IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

601

A Framework for Neural Net Specification

Leslie S. Smith

Abstract— A notation for the specification of neural nets is
proposed. The aim is to produce a simple mathematical frame-
work for use in specifying neural nets essentially by defining their
transfer functions and connections. Nets are specified as interact-
ing processing elements (nodes), communicating via instant links.
Dynamics and adaptation are defined at the processing elements
themselves, and all interaction is explicitly specified by directed
arcs, Specifications can be built up hierarchically by turning a
specification into a generator for a node, or they can be developed
top-down, The use of the system is illustrated.

Index Terms—Connectionist models, forma) models, net spec-
.ifications, neural net design system.

1, INTRODUCTION

OST neural nets are specified by describing the pro-
cessing elements, the topology (including which units
are used for input and which for output), the adaptation rule
(if any), and the net update dynamics. The notation used
for the specification is usually informal, perhaps naming the
learning rule, either naming the topology, or defining it by
means of a matrix of connectivity, and describing the neurons
themselves using equations that implicitly define the net update
dynamics. This is then implemented, perhaps using a package,
or by writing a program. While this suffices for experimental
work, developing, for example, learning rules, it makes the
description of a complex net, perhaps made up of a number of
subnets, with a number of different types of processing units,
and different interactions between these different elements
rather difficult. This work aims to provide a notation for neural
nets, a notation with enough generality to be useful for many
different types of net. The notation is primarily symbohc, but
it can be usefully illustrated graphically.
~ One would like to produce a hierarchical speciﬁcation
technique that describes what the net should do, then allows
this to be broken down into manageable pieces, in line with
top-down design for computer programs. However, the science
of neural network design is not yet advanced enough to
_allow nets to be formally designed from their functional
specifications. The notation does allow nets to be described
in a top-down fashion (see Section 6.B), but is not (and is not
likely to be) executable. It is not a functional specification, but
a description of a network. It is intended primarily as an aid to
description and clarification of neural net specification. Further
decomposition can be achieved by replacing 2 network node
by a network. The notation describes a set of generators that

Manuscript received July 25, 1991; revised March 12, 1992, Recommended
by E. Gelenbe.

The author is with the Centre for Cognitive and Computdtxonal Neuro-

science, Department of Computing Science, University of Stirling, Stirling
‘FK9 4LA Scotland,”
IEEE Log Number 9200609.

generate all the elements of the net. The interaction between

the elements of the net is via instantaneous connections.
(rather like lines on a circuit diagram), so that the elements .

generated must embody all the nontopological specification
of the net. This includes both dynamics and adaptation.
Generators themselves are skeletal outlines of elements that
are turned into elements by a two-stage process that uses
parameters to precisely define the operation of the element.
The system is made hierarchical by providing a method for
forming a new (skeletal) generator from a complete network,
thus allowing the specification of networks of networks. Not
tying the framework to any implementation means that it is
not executable; however, it means that the range of networks
that can be described is very broad.

The most influential basis for specification systems- for
neural networks has been the Actor concept [1}]. This has been
used by the Pygmalion project [2}, [3] and in the commer-

cial system ANSpec [4]. Actors are a process-oriented tool

intended for the specification of paralle! processes. As such,
they have the descriptive power to describe the topology, and
use usual programming techniques to describe the input/output
relationship. However, they have problems in describing the
dynamics of nonsynchronous neural net systems. The AXON
language [5] is a C-like language for neural net description. It
is a powerful low-level tool: as in the notation described here,

the dynamics and the adaptation are described in the (program) '

specification for the nodes. However, it is not a specification
technique as such, but is simply a C-like program. The same

 comments apply to MENTAL [6]. Perhaps the closest to our

notation is that of [7], which is based on CSP {8]. It was felt
that CSP limited the temporal specification of the interchange
of information: we wanted a specification -system that could
cope with synchronous, asynchronous, and continuous time
systems. This really ruled out any of the existing parallel

processing formalisms. This work is very loosely based on

CCS [9], at least so far as the graphical form is concerned.
The notation can be used to describe low-level (i.e., bi-
ologically realistic) systems. Compartment based simulators,
such as SWIM and Saber ([10}], [11]), are becoming important
at the interface between those interested in neural networks
for their computational properties, and those interested in the

‘neurophysiology. SPICE [12}, an analog circuit simulator, can

be used for membrane patch simulation, approximating the
biology by analog circuit elements. The notation can be used
to describe networks at a mixture of levels, and could be
used to supply a specification for a simulation, possibly of
some critical part of a network, using these tools. The notation
allows a network to be presented as a whole, and its use of
generators makes it a powerful specification tool by permitting

- 0162-8828/92$03.00 © 1992 IEEE

602 ') 1EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

=(NA

network N

NODENAMES STATESPACES

instantiate

{(gname{g). par(g). Fg)}

setpatamelers

(g: (gname(g), PAR(g), F)) Jg

generalors
ENERATORNAMES

{output ports} U (input ports}

E environment

Fig. 1. A graphical representation of the framework. See text for details.

re-use of already specified types of nodes, as well as the
hierarchical combination of nodes into one node.

Both the net’s dynamics and the way in which the net adapts
are described in the notation for the network nodes. This work
is restricted to the specification of static nets: dynamic nets
(both constructive and decreasing nets) are outside the scope
of the project. Section II of the paper describes the framework
itself, and Section III gives a simple example. Section IV
describes some different types of dynamics that the framework
can support, and discusses pulse-based networks. Adaptation is
discussed in Section V, and Section VI gives a bottom-up and
a top-down example of the framework’s usage. Section VII
draws some conclusions, and dlscusses some p0531ble further
work.

{I. THE FRAMEWORK

» Informally, a network comsists of nodes and directed arcs
connecting pairs of ports each associated with a node. The
network exists within an environment, which is treated as a
special case of a node. With the exception of the environment,
nodes are described by instantiation of a generator. Fig. 1
illustrates how the environment and the net are made up.

More formally, we start from a number of sets, from which
we will build up the notation. These sets follow.

NODENAMES: the set of names for nodes (e.g., strings of
bounded length).

 GENERATORNAMES: the set of names for generators.

PORTS: the set of ports on nodes.

STATE-SPACES: the set of possible state spaces for nodes.

FUNCTIONS: the set of functions that a node may imple-
ment.

The set PORTS consists of two disjoint subsets, INPORTS
and OUTPORTS, corresponding to the direction of information
flow at that port.

All input to and output from the network is from or to the
environment, E. The environment has ports p(E) C PORTS,
and this set consists of input ports pi,(E) C INPORTS and
output ports pou:(£) C OUTPORTS. Nothmg else about the
environment is defined.

