### Biologically inspired robust onset detection

Leslie Smith, Department of Computing Science and mathematics, University of Stirling, Stirling FK9 4LA, Scotland, UK lss@cs.stir.ac.uk

- · Why onsets
- · How to detect onsets robustly

## Why onsets?

- · All sound sources start up
- Useful grouping cue
  - most sounds are wide-band
  - the energy in different parts of the spectrum generally starts at the same time
  - so onsets that occur at about the same time in different parts of the
- · First sound arrival is from direct path
- · Robust onset detection provides an ecologically useful cue for source grouping and direction finding.

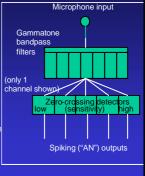
## Robustness and onsets

- · Detecting a signal onset from a zero base is straightforward - but noise can add false onsets
- However:
  - · particularly when there are concurrent sound sources
  - leve
- · A robust onset detector would

## Onset detection techniques

- · Simple "first difference techniques"
  - often used in music research
- Bilmes 93, Goto 95, 96, Schreirer 96
- · Optimal filter techniques
- Expectation based techniques
- - we know what we mean psychophysically, hard to define in a signal processing sense!

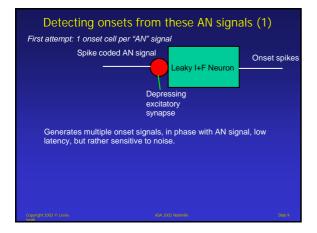
  - can be short (1-2ms) or longer (up to 50ms)

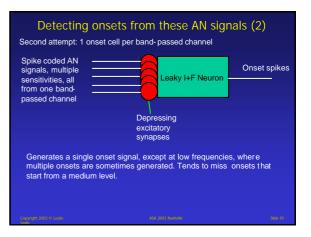

# Biologically inspired techniques

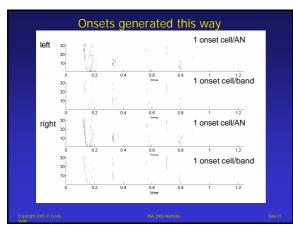
- The early auditory system is sensitive to onsets
  AN type 1 fibers
  - CN onset cells (of various forms)
- Precedence effect and our sensitivity to onsets illustrates robust capability
- · What underlies this?
  - wide dynamic range of the middle ear/inner ear/auditory nerve system
    spectrum based filtering, allowing onsets in one part of the spectrum not to be summed.
    - characteristics of the neurons of the CN
    - e.g. non-constant leakiness
    - aspects of cell morpholog
- We model the wide dynamic range, the filtering, and the high (but not non-constant) leakiness

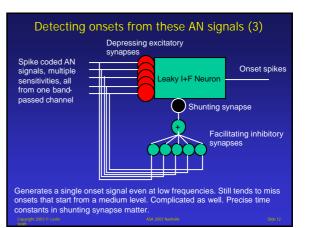
## Modelling the wide dynamic range

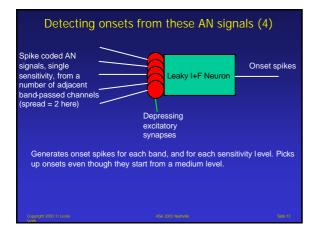
- Each side input starts with a transducer (microphone)
- followed by a gammatone filterbank
- multichannel, cochlea-like response (static)
- followed by spike generation
  - on positive -going zero-crossings
    geometric range of sensitivities
  - pre-zero-crossing level
- result is AN-like representation of sound signal

