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Smoothing and thresholding in neuronal spike detection
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Abstract

We discuss spike detection for noisy neuronal data. Robust spike detection techniques are especially important for probes which have

fixed electrode sites that cannot be independently manipulated to isolate signals from specific neurons. Low signal-to-noise ratio (SNR)

and similarity of spectral characteristic between the target signal and background noise are obstacles to spike detection. We propose a

new technique based on cumulative energy.

r 2006 Published by Elsevier B.V.
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1. Introduction

Multiple electrode arrays (MEAs) are now a standard
tool in neuroscience research that make it possible to study
simultaneous activity of several neurons in a piece of neural
tissue. Data from MEA studies presents analysis challenges
that must be resolved to answer questions about how the
brain works [2]. Extracting useful information from these
measurements relies on the ability to correctly detect and
sort the recorded neural spikes [4].

Neurophysiologists record using many different techni-
ques. In some (e.g. patch clamping, intracellular recording)
the SNR is high so that there is no problem detecting
spikes. However, in extracellular recording signal-to-noise
ratio (SNR) is much lower so that spike detection is more
difficult. In vivo experimenters often move the exposed tip
of an electrode so that spikes from a single neuron
dominate the signal. However, in vitro experimenters are
often restricted to using MEAs fixed to the bottom of the
culture dish (e.g. MCS MEA series: see http://www.mul-
tichannelsystems.com/). Signal transfer from neuron to
electrode may be resistive and/or capacitative, resulting in
weak noisy signals whose shape may differ from intracel-
lularly recorded spikes. Extracellularly recorded signals are
inevitably corrupted by noise from a number of sources:
e front matter r 2006 Published by Elsevier B.V.
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the recording hardware, electromagnetic interference, the
superimposed activity of multiple neurons and the spatially
averaged activity of distant neurons [7]. Importantly, the
activity of distant neurons appears as noise which is highly
correlated with the signal of interest [10]. Further, the
shape and amplitude of the signals of interest are highly
variable. All these issues complicate the spike detection
task. Spike detection techniques which rely primarily on
the signal amplitude perform poorly in low SNR,
characteristic of MEA recordings. In this paper we
compare spike detection techniques, including results from
trials of these techniques on real physiological data.
85
2. Spike detection techniques

Visual spike detection provides a standard of perfor-
mance against which automated techniques can be judged.
However this is impractical for large datasets. There is a
need for reliable automatic detection algorithms that are at
least as sensitive as visual detection, and whose perfor-
mance can be characterised under a variety of SNR
conditions. Automatic detection algorithms can be sepa-
rated into two categories: (i) those which compare a fixed
template to a recorded signal, and search for accurate
matches [12] or local maxima in the cross-correlation and
(ii) those that search for an event that crosses an amplitude
threshold [1] or whose first derivative [6], energy [3] or
87
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wavelet transform coefficients [7] crosses a threshold.
Template-based algorithms require bootstrapping: we used
simple thresholding of smoothed data to detect spikes and
used these to generate templates which are approximations
of actual spikes. We briefly discuss the five implemented
techniques.
UNCORRECTED
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Fig. 1. In each graph (a)–(h), the upper trace is raw data, lower trace is pr

transformed by CONV, SSD, GS and SUM. (e)–(h) show low-quality raw data

enhanced except for GS in (g) where the spikes are less clear showing GS’s su
Convolution-based template matching (CONV): Template
convolution is a filtering process for spike pre-emphasis.
CONV convolves the template with a section of the signal
which selectively amplifies the areas of the signal that are
correlated to the template (see Fig. 1(a,e)).
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ocessed data. Graphs (a)–(d) show high quality raw data ðSNR ¼ 9:82Þ
ðSNR ¼ 1Þ similarly transformed. In each case the spikes are significantly

sceptibility to noise.
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CONVðiÞ ¼ sðiÞ � T ¼
Xn

k¼1

sði þ kÞTðn� k þ 1Þ, (1)

where sðiÞ is the sampled signal, and TðjÞ ðj ¼ 1 . . . nÞ is the
template. Spikes are detected by thresholding the output
function CONV.

Sum-of-squared differences (SSD) template matching:
SSD originates in image matching applications such as
tracking and stereo matching [8]. SSD measures the
Euclidean difference between each point in the template
and each corresponding point in the signal section.

SSDðiÞ ¼
Xn

j¼1

ðsði þ jÞ � TðjÞÞ2. (2)

Clearly the signal and template must have the same
polarity. Further, the signal amplitude will matter: if there
is a mismatch, then the peaks and troughs will be less
pronounced. The output of SSD (see Fig. 1(b,f)) is
thresholded to detect the spikes. SSD is sensitive to outliers
and template variations.