We now define generators and nodes. Logically, one should

start with the generators, since nodes are generated from

these. However, in a network, the fundamental entities are the
nodes: though the generator concept allows the construction
of a number of nodes from a common startpoint, as well
as allowing hierarchical net construction, it is secondary. We
therefore start with the node. It is defined as a tuple:

n € NODENAMES x set(PORTS)
x STATE-SPACES x FUNCTIONS (1)

where set(PORTS) is the set of subsets of PORTS. We write

n = (name(n), p(n), STATE(n), Fy,) (2) |

where name(n) defines the node’s name, and p(n) = pin(n)U
pous(n), as with the environment, defines the set of ports.

We will write p%,(n) or p,(n) for each port. STATE(n)

is the set of possible or reachable states for node n. F,
defines the function of the node, that is, how the outputs (i.e.,
values placed on output ports) are computed, and how the state
updates. Where it is useful, we separate out the state update
part of F,, calling it Fi"*, from the port output part, calling
it Fout,

Nodes exist over time; indeed, they may evolve over time.
The name of the node and the ports do not change, but the
state, the values on the ports, and possibly the function do
change. We write state(n,t) € STATE(n) for the node state
at time ¢ > 0, state(n, 0) being the node’s initial state, and we
write pi_(n,) (or piy(n,t)) for the value on port pk,(n) (or
P+ (n)) at time ¢. Where the node to which the port belongs
is clear, we drop the parameter n. Since the function £, may

“adapt, we write F,, ; for the function implemented by the node

at time ¢. This defines the values to be placed on the poy:(n)
ports at time ¢, and how the state is updated at time {. This
will depend on the initial function, F,0, on what has been
received on the p;,(n) ports up to time t and on the initial
state of the node.

Arcs are defined as pairs:

a € OUTPORTS x INPORTS.)

Thus each dxrected arc a joins one output port to one input
port. Thus if a = (fa, ta), writing N for the set of nodes,

fa U DPout (T)

TENUE

ta€ |J pmlr).

r&€NUE

Writing A for the set of arcs, we can characterize the net, N,

itself as
=(N,A) 4)

Each node, n, is generated from a generator, g. The aim of
introducing this secondary entity is twofold: firstly, it provides
a common startpoint for a number of nodes, and secondly, by
providing a method for producing a generator from a complete
network, it allows networks to be built up hierarchically. The
generator must be able to define the name, ports, and state-
space of the node, the initial state and initial function, and how

EREREESSS

SMITH: A FRAMEWORK FOR NEURAL NET SPECIFICATION

these will evolve in time. We have taken a parameter based
approach: the generator provides a template for the name and
function of the node, and these are precisely defined using
parameters. Each g is a triple, '

g= (gnéme(g),PAR(g),Fg) (5)

where gname(g) € GENERATORNAMES, PAR(g) is the
parameter space for this generator, and Fy is a template for
the function F,. Again, where this is useful, we may split this
into F;™ and FJ** as for Fy,. This is not completely general;
however, the functions used in nodes are usually relatively
simple, and generally fall into a small number of classes. We
- will write G for the set of generators. The parameter space is
used to specify all the other things that need to be specified:
that is, how name(n) is derived from gname(g), what the set
p(n) should be, what STATE(n) should be, how F, should be
derived from F,, what state (n, 0) and F, o should be, and
how they should evolve in time. This is accomplished in two
steps: firstly the actual parameters of g are set: '

(6)

(simply choosing par(g) € PAR(g)) and then the generator
with its parameters set is instantiated:

setparameters(g) = {gname(g), par(g), F,)

instantiate(gname(g), par(g), Fg) = n

= (name(n), p(n), STATE(n), F,). 7
This defines the name of the node n, its ports, its state-space,
and function. It also implicitly sets up state (n,0) and F o
since these are defined by the selection of the parameters.
We have not precisely formalized the generation of STATE(n)
from the parameters. In general, we will use a subspace of
PAR(g), one spanned by some of the parameters. The initial
state, state (n,0), will be defined by the actual value of these
parameters. :

The framework allows a formalization of the notion of the
type of a node: two nodes have the same type if they share a
common generator, The inverse of instantiate o seiparameters,
desc, can be defined, mapping the set of nodes to the set of
generators: :

®

where n = instantiate o setparameters(g). The mapping desc
is well defined since every node n has an associated generator
g. The set N can be partitioned under the equivalence relation

®

It is possible to define nets hierarchically by forming a
generator from a whole net, and then instantiating this as a
node. Considering the net

N = (N, A)

desc: N — G;desc(n) =g

ny ~ ng & desc(ny) = desc(ng).

we need to produce a generator for the new node that will
replace N: '

g = g(N} = (gname(g(N)),PAR(g(N)), Fy). (10)

603

To produce the generator g(V) entails selecting a new name
gname(g(N)), defining the parameter space PAR(g(N)), and
defining a template function F a7y The name can be chosen -
from GENERATORNAMES, but the parameter space and
template function must be constructed. The parameter space
can be constructed (for example) by considering its elements
to have the form : :
(50,81, ,8r) 1 8: €5;

where S; is the range of parameters for the ith parameter. We
can use sg and s; to define the ports. These come from the
arcs of the original net, specifically, from the subsets of A:

Ao ={a€A:t, € pin(E)} and
Ar= {a cA: fo, € pout(E)} » (11)

which are the arcs between the net N and its environment
E. Their endpoints in N (i.e., fo in Ao and ¢, in Ar) will
generate the ports of the node. Let so parameterize the input
ports, and s; the output ports. so can be used to define how
many input ports will be generated from each ¢, in Ay, and
51 how many output ports will be defined from each f, in
Ao. Note that some of the t, and f, may be left unused,
while others may give rise to several ports. The parameters
$2,...,8, parameterize everything we wish to be externally
visible (i.e., parameterizable) from the parameters used in the
construction of all the nodes of the original net. Fg(N) is
defined implicitly by the F,, where n € N. Working in this -
way, the initial state of the new node and the initial function
may be determined by the initial states and initial functions of
all the nodes in the original network, or the parameterization
used in setting up these states in the original nodes can be re-

“used in the setting up of the new node. This construction can

be nested to any desired level; however, circular definitions
must be avoided so that eventually all the nodes are defined
in terms of elementary generators.

