
! 1!

This is the pre-peer-reviewed version of the following
article:

Crook SM, Bednar JA, Berger S, Cannon R, Davison AP, Djurfeldt M,
Eppler J, Kriener B, Furber S, Graham B, Plesser HE, Schwabe L,
Smith L, Steuber V, van Albada S. Creating, documenting and
sharing network models. Network. 2012 Sept 20. [Epub ahead of
print]

which has been published in final form at

http://informahealthcare.com/doi/abs/10.3109/0954898X.2012.722743

! 2!

Creating, documenting and sharing network models
Sharon M. Crook1,2, James A. Bednar3, Sandra Berger2, Robert Cannon4, Andrew P.
Davison5, Mikael Djurfeldt6, Jochen Eppler7, Birgit Kriener8, Steve Furber9, Bruce
Graham10, Hans E. Plesser8, Lars Schwabe11, Leslie Smith10, Volker Steuber12, Sacha
van Albada7

1 School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ,
USA
2 School of Life Sciences, Arizona State University, Tempe, AZ, USA
3 School of Informatics, University of Edinburgh, Edinburgh, UK
4 Textensor Limited, Edinburgh, UK
5 Unité de Neuroscience, Information and Complexité, CNRS, Gif sur Yvette, France
6 PDC Center for High Performance Computing, Royal Institute of Technology,
Stockholm, Sweden
7 Institute of Neuroscience and Medicine, Forschungszentrum, Juelich, Germany
8 Department of Mathematical Sciences and Technology, Norwegian University of Life
Sciences, Ås, Norway

9 School of Computer Science, University of Manchester, Manchester, UK
10 Department of Computing Science and Mathematics, University of Stirling, Stirling,
UK
11 Institute of Computer Science, University of Rostock, Rostock, Germany
12 School of Computer Science and Science and Technology Research Institute,
University of Hertfordshire, Hertfordshire, UK

Abstract

As computational neuroscience matures, many simulation environments are available
that are useful for neuronal network modeling. However, methods for successfully
documenting models for publication and for exchanging models and model components
among these projects are still under development. Here we briefly review existing
software and applications for network model creation, documentation and exchange.
Then we discuss a few of the larger issues facing the field of computational
neuroscience regarding network modeling and suggest solutions to some of these
problems, concentrating in particular on standardized network model terminology,
notation, and descriptions and explicit documentation of model scaling. We hope this will
enable and encourage computational neuroscientists to share their models more
systematically in the future.

! 3!

1 Introduction

While the availability of a diverse array of general purpose and more specialized
neuronal network simulators facilitates the development of models in neuroscience, the
specialized languages and model descriptions that they utilize generally are not
interoperable, limiting model reproducibility, exchange and re-use. As models become
increasingly more complex and cross multiple scales, attempting to convert code to a
different simulator format becomes even more time consuming. Recent work comparing
numerical results across simulators (Gleeson et al. 2010, Henker et al. 2012) and
examining implementation issues that are inherent to network modeling (Crook et al.
2012) point to the need for benchmarks for simulator testing and also reinforce the need
for simulator-independent descriptions for model publication and exchange. The lack of
standardized terminology, notation, and graphical representations for documenting
networks also negatively impacts progress in our field (Nordlie et al. 2009).

From the early days of computer design (von Neumann 1986), the computer hardware
community has addressed many of the same issues facing the network modeling
community. For example, how should a designed structure be described, and how can
one check that the architecture is what is intended? Because different hardware
simulator tools are used for the various modules of a design, hardware designers must
be able to interface tools easily. Thus, simulator interoperability is critical. Originally
hardware design was performed at the circuit level, where early design tools aided the
creation of full schematics and provided automatic simulation. However, gradually,
design became more abstract as hardware became more complex. Toward the end of
the 1980’s, the level of abstraction made design at the circuit level impossible, and
design tools began to use libraries of pre-built functions. Diverse notations for these
components were developed and the rapidly moving target of the state-of-the-art circuit
made standardization difficult. However, these notations slowly became standardized,
developing into a formal notation for digital circuits composed of gates and boxes that
are described in a hierarchical manner. Attempts to develop functional languages for
describing hardware have not been widely adopted, although currently Bluespec’s
(http://bluespec.com) high-level language facilities are gaining interest.

Like the hardware community, the network modeling community needs an extremely
concise, high-level description of model architecture that can be mapped onto a
simulator. It is important that it be possible to implement different modules of the
architecture at different levels of abstraction. As model complexity grows and
development relies on high-level tools, validation is critical so that modelers are able to
trust that the model is the intended one and that it is implemented correctly. In this article
we briefly discuss some of the ways in which our community is slowly building an
infrastructure for efficiently creating, documenting and sharing network models. Then we
address a few of the larger issues facing the field of computational neuroscience as we
move forward, concentrating in particular on standardized model descriptions and
explicit documentation of model scaling.