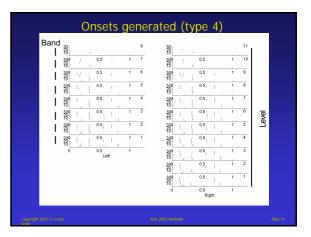

  - similar to Ghitza 1986

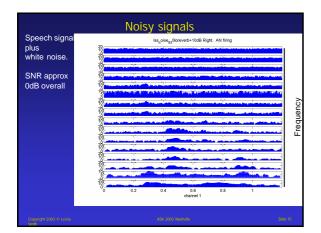


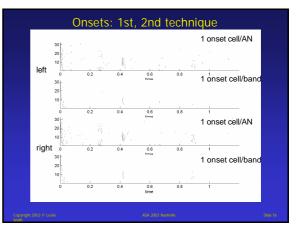


| Martine and the last  |                 |                                                                                                                  |      |           |
|-----------------------|-----------------|------------------------------------------------------------------------------------------------------------------|------|-----------|
|                       |                 | 16.1 A                                                                                                           |      |           |
| Bully                 |                 | and the second | -    |           |
| And the second data   |                 | han at her at her and                                                                                            | -    |           |
| Mary and              |                 |                                                                                                                  | -    |           |
|                       |                 | A no other                                                                                                       |      | ~         |
| and the second second |                 |                                                                                                                  | - 1- | frequency |
|                       | Bern and Street | ******                                                                                                           |      | ne        |
|                       | <b>````</b>     | •• <del>••••</del> +                                                                                             |      | 8         |
|                       |                 | <b>-</b>                                                                                                         |      | Ť         |
| and a second          | Mangar .        |                                                                                                                  | -    | Centre    |
|                       | hanning a       | i                                                                                                                | -    | đ         |
|                       |                 |                                                                                                                  |      | ŭ         |
|                       |                 |                                                                                                                  | -    |           |
|                       | -1-             |                                                                                                                  | -    |           |
|                       |                 | . And the second se   |      |           |
|                       | A Internation   | And                                                                          |      |           |
|                       |                 | States of the second second                                                                                      |      | - 1       |
|                       |                 |                                                                                                                  |      |           |

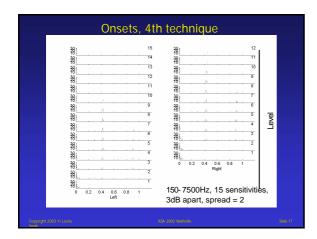

|                                         | 1                                     |            |
|-----------------------------------------|---------------------------------------|------------|
| 11 L                                    | I                                     | 1          |
|                                         |                                       | and Hand   |
| 0.2                                     | 0.4                                   | 3.0        |
|                                         |                                       |            |
| 12                                      | <u> </u>                              |            |
|                                         |                                       |            |
| <u>_</u>                                | <u>04</u>                             | <u></u>    |
| <u> </u>                                | 1.1.1                                 |            |
|                                         |                                       |            |
| Q2                                      | 0,4                                   |            |
|                                         | 1                                     | '          |
| All | A A A A A A A A A A A A A A A A A A A | م محد فقير |
| 0.2                                     | 0.4                                   | 9.0        |
| 1.1.1                                   |                                       | 1          |
| <b></b> ,                               |                                       |            |
| 0.2                                     | 0.4                                   | 30         |
|                                         | <u> </u>                              | <u> </u>   |
|                                         |                                       |            |
| <u> </u>                                |                                       | <u></u>    |
|                                         |                                       |            |

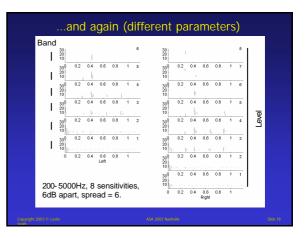

Although signal is "log-compressed", representation is made up from sequences of spikes (horizontal lines), which can be processed independently