A can be considered a directed graph on the nodes N. Thus,
there is a path from ny to ng if there is a path P C A:

P={(fr tr):7=0...R-1} (12)
where fo € Pout(n1) , tr-1 € Pin(n2), and t; € pin(ni),
fis1 € Pout(n;) fori = 0... R — 2. Given that the n; are
distinct, the path is of length R. Thus, A has loops (i.e. N is
recurrent) if for some n € N, there is a path from n to itself. -

This framework can be applied to many different types of
interacting entities: clearly it is the form of the elements (as de-
fined by the g, and the mappings instantiate and setparameters)

and the pattern of interconnections that make the framework

produce something which is recognizably a neural net. Thus,
for example, we sometimes identify part of the internal state
with the weights of a neuron, or with an activation level.

The restriction that each port may be an endpoint of at
most one arc seems odd at first: we are used to axonic
outputs going to many other neurons. However, the arcs do
not represent either axonic or dendritic links; they are simply
instant communication paths. All the active elements including
synapses will be contained in the nodes of the net. This -
restriction allows us to make all the links identical whereas

604 ') , : IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

Pout(E) g=

(generator1,{(s0,51,52,53,54.55)} Fg)

petparameters

. A 4
(generatorl,(2.2.(w0,w1),1,0),Fg)

Pin{n} Pout(ni

) nit
Pout{n)

Pin(n)

Fig. 2. A simple I-neuron net. Smail squares
are output ports, and small circles -input ports.

alternative approaches would require us to characterize links as
well as nodes. This approach permits both subdivision of each
neural element (so that nodes may be parts or compartments
of a neuron) and clustering of neural elements (so that nodes
may be networks of neurons).

III. A SIMPLE EXAMPLE

We illustrate the framework by specifying a simple 1-neuron
net, as shown in Fig. 2. The environment, E, has two ports:

pin(E) = {pl,(E)}

Pout(E) = {pus(E).}
The net itself has one node, n, and this is generated from a
generator g. To characterize g, we must supply its name, the

parameter space, and the (skeletal) function F,. We choose
these to be: '

- gname(g) = generatorl
PAR((]) = {(SOa 51,82, 83, 31'11;&) H
50,81 € Zo, 52 € R*, 53 € R, 8inis € R}

80-1

FQ(S3J 82, 80, t) = 1/(1 + exp —33.(Z sapin(t - 1)))

(13)

where 7, is the set of nonnegative integers, R is the set of
real numbers, and p (t — 1) is the value on the ith input
port of the instantiated neuron at time ¢ — 1. Thus, generatorl
will generate nodes that accumulate a weighted set of inputs
(where the number of inputs is defined by sp, and the weights
by s7) and then compute its outputs by applying a logistic
function, whose steepness is determined by s3. The number
of output ports (all in this case transmitting the same value)
is determined by s;. The initial state of the node is defined
by s;ns (this is the value at the output ports at ¢ == 0), and
by the s;. -

Letting setparameters set so = 2, s; = 2, sg = {wg, w1),
s3 = 1, and s;n;: = 0 and letting instantiate set

name(n) = generatorl.instancel

and set up state(n,0) from s;,;; and so as above, the node
of the net is produced. For this very simple example, the

internal state is constant so that F,, is simply F,, with the
actual parameters substituted. For the arcs, if we write p? _,(n)

for the ith output port of n, and p, (n) for the 4th input port
of N, we can write

A = {(Poue(E), 1 (1), e (n), Pin (1), (Bue(n), P (E))}

to give the whole net, That the net is recurrent is clear, since
the second arc in A represents a path of length 1 from node
n to itself.

In general we need to decide the extent to which PAR(g) and
Fy can allow different nodes to share generators: should each
g be very restricted in the nodes it can generate, or should
we have only a small number of different generators. It is
useful to be able to use the same generators in many nets. In
this particular case, there is only one node, so that we could
ignore the question here; however, we use this simple case
to illustrate the point: the generator generator! can generate a
large variety of simple nodes that use the logistic function.

Virtually all nodes require the definition of an initial state;
this amounts to defining initial boundary conditions for the
model. However, for the sake of clarity, we often omit the
parameter $;,;¢ from further discussions.

IV. DYNAMICS

The term dynamics applied to nets describes how the net
functions over time. The framework does not define this
directly, leaving it to the definition of the functions F,,. These
define the behavior of the nodes over time, and the whole
net’s behavior over time emerges from this. Although one.
can characterize the behavior of some nets (e.g., feedforward
nets) by simply considering that values on output ports are
computed after all the inputs to that node have arrived, proper
characterization of nets with feedback entails more precise
definitions. ' :

One way to achieve this is to consider time as a sequence
of integers, starting at 0. Thus, the environment is considered
to produce its input at time 0, 1, 2, etc., and the net’s output
occurs at time 0, 1, 2, etc. In this case, the nodes all receive
their input from their input arcs at time ¢, and produce output
and place it on the output arcs at time ¢+ 1. This is synchronous
dynamics and was used in the example in the previous section.
Each value output at time ¢ is accessible at the corresponding
input port immediately, and usable in computing outputs at
the next timestep. For internal arcs, we need to define the

- values to be used as input at time 0. Nets using synchronous

dynamics can oscillate if they are recurrent. For feedforward
nets (where we are only interested in the final stable state) one
needs to wait for the net to settle. Given a simple generator

for the nodes (such as generatorl of (13)), the net will settle in

a number of timesteps equal to the maximum length of a path

from an environment output port to an environment input port.

Difficulties arise with this synchronous approach if one -
wishes to compose a number of nodes and consider this
subnetwork as a single node, or decompose a node into a
subnetwork. The problem is not too difficult in the first case,
as one can arrange for suitable delays-at the new node; but in
the second case, it may be impossible to define the operation

SMITH: A FRAMEWORK FOR NEURAL NET SPECIFICATION

of the new nodes using the same clock in such a way that the
decomposition has no functional effect. This is a real problem,
since we may wish to model neurons at differing degrees
of detail in different parts of a net. One possible approach
is that taken in LUSTRE [13] in which different clocks are
defined in different parts of the system, and an additional signal
qualifying the validity of each output is introduced; however
this has not been investigated here.

These problems of synchronizing networks in which dif-
ferent parts are specified at differing levels of detail can be
simplified by using continuous dynamics. Biologically, this is
more realistic. The specification problem is simplified since
the new nodes operation over continuous time must be spec-
ified. Ensuring that the subnetwork has the correct temporal
operation becomes a question of the correct specification of
the nodes of the subnetwork. Low-level operation of a real
neuron is not synchronous, but continuous, being governed
by, for example, ionic gradients. This type of operation can
be modeled by passing values continuously through the links.
A different choice of generator in the earlier example would
give this dynamlcs

gname(g) = generator2

PAR(g) = {(50131152:33) 180,81 € 1-01 $2 € R30133 € R}
Fg(83as2330=t)

sg—1 i
= uvvenmn(E 4 [weniiow)
=0

(14)

where W{z) is a convolving function with integral 1, de-
scribing the operation over time of a synapse in response to
an input. It will be nonzero only over some small positive
range. The output of such a unit is a time-varying signal in
the range O to 1, compressing the possible range of the sum
of the integrated inputs. By making W (z) = 6(z — 1) (where
6() is the Dirac delta function), this reduces to synchronous
dynamics.