Gaussian sampling (GS) template matching: GS was
inspired by maximum likelihood (ML) template matching
in image processing [9]. GS transforms the template T into
a two-parameter distribution, ðm̂; ŝÞ using ML estimation
[11]. Sections s of the signal are transformed into standard
normal variates (GS) which are then read out from the
standard normal table where: GSðiÞ ¼

Pn
j¼1fððsðjÞ � m̂Þ=ŝÞ,
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Fig. 2. Graphs (a) and (b) show a plot of EðtÞ (NCE) applied to high- and low

less so in (b) due to noise. Graphs (c) and (d) show a plot of E0ðtÞ applied to raw

Note: Y-axis was normalised, actual peak values of E0ðtÞ are 40.8 in (c) and 17
OF

where f is the standard normal distribution. GS is
thresholded. Spikes are characterised by a dip in the
output as seen in Fig. 1(c,g).

Summation (SUM): This technique does not require a
template. To help resolve weak spikes, we average
neighbouring points in order to get smoothed data (see
Eq. (3) from Ref. [5]).

siðwÞ ¼

Piþm
j¼i�m sj

2mþ 1
; siðz;wÞ ¼

Xiþm

j¼i�m

� � �
Xlþm

h¼l�m

sh. (3)

The parameter w ¼ 2mþ 1 (m integer) requires to be
chosen. z is the number of summations to be done. This
method smoothens the data as can be seen in Fig. 1(d,h).
Spike events are detected by thresholding the output
function.

Normalised cumulative energy difference (NCED): This
method was inspired by the fact that the energy in a spike
(positive or negative going) should be greater than that in
noise of the same length. To compute NCED we compute
the total energy Etot of the signal. After this, the normal-
ised cumulative energy (NCE) EðtÞ in the signal segments is
computed.

Etot ¼

Z L

0

sðtÞ2 dt; EðtÞ ¼

R t

0 sðtÞ2 dt
Etot

, (4)

where L is the signal length. E0ðtÞ has a value significantly
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.1 in (d).
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greater than 1 for spike events and is less than 1 elsewhere
(see Fig. 2). This simplifies automatic threshold setting, a
problem with the other methods discussed above.
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3. Results, discussion and conclusions

Each detection technique was tested on five 1 s long real
physiological data sets recorded at 10Ksamples/s from
hippocampal slices using an MCS rack. The SNR of the
data ranges from 1 to 4.70 (SNR ¼ ðS þNÞ=N where
ðS þNÞ is the power of a signal component with a spike
and noise, N is the power of the noise alone). Thresholds
were calculated using a quarter of the sample points. These
were broken up into R vectors of length Q, starting from
random points (k) in the data. Three different thresholds
were computed, RMS, MAX and SIGMA. RMS is the
average root mean square of the vectors. MAX uses the
average maxima ðMÞ and minima ðmÞ of these vectors.
SIGMA uses the mean of these vectors plus a number of
standard deviations of this mean.

Fig. 3 summarises results from the five techniques
(CONV, SSD, GS, SUM and NCED) and the three
thresholding criteria (max, rms, sigma). All perform better
than simple amplitude thresholding (simple) of the raw
data (RAW). NCED and SUM perform best, better than
template based methods. Their main advantage over the
template based methods is that they are independent of
spike shape. NCED and SUM have inherent smoothing.
SSD has a good detection rate but is marred by a high false
positive percentage. Of the template based methods, GS
performed worst perhaps because it only uses the template
to estimate the two distribution parameters whereas the
other methods (CONV, SSD) use the whole template. (It
may be that better (or multiple) templates would improve
results.) For CONV, SSD, GS and SUM the threshold has
to be reset for new data. With NCED threshold setting is
automatable because the gradient, E 0ðtÞ is high where there
is a spike almost independent of spike shape and polarity.
For NCED, if E0p1 there are no spikes in the signal,
although E041 does not necessarily imply a spike. SSD is
UNCORR 99
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Fig. 3. Summarised results. The thresholding criteria used are maxima/

minima (max), root mean square (rms), standard deviation (sigma) of the

output from each of the techniques discussed. These techniques are

compared with the simple thresholding of the raw data (RAW).
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sensitive to spike polarity because the detection is based on
a template spike. It can thus miss spikes whose polarity and
amplitude differ from the template. Spike polarity does
not affect GS as long as the shape of the spikes stay the
same.
Five spike detection techniques and three thresholding

criteria have been developed and compared on real
physiological data. NCED and SUM provide the best
overall result. SNR, noise characteristics, and spike
detection performance are interdependent. High-
frequency noise implies initial smoothing. Low SNR entails
better spike detection techniques: NCED has proven
best here since signal integration provides smoothing
and is automatable. In addition, this method can be
followed by multi-template-based spike sorting, and is
amenable to implementation in digital electronics for near
real-time processing since it does not require template
generation.
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