2 Current resources

Simulation environments

! 4!

The creation and simulation of network models is facilitated by a large number of freely
available software packages (Brette et al. 2007). For more than 20 years, the NEURON
(Hines 1989, Hines and Carnevale 1997) and GENESIS (Bower and Beeman 1997)
simulation environments have supported the modeling of networks of conductance
based neuronal models that include a large amount of biological detail. These simulators
have a large user base, and are both under active development, with the original
GENESIS simulation software now being superseded by the GENESIS-3 / Neurospaces
(Cornelis and De Schutter 2003, Cornelis et al. 2012a, Cornelis et al. 2012b) and
MOOSE (Ray and Bhalla 2008) initiatives. Other software packages including NEST
(Gewaltig and Diesmann 2007), Brian (Goodman and Brette 2008), PCSIM (Pecevski et
al. 2009), and Topographica (Bednar 2009) are more appropriate for the simulation of
large-scale networks of abstract neuronal models such as integrate-and-fire (see review
by Burkitt 2006), Izhikevich (Izhikevich 2004) and firing-rate models (Wilson and Cowan
1972). The increasing scale of such models is also driving the development of
alternative computer architectures and simulation paradigms such as the use of graphics
processing units (GPUs) (Nageswaran et al. 2009) and specialized chips (Furber and
Temple 2007), described in more detail below. Moreover, a number of simulators such
as Cx3D (Zubler and Douglas 2009), NETMORPH (Koene et al. 2009) and NeuGen
(Eberhard et al. 2006) have been designed to specifically model the biological
development of neurons and neuronal networks.

While the existence of such a wide range of neural simulators is beneficial for the field of
computational neuroscience as it provides researchers with ample flexibility and
opportunities to choose a simulator that has been optimized for a specific research
question, it also complicates the exchange of computational models and therefore
collaboration between different laboratories. A complex neuronal network model can
take months or even years to develop, analyze, and document, and a full understanding
and further development of the simulator-specific scripts can be challenging for users of
the same simulator, let alone for someone who is not familiar with the specific simulator
that has been used. The desire for model exchange among laboratories that use
different simulation platforms and for portability of models between different simulators
has stimulated the development of several interoperability frameworks. For example,
many simulators such as NEURON, GENESIS-3, MOOSE, Cx3D, and others, now
provide support for the simulator-independent model description language NeuroML
(Goddard et al. 2001, Crook et al. 2007, Gleeson et al. 2010). Other software packages
allow the simulator-independent development of computational models that can then be
run on a number of different simulation environments. For example, the PyNN software
package (Davison et al. 2009) provides a Python API for the creation of neural network
simulations for use with several different simulation platforms. Similarly, the Multi-
Simulation Coordinator (MUSIC; Djurfeldt et al. 2010) supports the runtime interaction of
multiple simulator tools in multi-level simulations. The neuroConstruct software (Gleeson
et al. 2007) facilitates the development, visualization and analysis of biologically detailed
neuronal networks in three-dimensional space. These network models are stored in
NeuroML format, and neuroConstruct can automatically generate scripts for several
simulators. More details regarding some of these approaches are provided below.

Code sharing

There are several possible formal methods for sharing code such as on a publisher’s
website or in a public source-code repository. Although many journals offer the
possibility of making model code available as supplementary material attached to a

! 5!

journal article, there are disadvantages to this option, including lack of standardization in
the code format or the associated metadata, difficulty in updating the code archive if
bugs are found, improvements are made or contact details are changed, and quality
control. Curated model repositories, where a curator verifies that the code reproduces
one or more figures from the published article, and which often have standardized
metadata making it easier to find models of a certain type, address the issues of quality
control and standardization (Lloyd et al. 2008). Some examples are ModelDB (Peterson
et al. 1996, Davison et al. 2002, Migliore et al. 2003, Hines et al. 2004), the Visiome
platform (Usui 2003), the BioModels database (Le Novère et al. 2006), and the CellML
Model Repository (http://models.cellml.org). The model database most relevant to
neuronal network models is ModelDB, a well-established database of computational
models of neurons, cellular mechanisms and networks in a variety of different simulators
and programming languages, which is curated by the SenseLab initiative at Yale
University. In addition, the use of ModelDB is strongly supported by journals such as the
Journal of Computational Neuroscience that recommend that all models described by
articles in the journal should be uploaded into this database.