~ Neurons whose output takes the form of impulses can use
part of the F, of (14) as the basis for an internal state. The
output will be an impulse of some shape: in this generator, the
internal state is reset when the impulse is produced.

'gnamc(g) = generator3
PAR(g = { 30: $1, 82, 84, lpulam PUISetYPe) ©80; 91,

pulsetype € T, s3 € R*, 54, lpuise € R}

So--l
F;nt(t) = F;nt(SQ,So, Z «52 W(t - "')I’zn(T)dT
i=0 Treset :
(15)
F;mt(lpulsc s PUIsetYPe’ S4, F;ni (t)’ t)
=0 if Fy*H(t) < s4 (16)

= pulse(pulsetype, lyuise, t) if F_;"t(t) > 84

6065

where Treqe: is set to the start of each output pulse, and
the function pulse(pulsetype, lpyise, t) produces a pulse whose
form is dependent on pulsetype, whose length depends on
Iputse, and which starts at time ¢. Such an element convolves
the received impulses with the function W (z), thus modeling
actual operation of the synapse, and adding some biological
plausibility. Producing an efficient simulation on a digital
computer based on this type of dynamics is very difficult;
however, the equations might well describe the operation of a
system based on an analog computer, or a system where the
neural elements are built from analog components. ’ »
One can reduce the computational overhead of this pulse-
based generator by simplifying (15) and (16) so that the shape
and duration of the pulse are ignored, and the pulses simply
weighted and counted: ’

gname(g) = generator4 »

PAR(g) = {(50,51, 52, 54,) : 50,51 € Lo, 82 € R, 54 € R}

sg—1
F;nt(t) — F;nt(3o;52: t) -,_-_,- Z S;.COUHt(Tresehtspﬁn)
) =0
’ 17)
Fton Bt) =0 BN <

= 1if Fy™(t) > s4

where count(z, y, pm) counts the pulses received on input port
pt,, from time z to time y, and the s, and s4 are chosen so
that the F2** generated produces infinitely short pulses.
 As well as synchronous and continuous dynamics, one can
have asynchronous dynamics. This is sometimes taken to mean
that one node at a time (chosen at random) re-evaluates its
inputs, producing a new output, and sometimes that each node
re-evaluates its output after a random time delay. The output
may be constant, or it may fall away in some predefined
fashion. If each node evaluates its output at the start of
each interval, and that output is constant, one may define the
generator (following generator2) as follows:

gname(g) = generator5

PAR(g) = {(s0, 51, 52,53) : 0,81 € Lo,52 € R*,53 € R}

Let ro = 0, and #; (j = 1...) be a sequéence of random
positive real numbers, which will be the interval lengths (i.e.,
the delays between consecutive re-evaluations). Thus the &th
time interval (during which the output will be constant) is

k+1

te [ZrJ,ZrJ (19)
“Then, for t in the k’th time mterval
50'—1
F (53, 52,30,77) = 1/(1+exp—ss()_ SzIOm(ZV‘J)
=0 3=0
(20)

606 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

The output during the kth interval is determined by the inputs
at the beginning of this interval. The random intervals are
generated from within the node itself so that they are different
for each node.

One can rewrite the simpler pulse-based generator described
in (17) and (18) to use asynchronous dynamics by incorporat-
ing (19): for ¢ in the kth time interval,

. k
Fit(sq,0,t) = Fi™ | 50,52, % 75
pr
sn—l k
. i t T . {2
= Sg.coun reset) T3y Din (21)
i=0 3=0

In this case, incoming pulses are counted at the end of
each time interval, and then an instantaneous pulse may be
~ generated. This can be used as a basis for modeling the random
neurons of [14] where stochastically generated pulse outputs
are sent out on one arc at a time, and can either add 1 or
subtract 1 from their target unit’s activation (which is itself
bounded below at 0). Generation of a pulse occurs only when
the activation is positive, and has an average rate of R. Pulse
generation results in a decrement of the unit’s activation. Each
output pulse is sent out of exactly one output port. Neurons of
- this form can be modeled by a generator based on (21):

gname(g) = generatorb

PAR({g) = {(s0, 51, 52,85, prob(pout)) * 80,51 .
€T,sy € {~1,+1}°°,55 € R,prob(p,us) € R>}

Fint(0) = Fy™(s5,0) = s5
Fim(s0, 51,52, 55, 1)

k
it .
= FJ"" { s0, 51, 82, 85, E T

Fgmt (t) —

=0
SU—].
:min(F'mt E T +§ 32
2=0

k

k1
) P
.count E rj,z Ty Din

j=6 j=0

- Z pulsexit(k, z))

and the expected number of output pulses on port ¢ in the kth
time interval, E(p,,, k), is

k-1

E(piy k) = Rsgn| Firt| S r;
=0

'prOb(piut) Tk

where the function pulsexit(k, ¢) counts pulses output by output

port pi,, in time period k, the function sgn(z) returns +1

" that each node represent a whole neuron, we subdivide the’

if > 0, and 0 otherwise, and prob(p;,,) is the predefined
probability of an output pulse being sent out on output port
¢ (where z =0 prob(pout) = 1). Thus the probablhty of the
pulse being sent out of a specific output port is local to the
output port, but the effect of the pulse (whether excitatory
or inhibitory) is defined by the s3, and this is local to the
input ports. For completely correct operation, the r; should
be small enough so that no more than one pulse is received
or transmitted in each time interval; however, letting them be

"~ larger still allows operation, although the order of counting the }

input pulses may change the unit’s precise operation.

Since the dynamics is set up by Fy (or F,) it may be ‘
different at different nodes. Care must be taken to ensure that 5
the dynamics at the different nodes in V' are compatible.

