, GT4 and ActiveBPEL could be executed within
the same Apache Tomcat container. In practice, this is not feasible with the current
versions. GT4 presently uses an older version of AXIS that is incompatible with Ac-
tiveBPEL; an updated version of GT4 is required before this can be resolved. For now,
GT4 and ActiveBPEL are run in separate containers. Actually, this is reasonable since
BPEL can coordinate grid services running on completely different computers. This
would be quite likely in a realistic deployment of the content analysis example de-
scribed in this paper.

GT4 currently imposes another limitation on the orchestration of grid services. The
most desirable form of security is the so-called WS-SecureConversation that allows
credential delegationin grid terminology. Unfortunately the current implementation



of GT4 requires all services to use the same container for delegation to work. The
authors have developed a solution combining GT4 and ActiveBPEL, but the current
AXIS incompatibilities mean this cannot be used yet. A newer version of GT4 will
allow credential delegation to be realised.

Current limitations of ActiveBPEL mean resources have to be treated transparently.
It is intended to make resources directly available to the orchestrating process. End-
point references cannot be used directly by ActiveBPEL. It is planned to make BPEL

processes behave more like grid services and less like web services.

3.3 Service Flow

BPEL may use a variety of constructs to describe the flow: conditions (if, switch), se-
quences (sequence), loops (while), arbitrary parallel flows (flow), and several kinds of
handlers (event, fault, compensation, correlation). CRESSsimplifies this to conditions
(expression guards), arbitrary flows, and one kind of handler (event guard). A number
of constructs used by BPEL are intentionally hidden by CRESS. For example scopes are
implicit, and specialised constructs such asonMessageas opposed toreceiveare used
implicitly by CRESSas required.

CRESSautomatically determines and declares the links among activities, which are
then chained using BPEL sourceandtargetelements. The BPEL functiongetLinkStatus
is used withJoin to check whether a linked activity has terminated successfully.

A CRESShandler is translated into the corresponding type of BPEL handler. For ex-
ample,Catch andCatchAll introduce a fault handler, whileCompensationintroduces
a compensation handler. In principle, handlers may be defined in any scope including
the global one. In fact, WS-BPEL does not allow global compensation handlers. CRESS

regularises this situation by allowing handlers at two levels. Global handlers are trans-
lated as part of the top-level flow. The other place where CRESSallows handlers is in
association withInvoke. Although this is a restriction compared to BPEL, it is where a
handler is mostly likely to be required anyway.

3.4 Supporting Orchestration

Data types in CRESSare either simple ones defined by XML schemas (e.g. float, string)
or are arbitrarily nested structures of records and arrays.Built-in types are used for the
former, while complex types are generated for the latter. CRESSautomatically handles
the rather different ways in which BPEL uses variables: as message variables (input,
output) or as data variables (assignment, expression).

BPEL processes orchestrate external partner services. In fact these may be web ser-
vices or grid services (more precisely, stateless or stateful). The WSDL for partners is
automatically generated from the CRESSdiagrams, along with service deployment de-
scriptors. If a partner service already exists, it can be used directly. The CRESSview is
likely to be a subset of the partner WSDL, since an orchestrating process is likely to use
only certain ports and operations of an already defined partner. If a partner web service
does not already exist, its WSDL is translated into Java using the GT4 toolwsdl2java.
The skeleton partner service must then be implemented manually.



3.5 Compatibility of ActiveBPEL and GT4

Resource addressing is a key issue for grid services. State information is handled sepa-
rately from the service itself. A WS-Resource pair (serviceplus state) is encoded in an
endpoint reference, as defined by the WS-Addressing schema.GT4 handles this implic-
itly, meaning that the ports used by clients are bound to a service and resource. To use
another resource with the same service, a separate endpointreference is created with
the relevant resource key.

However, ActiveBPEL is not able to handle such a resource implicitly. Endpoint ref-
erences thus have to be passed explicitly as parameters to grid service partners, allowing
them to infer resource pairs. This requires compatibility of the WS-Addressing used by
GT4 and ActiveBPEL. Unfortunately, the endpoint references generated by GT4 do not
currently conform to the usual schema. Instead a variant schema with aReferencePa-
rameterselement is used, leading to incompatibility. By altering the schemas in use,
it is possible share endpoint references consistently. However, work remains to allow
ActiveBPEL to use resources directly.