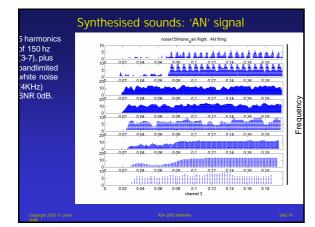


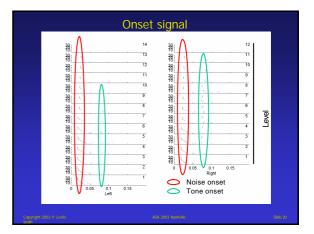



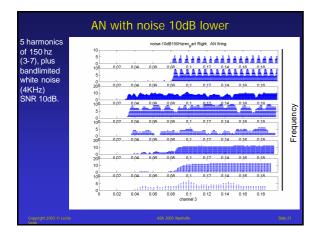



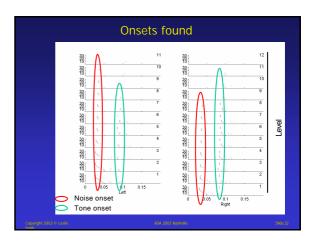



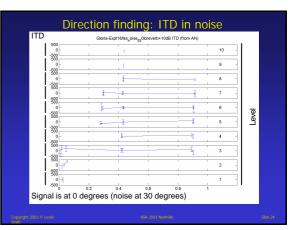



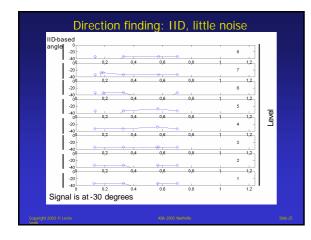










| ITD 500            | Gloria-B | Expt16/a-30 ITD ( | from AN) |     |     |
|--------------------|----------|-------------------|----------|-----|-----|
|                    |          |                   |          | 10  | -   |
| 0-                 |          |                   |          | 9   | -   |
| -500               |          |                   |          | 8   |     |
| -500<br>500<br>0 - |          |                   |          | 7   |     |
| *500<br>500<br>0 - |          |                   |          | 6   |     |
| -500<br>500<br>0 - | 1        |                   |          | 5   | eve |
| -500<br>500<br>0 - |          |                   |          | 4   |     |
| -500<br>500<br>0 - | IT I     |                   |          | 3   |     |
| -588               |          |                   |          | 2   |     |
| -500<br>500<br>0 - | 147 EF 1 | -I  -<br>,        | 1        | 1   |     |
| -500               | 0.2 0.4  | 0.6               | 0.8      | 1 1 | 2   |





| IID-based    |       |     |     |     |        |          |
|--------------|-------|-----|-----|-----|--------|----------|
| angle 2      |       |     |     |     | 12     |          |
| -480         | - 0.2 | 0:4 | 0:6 | 0:8 | 1 .    |          |
|              |       |     |     |     | 11     |          |
| 39           | 0.2   | 0:4 | 0.6 | 0:8 | 1 10 - | 1        |
|              |       |     |     | 1   | 10 2   |          |
|              | 0:2   | 0:4 | 0.6 | 0:8 | 9 =    |          |
| 100          | 0.2   | 0/4 | 0.6 | 0.8 |        | 1        |
| -28          | 012   |     | 0.0 | 010 | 8      |          |
| 480          | 0/2   | 0/4 | 0.6 | 0:8 | 1      |          |
| -21          |       |     |     |     | 7      | 5        |
| 289          | 0:2   | 0:4 | 0.6 | 0:8 | 1 6    | evel     |
| :::::E       |       |     |     |     | 6      | <u> </u> |
| 289          | 0:2   | 0:4 | 0.6 | 018 | 1 5 -  |          |
|              | 0/2   | 0:4 | 0.6 | 0.8 | -      | 1        |
| 200          | 012   | 014 | 0.0 | 0.0 | 4      |          |
| 480          | 0:2   | 0:4 | 0.6 | 0:8 | 1 .    |          |
| -21          |       |     |     |     | 3      |          |
|              | 0:2   | 0:4 | 0:6 | 0:8 | 1 2    |          |
| :₩E          |       | 0.4 |     |     |        |          |
| 289          | 0:2   | 0:4 | 0:6 | 018 | 1 1 =  |          |
| :#8t         | 0.2   | 0.4 | 0.6 | 0.8 | 1      | 1        |
| Signal is at |       |     |     |     |        |          |

# Conclusions

- · We have developed a biologically -inspired onset detection technique which is

  - able to cope with onsets starting from a non-zero level
- This has been used to cluster onsets

- Need to characterise the precise capabilities of this technique fully.

#### On onset-feature based streaming

- Use characteristics of the features themselves: level, signal energy structure, post-onset envelope