V. ADAPTATION

‘Adaptation of a net is the alteration of its behavior as a

result of earlier events. This framework does not attempt to

specify dynamic nets, so that adaptation here relates only to
modulation of the behavior of the processing elements them-
selves. Thus adaptation is the alteration in the computation of

‘values by F, . in response to input at the node’s input ports

and its internal state (itself computed by F,, so providing a
memory for earlier events). Any factors that are to influence
the changing of F,, ; must be brought to the node. The precise
way in which the alteration occurs will be defined by the
generator and the mappings. setparameters and instantiate.
Adaptation can often be expressed more simply by using
the internal state in the computation of the node’s output. In
this way, Fy, itself can be fixed. This permits straightforward
specification of Hebb-style learning, where the adaptation
takes place at synapses depending only on the pre- and
post- synaptic activation. Altering generatorl (which has syn-
chronous dynamics) we can define an adaptive version:

- gname(g) = generatorla (22)

PAR(g) = {(30’51!52933:34) P 80,581 € IO, 89
Rsu S3€R 84 ER}
Fimt(t) defines w'(t) = w = 1) + saply (t — l)F"“t(t 1)

Fout _ l/ (+ exp

g0—1
- (Z Wi, (¢ - 1)))

where w(0) = sb. In this case, s4 is the learning rate
parameter. On instantiation, STATE(n) is the space of possible
weights defined by the possible values for 53, (i.e., R% C
PAR(g)), and (22) defines state(n, t) and the state update rule.
Note that input at time t — 1 results in output at time ¢, so
that the weight update that happens at time ¢ uses the input-
at time t — 2 and the corresponding output at time ¢ — 1.°
Other adaptation schemes depending on the same factors can |
easily be specified. However, if instead of each specifying

neurons so that the neural elements are (for example) synapses,
activation functions, output functions, and axons, then, since:

|
|

SMITH: A FRAMEWORK FOR NEURAL NET SPECIFICATION

Tllustration of part of Delta-rule based network.

Fig. 3.

adaptation takes place at the synapses, the relevant data is no
longer local. In this case, arcs supplying the post-synaptic (i.e.,
axonic) output back to the synapse would be needed. Since all
interaction is represented by arcs, these “extra” arcs are to be

- expected, since they represent the effect of the spike at the

axon hillock on the dendrites of the neuron.

For rules with teacher input, some of the ports supplying
input from the environment (i.e., environment output ports)
Pout,d(E), supply desired outputs, rather than true inputs to the
network. For the Delta rule, there will be a 1:1 correspondence
between the elements of p;,(E) and poys a(E). Assuming the
usual type of network nodes for a delta-rule net, each node
will have exactly one output, and one desired value input
corresponding to this output. Every other input port supplies
a pre-synaptic value, so that the unit has enough information
locally available for calculating weight changes. A generator
for this type of node can be defined: writing so for the number
of input ports, as before, setting s; the number of output ports,

to 1, and using the Oth input port to correspond to the desired

output:
gname(g) = generatorld
PAR(g) = {{s0, $2, 53, 54) : S0 € Lg, 52
€R® 1 53 € R, 54 € R}
Fint defines w'(t) = w'(t — 1) + sa(pg,(t — 1)

— Fg(t - 1))pha(- 2)
sp—1
F"“t(t =1/(1 +exp—53(z)ph(t = 1) 1))
7=1

where w*(0) = sb. Again, s4 is the iearmng rate; different

output functions can be set up in Fg*¢. Note that F,™(t) -

needs to be computed before F"‘“(t) and that input at time

't — 1 results in output (and therefore desired values) at time

t. This is reflected in the weight update rule. Fig. 3 illustrates
part of such a network.

This can be extended to the back-propagated delta rule
[15]: in a layered feedforward net, only the top (or output)
layer has connection to the environment. A generator for these
units can be defined in a similar way to generatorld, except
that they must feed error contributions back to the previous

607

layer. Thus, as well as the single primary output, Foual(y),
there are error outputs, F""‘”() one corresponding to each

pi,(i = 1...s0 — 1). All together, there are sy output ports
and sg input ports. Thus, a generator may be defined:
gname(g) = generatorlbpd.top
PAR(g) = {(s0, 52, %3, 84) : 50 € To, 52

[RBO“I,S;{ € R,s4 € R}
The Oth port is the output to the environment. This primary
output is defined by: :

so—1

F‘mtﬂ(t) = 1/(1 +exp—s3(Y w

g=1 -

ypta(t - 1

where the initial state will be- generated from w (0) = s% and
the state update rule will be

F;'nt defines 'wl(t) = wi(t - 1) + 84(P?n(t - 1)
out,0 4
- F}] ¢ (t - 1))pzn(t - 2)

"The error outputs are defined by

Fgi(t) = wi(t = Dl (t = 1)

—F2et0(t — 1)).53. Fg00(t — 1).(1 = Fy™*0(t — 1))
The primary output is transferred to p,,, and the error output
to the other output ports.

Nodes in the intermediate layers no longer have any inter-
action with the environment: however, they have a number of
output ports transferring the node’s primary output to other
nodes. Additionally, there will be extra input ports receiving
the error input from the next layer up. A generator can be
defined: ‘

gname(g) = generator]bpd.mid

PAR(g) ={(s0, 51, 52, 83, 54) : 50,81 € T, 52
€ R s3€ R,s4€R}

In this case, $¢ is the number of “true” inputs, and s; the
number of “true” outputs. In fact, including arcs used to
propagate errors, there are s; + sg input arcs, and the same
number of output arcs. Number the output arcs so that the first
sy transfer the primary output, and the next sp transfer error
values. Number the input arcs so that the first 5o recéive “true”
inputs, and the next s1 receive error inputs. Then we can write

30—1
Foutd(t = 1/(1 +exp _33(Z L(t p’m(t 1)))
. i=0
for j = 0...s7 — 1, and
Foubi(t) = wi(t — 1).53. Fy ™0 (¢ — 1).(1 = Fu8°
sp+s;—1
'(t - l)) Z pzn(t
'i“—sl

A

608

Poutd

0
g
Pin Pout Top Layer Node
Pin Pout E
1 2 0-1 0.3
i 1.1 0 0¢. 0+

Pin
Hidden Layer Node
Pour-
0-) 1 tef

ﬁm

Pout

4

Fig. 4. Ullustration of part of a back-propagated Delta-rule network.

for j = s;...80+ 8 — 1. F7™ defines the ‘state (weight)
changes as follows:
) N So+s;—1) .
w(t) = wj(t — 1)+ s4 Z Pin(t — 1)pl (t —2)
. 1=8;)

for j =0...s0—1. A generator for the input units can also be
defined; it needs no internal state, but simply distributes the
input values to nodes in the first layer. It is possible (though
rather cumbersome) to combine these generators to produce
one that can generate nodes in a recurrent back-propagated net
with nodes whose primary output goes both to the environment
and to other nodes. This could be used to specify networks
like those in [16]. Fig. 4 illustrates a small part of a back-
propagated network. The online version of the learning rule
has been used here: the batch version would need the errors
to be accumulated inside the state of each unit. ‘