Grid services supported by GT4 require adocument/literalSOAP binding. This is
one of the binding styles that complies with the WS-Interoperability standard. However,
this binding does not convey the operation name. Instead, the structure of the SOAP

message body must be used implicitly to identify the operation being invoked. This
causes ambiguity when a service has several operations withthe same input signature,
forcing use of distinct message parts even though they are not logically necessary.

4 Translating Grid Services to LOTOS

CRESSalso translates grid services in LOTOS. Only the rigorous analysis this permits is
discussed here. LOTOS was originally standardised for specifying and analysing com-
munications standards (Open Systems Interconnection). However, LOTOS is a general-
purpose language that supports precise specification of both behaviour and data: it is a
process algebra supplemented by algebraic data types.

A L OTOSspecification is automatically generated from thesameCRESSdiagrams
that are translated into BPEL/WSDL. A default specification is provided for external
partner services, though this just respects their operation interfaces. For more detailed
analysis, the partners are specified manually.

Because CRESSis graphical, it is more understandable and compact than thecorre-
sponding code. Although this paper is focused on practical development of composite
grid services, the use of a formal method is an important firststep in their design. Apart
from giving a precise definition of what orchestration means, it allows rigorous analysis
of services prior to implementation. The use of formal methods is thus integrated into
more conventional development techniques.

In practice, grid services are manually debugged. The generated LOTOS can, of
course, be manually simulated as well. However, an important benefit of the formalisa-
tion is that it supports a wide variety of automated analyses.

An important issue in orchestrating grid services is to ensure their interoperability.
Problems arise from simple misinterpretation of interfaces or from more subtle semantic



incompatibility. Such problems often lead to deadlock in LOTOS terms, as determined
by automated behaviour exploration or through model checking.

Service properties can also be model checked. Safety and liveness properties of grid
services can be formulated in ACTL (Action-based Computational Temporal Logic).
For example, the matcher service must not fault (safety), and an invocation of it must
eventually receive a response (liveness). Unfortunately the complex data types and infi-
nite data sorts make model checking somewhat impractical. For this reason, the authors
favour the use of rigorous validation instead of verification.

MUSTARD (Multiple-Use Scenario Test and Refusal Description [21])has been de-
veloped as a language-independent and tool-independent approach for expressing use
case scenarios. These scenarios are automatically translated into the chosen language
(here, LOTOS) for automatic validation against the specification. This is useful for initial
validation of a specification, and also for later ‘regression testing’ following a change in
the service description. Scenario-based validation is also good for checking interference
among supposedly independent services – the so-called feature interaction problem. In-
teractions may arise for technical reasons (e.g. conflicting services activated by the same
input) or for resource reasons (e.g. services sharing a resource or external partner).

A major advantage of MUSTARD is that the use of an underlying formal method is
entirely hidden from the user. An automated procedure translates CRESSand MUSTARD

into LOTOS, validates the scenarios, and reports the analysis in language-independent
terms. In other words, the use of LOTOS (or any other formal language) is invisible. In
fact, the tool user merely draws diagrams and clicks a buttonto check their integrity.

Grid services are formally validated by MUSTARD scenarios that check critical as-
pects of their behaviour. It is possible to check services inisolation as well as in com-
bination. This can effectively and efficiently detect service interactions, though failure
to find interactions does not mean the services are interaction-free. MUSTARD supports
scenarios with sequences, alternatives, non-determinism, concurrency and service de-
pendencies. In addition, both acceptance tests and refusaltests may be formulated.

5 Conclusions

It has been seen how CRESShas been adapted to support orchestration of grid services.
This offers the advantage that new composite services can beconstructed from existing
ones. As a realistic example, document content analysis hasbeen used to explain how
grid services can be orchestrated.

CRESSdescriptions of composite grid services are translated into BPEL/WSDL for
implementation. The orchestration is performed by ActiveBPEL, while the partner grid
services are executed by GT4. The same CRESSdescriptions are also translated into
LOTOS for rigorous validation and verification. The whole development process is
highly automated. The use of advanced software engineeringtechniques (visual pro-
gramming, formal methods) has thus been integrated into thecurrent grid computing
practice.

Content analysis has been used as an example of how orchestration can be useful in
grid computing. This is a realistic problem, although the illustration is a small one. The
authors have also researched the use of grid computing in social science, specifically



grid services for occupational data analysis. Services from this domain are much more
complex, and yet can be formalised and analysed rigorously using CRESS.

It has hopefully been demonstrated that CRESS is valuable in orchestrating grid
services, implementing and analysing them.
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