A further step towards enabling collaborative model development has been taken by the
Open Source Brain (OSB; http://opensourcebrain.org) project initiated by the Silver
Laboratory at University College London, which currently involves 11 laboratories as well
as partners outside academia in Europe and the United States. The OSB initiative
provides a public repository for detailed models of neurons and networks that can be
developed collaboratively in any simulator format. The aim is to facilitate collaboration by
storing the models in simulator-independent NeuroML format, and to provide access to
curated models that reflect the latest experimental findings and that will evolve in parallel
with the development of new simulation technology and modeling paradigms.

Code sharing does not ensure reproducibility or model exchange

As detailed by Crook et al. (2012), sharing code may provide a means for replicating
results using the same code, but it does not ensure independent reproducibility of model
results, which requires a simulator-independent approach. In fact, it is sometimes the
case that a given result from a published paper cannot be re-created with code that has
been made available, although the use of curated model code repositories is helping in
this regard. Reasons for lack of reproducibility may involve differences in the version of
the simulator, the compiler, or of shared libraries that are used by either the simulator or
the code, differences in the computing platform, or simply poor record keeping on the
part of the researcher. Ideally, models and their sub-components should be exchanged
easily for re-use across many different simulators. This is the motivation behind
approaches discussed in the next section.

3 Formal approaches for describing networks

To facilitate independent reproduction of neuronal network modeling studies, a
systematic approach is needed for reporting models. Here we discuss approaches for
both human-readable and machine-readable standardized formats that can provide
descriptions of network models that are independent of any particular simulator.

Tables and graphical descriptions

! 6!

Nordlie et al. (2009) provide a checklist for model descriptions, requiring information on
the following aspects of a model: (i) model composition, (ii) coordinate systems and
topology, (iii) connectivity, (iv) neurons, synapses, and channels, (v) model input, output,
and free parameters, (vi) model validation, and (vii) model implementation. They further
propose a concise tabular format for summarizing this information in publications.
NeuroML tools can generate tables in this format from a formal model description.

Another popular approach is to represent networks graphically in publications, which is
an important tool for providing a quick overview to the reader. Although graphs are not
sufficient for describing all aspects of a model, they are useful and would be much more
useful if a standard approach were adopted by the network modeling community, similar
to the use of the Systems Biology Graphical Notation, or SBGN, by the systems biology
community (Le Novère et al. 2009). Often, graphical representations must be
hierarchical to depict the details at different levels of spatial scale, and the use of ad hoc
notations with conflicting symbols from one publication to the next makes it difficult to
share these complex ideas. The issues with the current use of graphical representations
for network models in neuroscience are articulated well by Nordlie and Plesser (2010),
who also advocate a connectivity matrix approach. This method of visualizing network
connectivity can be used at different levels for either full details or summary information,
and is currently available by using the ConnPlotter package (Nordlie and Plesser 2010)
with the NEST simulator. However, there are some aspects of networks that cannot be
provided in a connectivity matrix. In particular, some network descriptions require
procedural information about the order and manner of creating connections, as
discussed in more detail below.

Description languages

Software and database developers in many fields, including neuroscience, have
enthusiastically adopted Extensible Markup Language (XML) technology (Bray et al.
2008) as an ideal representation for complex structures such as models and data. A
major advantage of XML is that it provides a machine-readable format that is
independent of any particular programming language or software encoding, which is
ideal for a structured, declarative description that can provide a standard for an entire
community. Like HTML, XML is composed of text and tags that explicitly describe the
structure and the semantics of the content of the document; however, the tags are
defined by developers as a specific XML-based markup language that is appropriate for
a particular application.

A number of ongoing projects focus on the development of these self-documenting
markup languages that are extensible and can form the basis for specific
implementations covering a wide range of modeling scales in neuroscience. The
Systems Biology Markup Language, SBML, (Hucka et al. 2003) and CellML (Hedley et
al. 2000, Lloyd et al. 2004) are two popular languages for describing systems of
interacting biomolecules that comprise models often used in systems biology, and both
languages are relevant to network models since they can be used to describe complex
models of synaptic signaling processes. NeuroML (Goddard et al. 2001, Crook et al.
2007, Gleeson et al. 2010) differs from these languages in that it is a domain specific
model description language, and neuroscience concepts such as cells, ion channels and
synaptic connections are an integral part of the language. Recently, the International
Neuroinformatics Coordinating Facility facilitated the initiation of a markup language for
models of spiking neural networks composed of abstract cell types (Network Interchange

! 7!

format for Neuroscience; http://nineml.org), which is complementary to NeuroML.
Additionally, the Simulation Experiment Description Markup Language (SED-ML) (Köhn
and Le Novère 2008) is a language for encoding the details of simulation experiments,
which follows the requirements defined in the MIASE (Minimal Information About a
Simulation Experiment) guidelines (http: //biomodels.net/miase). Taken together, these
markup languages cover the majority of network models. The use of namespaces allows
for unambiguous mixing of several XML languages; thus, it is possible to use multiple
languages for describing different modules of a multiscale model. This is the approach
employed by NeuroML to include very detailed models of synaptic processes using
SBML for example.