Only a small number of possible adaptation schemes have
been illustrated. Similar techniques can be used for any
learning technique that propagates errors. All processing el-
ement interaction is explicitly specified by the Foutt and the
arcs: this may make descriptions of certain real neural nets
more difficult, since these may require the effects of brain
hormones to be made explicit in terms of arcs. Such forms of
adaptation are beyond the scope of most neural net simulation;
however, this model does allow their specification at the cost
of additional arcs. We have not needed to make F,, itself adapt;
however, this could be useful, e.g., where the adaptation rate
was being annealed. -

VI. EXAMPLES

The framework will be used to specify an adaptive 3-unit
S-input winner-takes-all net in a bottom-up manner, and a
more complex net in a top-down way.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

Poul(g)

PauiE)

Pour(E) Poul(E} Pout(E)

Fig. 5. A S-input 3-output winner-takes-all net.

A. Winner-takes-all Net

The network is shown in Fig. 5. It has a three-unit cluster
of nodes, each connected to each other. Each node makes one
output to the environment, and receives input from all five of
the outputs from the environment. We use the framework to
specify the net, and then to turn the whole net into a generator.

The environment is simply characterized:

Pin(E) = {p:n(E) S 02}
Pout(E) = {ph(E) i =0...4)

Since the values from each p?.,(E) need to be transferred to
all three nodes in the cluster, and since each port can only be
part of one arc, extra nodes will be needed to replicate these
values. The network will have continuous dynamics, and the
nodes in the cluster will be built up from a partially adaptive
version of generator2. This is as follows: '

gname(g) = generator2a

PAR(g) ={(s0, 51, 52, 83, 84, 55) : 50, 81,52 € Tp,
e Rsa+51as4155 € R} ‘

FJ(t) =

s0+s1—1) t ‘))
1/(1 + exp —s4 (Z w’(t)/ Wit - T)pin(r)dr))
=0 0

where the initial internal state will be generated by for i
0... sg — 1

wi(t) = s}

SMITH: A FRAMEWORK FOR NEURAL NET SPECIFICATION

and updated by using F"“, which defines that for i =
Jsg sy — 1

wi(t) = s} + 55 / mpla (7), FU(r))dr

In this generator, there are s nonadaptlve synapses, s1 adap-
tive synapses, s, outputs; the s3 are the initial weights, s4 is the
slope of the logistic output function, and s5 is the learning rate.
The function m() defines the way in which the presynaptic
“value pi, (t) and the postsynaptic output Fy(¢) are used in
weight alteration. For this generator, we shall simply assume
m() to return the product of its two parameters.
The generator for the nodes used to replicate the Pout (F)
is more straightforward:

gname(g) = copy
PAR(g) = {n:n € I}
F.l](t) = pin(t)'

Nodes generated by copy have one input port, and n output

ports, all with the same output. Their internal state is constant..

All the nodes in the cluster are of the same type. The
generator generator2a generates the nodes as follows: first,
setparameters is used to fix values for s; 1 4 = 1...5: 50,
the number of input ports with nonadaptive synapses will be
3: s1, the number of input ports with adaptive synapses, will
be 5; s9, the number of output ports will be 4 (one to the
- environment, and one to each of the nodes); and s3 will be
set to the initial weight matrix for the synapses of that node.
s4 and s can be set as required. All these values can be
different at each node. Next, instantiate is used to give the
nodes different names, say wtai, for ¢ = 0...2 and to set up
the ports, STATE(n), and state(n, 0) for each node. Similarly,
setparameter is used to set n = 5 for the nodes to copy the
outputs from the environment. Instantiate gives them different
names, copyi, for ¢ = 0...4 and sets up the ports and state.
This generates the set of nodes, V.

To complete the construction of the net, the set A of arcs
must be defined. Writing pi, (wtagj) for the ith input port of

the jth cluster node, and pt,(copyj) for the ith input port of .

‘the jth copy node, and starting with arcs carrying values to
the net from the environment:

Ar = {(Bhus(B), pin(copyd)) 14 =0...4}.

Next, nodes carrying values to the environment from the net:
Ao = {(Phu(wtag), Pl (E)) : 1 =0...2}.

Lastly, the internal arcs Arne:

Afﬂt = {(pgut(Wt’a'j)ap(i)n(Wta'(j)))»)
(pL.(whag), pi, (wha(j + 1 mod 3))),
(p2,¢(wtag), p2, (wta(j + 2 mod 3))),
(p! .. (copyd), &3 (wtaj)) 1§ =0...2,i=0...4}
A=ApUArU Afnt.

This, then, specifies the net.

609

The network (N ,A) can be made into a generator, g, for a

 single node by first providing a new generator name, secondly

setting up PAR(g), and thirdly defining F};. The new generator
name is straightforward. Some dimensions of PAR(g) will be
defined by replacing the p{, (copyi) in the arcs in Aj and
the (p3,,(wtaj)) in the arcs in Ap by parameterized port
generators, and some of the other dimensions of PAR(g) will
determine whether each input port receives input or not, and
how many arcs leave each of the outputs from the cluster
nodes. The other dimensions: of PAR(g) are those required
from cach of the nodes of the original net. The F, of this
new generator cannot be simply stated: it is that set up by
the composite effect of all the nodes. I int depends on the
F,, of both the cluster and copying nodes F"“t will depend
only on the F2“' of the cluster nodes. Thc. dynamics for
the composite generator does not present a problem, since
continuous dynamics was used from the start. However, had
synchronous dynamics been used, a faster internal “tick”
would have been needed. It would also be possible to extend
this form of generator to one producing an arbitrary n-input
m-output winner-takes-all net.

B. Top-Down Specification

One of the main applications of the notation is to provide .
a method for developing and discussing a proposed network.
In this example, we start from a very brief description of the
proposed net, and use the notation to discuss some possible
networks.

The problem chosen is the network implementation, in a
top-down manner, of the classification of sounds into classes
from an input consisting of band-limited power in each of
a set of three bands. Each input varies rapidly over time,
and the system must attempt to classify this input. Only
three bands were specified, purely for simplicity; the problem

“could use many. Similarly, the problem here is just one case

of a commonly occurring problem: given time-varying input
from a number of sensors, produce a (more slowly) time-
varying classification. This is a noatrivial problem. The most
appropriate form of network is not at all clear, and will
probably depend on the precise classification task. It is thus a
suitable candidate for discussion using the notation proposed
in Section Il '

A possible top-level is shown in Fig. 6. This level is useful
for clarifying the net’s interaction with its environment. The
system consists simply of the environment and one node,
ntop. Characterizing the environment, £, means defining the
input ports, pin(E), and the output ports poy:(E). Three of
the output ports are clear from the initial description: they
supply the band-limited signals. Similarly, the input ports
must receive the classification from the network. But more
precise definition poses more detailed questions, as indeed, one
would wish it to do. What form does the classification take?

