
Adding lateral inhibition to a simple feedforward networkenables it to perform exclusive{or.Leslie S. SmithCentre for Cognitive and Computational NeuroscienceDepartments of Computing Science and PsychologyUniversity of StirlingStirling FK9 4LA, Scotland, UKAbstractA simple laterally inhibited recurrent network which implements exclusive{or is demon-strated. The network consists of two mutually inhibitory units with logistic output functioneach receiving one external input, and each connected to a simple threshold output unit. Themutually inhibitory units settle into a point attractor. We investigate the range of steep-ness of the logistic, and the range of inhibitory weights for which the network can performexclusive{or.1 BackgroundIt is well known that exclusive{or cannot be solved by a single layer feedforward network withunits whose output function is monotonic [Minsky and Papert 69], but can be solved using hiddenunits [Rumelhart et al. 86]. We show that it can be solved using lateral inhibition to form a simplerecurrent network.2 MethodThe network used is shown in �gure 1a. We write IL and IR for the left and right inputs, SL andSR for the stimulation of the hidden units, L and R for the outputs of the hidden units, SY for1
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UnstableExclusive-or not solvedFigure 1: a: The network used. All weights are 1, except for the lateral weight, w. b: Resultsusing a logistic output function at the hidden units. Y axis is log(j w j). The network solves theexclusive-or problem for values of w between the two lines. Actual values of w become very largefor small �.the stimulation of the output unit and Y for its output. We use a simple threshold output unitwith variable threshold �. Since the problem we are trying to solve is symmetric, we make thenetwork symmetric. Because we choose �, we can set hidden-to-output weights to be 1. WritingF for the monotonically increasing output function for the hidden units,SY = L+R= F (IL +wR) + F (IR +wL) (1)This is a recurrent equation, describing a recurrent network: such a network may or may not settleto a stable state.In order that the network can solve the exclusive{or problem, we need to be able to set � so thatSY (0; 0); SY (1; 1) < � � SY (0; 1); SY (1; 0) (2)In addition all the values in equation 2 must be stable.It is clear that equation 2 cannot hold for w = 0. An increase in IL will result in an increase inthe SL leading (by monotonicity), to an increase (or no change) in L. For w > 0, this leads to an2



increase in SR, and hence an increase (or no change) in R. Thus changing IL from 0 to 1 cannotdecrease either L or R, making equation 2 unsatis�able. Equation 2 can only be satis�ed if w < 0.If the hidden units are linear, the stable state of the value of the stimulation of the output unit,SY = L+R, depends linearly on the inputs. Thus satisfying equation 2 requires F to be nonlinear.The problems of satisfying equation 2 and of maintaining stability arise primarily at IL = IR = 1.We need to choose F and to make w su�ciently negative so thatL(0; 1) +R(0; 1) > L(1; 1) +R(1; 1) (3)while retaining stability. When IL = IR = 1 the �xed point is atL = F (1 +wR) = F (1 +wF (1 +wL)) (4)We use lockstep parallel updating so that if the networks settles, L = R by symmetry. We can�nd the �xed point by solving L = F (1 +wL) (5)and check for stability by consideringL0(L) = F (1 +wF (1 +wL)) (6)The �xed point is stable if j dL0dL j< 1 [Phillips and Taylor 73]. We can proceed by choosing someF , then iteratively solving equation 5 varying w to �nd the point at which j dL0dL j= 1 in order to�nd the value for w at which the solution becomes unstable. We can then check equation 2 to seeif the solution is valid. If so, we can then reduce w to �nd (by simulation) the least negative valuefor w for which the solution remains valid. If not, there are no symmetric solutions.3 ResultsWe applied the above technique using the logistic function F (x) = 11+exp(��x) . The results areshown in �gure 1b. For small � there is a range of values of w such that the lateral inhibitionis su�cient to ful�l equation 3 before oscillation occurs. Above the upper line the network is3



unstable. Below the lower line the network does not solve the exclusive{or problem. As w movestowards the upper line from below, the number of iterations can be quite large. The top line(boundary between solving exclusive{or and instability) was found analytically, and checked bysimulation. The bottom line (boundary between not solving and solving exclusive{or) was foundby simulation. For � > 1:153 there are no solutions.4 DiscussionWe have shown that exclusive{or can be solved using a small laterally inhibited network. Theimplementability and stability of this relation have been shown to depend on the steepness of thetransfer function and the magnitude of the inhibitory weight. Lateral inhibition usually resultsin one unit winning, or in increasing contrast between output units (reviewed in [Anderson 95]).One can interpret its e�ect here as an indirect result of contrast enhancement. When IL and IRdi�er (say IL = 1 and IR = 0), the lateral inhibition enhances the contrast by decreasing R morethan L. When IL = IR = 1, both L and R are decreased by the same amount. Exclusive{or issolved when the overall result of these decreases is that equation 3 is ful�lled.When the symmetric solution discussed here exists, it is the unique �xed point for IL = IR = 1,and is found whatever the initial values of L and R, and whatever update scheme is used. As wis made more negative, so that j dL0dL j> 1, this �xed point splits into two stable and one unstable�xed points. This results in asymmetric solutions in which for IL = IR = 1 either L > R orR > L, and the behavior of the network depends on the initial values of L and R, and on theupdate scheme.References[Anderson 95] J.A. Anderson. An Introduction to Neural Networks. MIT Press, 1995.[Minsky and Papert 69] M.L. Minsky and S.A. Papert. Perceptrons. MIT Press, 1969.4
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