 How is it to be represented? Is there another output from the

environment, representing the desired value for classification
during training, or will the net be self-organizing?

In a real application, the answers to these questions would
come from the specifier of the application. Here, we decide that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO, 7 JULY

610
Fig. 6. Top-level diagram for sound classification network.
the classification will be represented by a number of inputs

to the environment, one per possible classification -(locally
coded), and that there will be the same number of outputs from
the environment, used during training, specifying the correct
classification. Then, we can specify the output and input ports

of the environment:
pout(E) = {pfmt(E) 24 = 0.7+ 2}

where pU..(E)——pZ;tl (E) provide the desired values for train-
ing, and pgu't(E)—-pﬁjf(E) provide the band-limited signals,

pin(E) = (Pl (E) 1 j = 0.7 -1}

providing one input to the environment per classification.
The pous(E) define the pin{ntop), and vice-versa. We also
need information on the dynamical nature of these signals.
(In a real problem, these would be prespecified.) The band-
limited input signals may be continuous or discreticized in
~ time, as may both the training signals from the environment
and the net’s output fo the environment. Considering the nature
of the problem, we choose that both be discreticized, but that
the band-limited input has a much higher sampling frequency
than the net’s training signal or output. It is not useful to define
the STATE(ntop); discussing the function Fyop at this point

serves to restate the problem the net is intended to solve.
There are many ways in which this top level can be
decomposed. Three possibilities are shown in Figs. 7-9, cor-
responding to separate and -independent processing of the
inputs pOy:(E)—Paut(E); processing each of these in turn and
using the output of each stage in the next stage; and separate
processing of each using data from the others. In each of

these cases, this processing is followed by a classification stage

that uses the output from all the earlier stages. However, in
cither drawing these diagrams, or in attempting to characterize
the internal ports, one is rapidly faced with decisions. For

example, in Fig. 7, the input port set pin(n_dl.i) is a simple -

subset of pin(ntop) defined earlier; but the output port set
Pout(nd1.1) may take many forms. They could be similar
to those of pyue(ntop), if the node nd1.1 is attempting the
complete classification task, and node nd1:4 selecting the most
appropriate classification. Alternatively, the node ndl.1 may
be recoding the input so as o emphasize certain features, in
which case pout(ndl.1) may be completely different. Indeed,
the nodes nd1.1-nd1.3 may be either supervised (in which case
there must be a training signal, probably from node ndl.4,

Fig. 9. A third first-level decomposition of sound classification net.

not illustrated in the figure), or they may be self-organizing,
adapting purely in response to their inputs.

Similar arguments apply fto nodes nd2.1-nd2.3 and
nd3.1-nd3.3; additionally, for these nodes, there is the question
of the form of the output from their output ports to the other
input ports not on nd2.4 or nd3.4.

For the purpose of further discussion, we choose to use the
network of Fig. 7 with each pou:(nd1.i) (for i = 1...3)having
five elements and each node nd1.i (for 7 =1...3) actingas 2
self-organizing net. We can then describe the set pin(nd1.4): it
has 7+ 15 elements; and there are 7 arcs from the environment
supplying the desired values (%, (nd1.4)-pi, }(nd1.4)), and
arcs connecting pE . (nd1i) to p;:&(i”l)fk(ndl.d:) for 1 =
1...3and k = 0...4. We also need to choose the nature of
the signals output from the nodes nd1.i (forz =1... 3). These
will be discreticized, but how frequently should they change?
Theoretically, this could be at any rate, but for simplicity,

SMITH: A FRAMEWORK FOR NEURAL NET SPECIFICATION

l—!I

Fig. 10. Second level decomposition of part of
sound classification net: node ndl.i of Fig. 7.

it should be either ‘at the rate of change of pt . (E,t) or
l,.(E,t). We choose the latter; this means that in some way
the internal state space of the nodes nd1.i (for i = 1...3) will
be remembering some of its previous inputs. .

Further decomposition can be attempted on each of the
nodes ndl.i separately. For example, node ndl.4 may be
decomposed into a 3-layer back-propagated net. Generators
for each node of such a net are discussed in Section V; in
this case there would be 15 input nodes, r output nodes,
and some unspecified number of nodes in the hidden layer.
Since such nets are commonly used, one might build up a
parameterized net generator, rather in the style of the example
in Section 6.A. For the other nodes, we will decompose one
of the nd1.1-nd1.3, since they are likely to be similar.

One possible decomposition is illustrated in Fig. 10; this
is a principal component analyzer [17]. Here, node nd11.1
distributes input to the other nodes. It could simply send the
same input to each other node, or it could (particularly rec-
ollecting that the original band-limited input changes rapidly)
behave like a shift register, supplying each other node with
a continuously moving window onto the input, or it could
buffer the input into nonoverlapping groups. We have chosen
the last, since it also allows the node to match the rapidly
changing input with the less rapidly changing output. In the
figure, the blocks are of length 6. ‘

The node has input port set p;,(nd11.1) = {p%,(nd11.1)},
and output port set poys(nd1l.l) = {pl,(nd11.1) : ¢ =
0...29}. (Since all the outputs are sent to all the other nodes,
there are 30 output ports.) The node’s internal state-space,
STATE(nd11.1), is R® (assuming pin(nd11.1,#) € R), and

state(nd11.1,2) =(p,(nd11.1, ¢ — 5), py, (nd11.1, — 4),
., p0 (nd11.1,2)). '

Nodes nd11.2-nd11.6 form the adaptive part of the net. These
are similar, though not identical: each node receives the same
input from its input ports connected to nd11.1, and each node
has one output port that sends data out of the subnetwork.
However, each node also sends output to all the nodes on
its right. Although Fig. 10 shows these as coming from single
ports, they are multiple ports, each corresponding to one output
port per input port. We start to define the input port set by

611

writing {p? (nd11i) : j = 0...5} for i = 2...6 for those
input ports whose input originates in node nd1l.l. We can
write the output port set as :

Pout(nd11.d) = {pl,.(nd11i): 5 =0...6.(6 — i) +1}

with p9,,(nd11.0) being the external output. The rest of the
input ports, if any, come from other nodes on that node’s left.
We can write

pin(ndili) = {p} (nd11.i): j=0...6.(i— 1) — 1}
where‘arc‘:s connect

(P (01 L), p{ DO (nd 1. + 7))
fori=2...5r=1...4(G+7)<60<j<6(6—-%)+1
(taking some liberties with the writing of the node name).

The STATE(nd11.i) space is the space of the local weights;
each node has 6 weights, so that the state at time ¢ can be
written

state(n, 1) = (W1 () Whari()s -+ -» Whar14(t))

and the function Fl,411.; can be characterized by defining the
output on the node’s external port, the output on the other
ports, and how the state(nd11.i,t) updates. For the first,

. 5
P (nd1Li,8) = > wiyy ;(t).pi (nd114, £).

m=0

The other outputs are

S (nd1 L, 1) = PO, (nd11d, 8) i 5(¢)
fori=2...5,m=0...57=0...(5—1).

The state update rule is
Aw™,, (¢ + 1) =00, (nd1131,) (pi (nd11., t)—

, (wmﬂl.i(t)'pgut(ndll'if t)

i—2
+ 3 ™ (nd1Li, t)) .
i=1

VII. CONCLUSIONS AND FURTHER WORK

A framework for the specification of neural networks has
been proposed. This framework does not predefine the dy-
namics of the net, nor does it presuppose a specific level of
implementation. It has, for example, been used to specify the
behavior of nonlinear dendrites for a neuron in [18] originally
described in {19]. This is a model intermediate in complexity
between the purely additive dendrites frequently used in net
simulation, and ion-channel based simulations. The framework
is general enough to allow many new ideas from neurobiology
to be built in.

612 ‘ IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 7, JULY 1992

Using generators allows nets to be built up in a structured
way. Similar but nonidentical neurons can be specified in 2
way that makes their similarity clear. Net elements can be
constructed hierarchically, as described, or can be refined
by replacing single neural elements with networks which
implement the required transfer functions. There remains work
to be done on the dynamics of the interaction of nodes
specified at differing levels, particularly when synchronous
dynamics are in use. .

The notation has been shown to be useful both for describing
nets, and as a language for discussing how a particular system
might be decomposed into subnets. Problems at the level of
connections between nodes are found when specifying the
ports; using the notation for function specification, one finds
out both the requirement for internal state, and whether all
the information required is local. One is forced to make
the time-dynamics of the nodes explicit. It is thus a useful
design tool for neural networks, prior to their implementation.
The framework has not been extended into a language, nor
~has it been automated. It is used as a means of thinking

about nets, and as a way of describing and specifying nets

prior to their implementation. Frequently, the enforced for-
mality of describing the network using the framework results
in errors and inconsistencies being discovered at an early
stage. The system is not at a level of refinement where
it could be used for direct code or hardware generation.
Indeed, the whole field has not yet reached a level where
a complete abstract syntax for specifications can be pro-
duced.

ACKNOWLEDGMENT

The original purpose of this work was to allow the different

groups collaborating on the BEC BRAIN project “Learning
Automata: Toward a Machine” to communicate more effec-
tively. It also grew out of an attempt to define (or at least
describe) nets prior to producing a new neural net simulator
to run on transputer systems. Thanks are due to Prof, P. Jorrand
for many useful comments on an early draft, to the other
members of the CCCN at Stirling, particularly P. Hancock, M.

Roberts, and A. Thomson for discussions and encouragement, -

and to the anonymous referees and issue editor for useful
comments and suggestions.

REFERENCES

[1] C. Hewitt, “Viewing control structures as patterns of passing messages,”
J. of Artificial Intelligence, vol. 8, June 1977,

[2] B. Derot et al, “NACRE: A neuron-oriented programming environ-
ment,” in Neuro-Nimes 89, 1989.

[3] P.C. Treleaven, “PYGMALION: Neural network programming en-
vironment,” in T. Kohonen et al,Eds., Artificial Neural Networks.
North-Holland, 1991. . :

[4] ANSpec M User’s Manual, Science Applications International Corpora-

tion, San Diego, CA, 1989.

R. Hecht-Nielsen, Neurocomputing. Reading, MA: Addison-Wesley,

1990. . i

[6] P. Bessiere et al, MENTAL: A Virtual Machine Approach to Artificial

Neural Networks Programming, ESPIRIT BRA Project 3049 Final

Report, June 30, 1991

P. Koikkalairien, “MIND: A specification formalism for neural net-

works,” in T. Kohonen et al., Eds., Artificial Neural Networks. North-

Holland, 1991.

[8] C.A.R. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, 1978.
[9] R. Milner, “Flowgraphs and flow algebras,” J. ACM, vol. 26, 1979,

[10] O. Bkeberg et al, “SWIM—A simulator for real neural networks,” Royal
Institute of Technology Studies in Antificial Neural Systems TRITA-NA-
P9014, 1990.

[11] N.T. Carnevale et al,, “Neuron simulations with Saber,” J. Neuroscience
Methads, vol. 33, 1990. i

[12} A. Viadimirescu ef al, “SPICE Version 2G Users Guide,” Univ.
California, Aug. 1981.

[13) P. Caspi et al, “LUSTRE: A declarative language for programming
synchronous systems,” in Proc.14th Symp. POPL, 1987.

{14] E. Gelenbe, “Random neural networks with negative and positive signals
and product form solution,” Neural Computation, vol. 1, pp. 502510,
1989.

[15] D.E. Rumelhatt et al, “Learning representations by back-propagating
errors,” Nature, Oct. 1986.

[16] R.J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent newral networks, Neural Computation, vol. 1,
pp. 270-280, 1989.

{17] T.D. Sanger, “Optimal unsupervised learning in a single layer feedfor-
ward neural network,” Neural Networks, vol. 2, pp. 459473, 1989.

[18] A.W. Thomson, “Modeling neural nets,” M.Sc thesis, Univ. Stirling
Department of Computing Science, Apr, 1990..

[19} L.S. Smith, “Formalizing neural networks,” in Neural Networks from
Models to Applications, in L. Persoanaz ez al, Eds. Paris: IDSET,
1989. :)

5

(e}

[7

St

Leslie Smith received the B.Sc. in mathematics in
1973 and the Ph.D. in computing science in 1981,
both from the University of Glasgow.

He was a founding member of the Centre for
Cognitive and Computational Neuroscience, an in-
terdisciplinary group working on neural networks
and vision. He has been a lecturer at the University
of Stirling, Scotland, since 1984. His research inter-
ests are in learning algorithms and net specification,
and in the application of neural network technology
to real problems,