Tools that support simulator interoperability

neuroConstruct is an example of a successful software application that uses declarative
descriptions to its advantage (Gleeson et al. 2007). This software facilitates the creation,
visualization, and analysis of networks of multicompartment neurons in 3D space, where
a graphical user interface allows model generation and modification without
programming. Models within neuroConstruct are based on the simulator-independent
NeuroML standards, allowing automatic generation of code for multiple simulators. This
has facilitated the testing of neuroConstruct and the verification of its simulator
independence, through a process where published models were re-implemented using
neuroConstruct and run on multiple simulators as described in Gleeson et al. (2010).

In a different approach, PyNN (Davison et al. 2009), provides a programmatic simulator-
independent format. In particular, it provides an API in the Python programming
language that supports computational studies using the software simulators NEURON,
NEST, PCSIM and Brian, as well as a number of neuromorphic hardware systems
(Brüderle et al. 2009, Galluppi et al. 2010). This allows the code for a simulation to be
written once and then run on different simulator engines. Unlike declarative
specifications, this description is immediately executable without an intermediate
translation step, which gives a more direct link between description and results. The use
of a programming language also provides the full power of such a language, with loops,
conditionals, subroutines and other programming constructs. The great flexibility and
extensibility this gives can be a strong advantage, especially in an exploratory phase of
model building. It may also be a disadvantage if misused, leading to unnecessary
complexity, bugs, and difficulty understanding the essential components of the model,
which are less common with declarative specifications.

A third approach involves the standardization of interfaces through which different
software components communicate at runtime. This has been used to good effect in
MUSIC (Djurfeldt et al. 2010) to allow different parts of a network model to be run on
separate simulators. It is also a key aspect of the design of MOOSE, which takes an
object oriented approach for the simulation engine and supports a wide range of
pluggable components which perform different parts of the calculation. The benefits here
are much the same as with plugin architectures for more mainstream applications such
as web browsers and word processors. These mainstream applications have benefited
from software design philosophies developed over many years (see Gamma et al.
(1994) for an overview). In computational neuroscience a first such design philosophy
for appropriate modularization of a simulator is described by the GENESIS-3 /
Neurospaces CBI architecture (Cornelis et al. 2012b). The benefits of such a
modularization are that the plugin developer does not need to master the entire system,

! 8!

but only the interfaces it must implement, and the same plugin may be used in different
contexts. As such, this approach has the potential to reduce the overhead for developing
new modules, which is particularly important in a loosely coupled software community
like ours. However, some of the pitfalls are also the same as for browser plugins.
Development schedules are rarely synchronized, leading to considerable potential for
version compatibility problems, and it is much harder to achieve good performance and
scalable behavior with a combination of plugins working through a restricted interface
than it is with a monolithic system designed as a single entity. This last issue can be
addressed by an alternative approach to runtime interaction in which the simulation
problem is separated by processing tasks rather than by model components. Each of the
different computational tasks involved in running a simulation such as processing model
descriptions, operating on cell morphologies, discretizing meshes or solving differential
equations can form the basis of a specialized library. This practice is already widespread
for some parts of the problem, with independently developed packages often used for
XML processing or solving differential equations, but has potential to be extended to
finer scales with highly specialized libraries dedicated to particular aspects of model
processing and simulation.

Formal specification and verification of connection primitives

Desirably, connectivity on various levels should be describable in one common
framework and terminology, irrespective of what is to be connected, e.g. synaptic
contact points on dendritic tree structures, point neurons, or also whole populations or
areas. These descriptions should be clear and concise, but must not lack crucial details.

For example, if connectivity in a network of ! nodes is described as random, it might
appear clear that every possible connection between two nodes !, ! ∈ 1,2,… ,! , ! ≠ !, is
established in a Bernoulli-trial fashion with a certain probability !. This network ensemble
strictly corresponds to the class of Erdos-Rényi (ER) networks, implying that no
connection is established twice (no multapses) and no neuron is synaptically connected
to itself (no autapses), properties that modelers however often allow for. Moreover, for
ER random networks there might be nodes that are not connected to any node at all,
another feature that is often explicitly excluded. Another assumption often made is that
nodes have a pre-described distribution of the number of connections per node, e.g. that
all nodes receive exactly (Brunel 2000) or at least (Watts and Strogatz 1998) !
connections, while for an ER network both the number of incoming and outgoing
connections are distributed binomially (Albert and Barabási 2002).

Even though such connectivity details may appear minor, they can have measurable
impact on the dynamics of spiking neuron networks. Assume for a moment that all spike
trains are Poisson processes with intensity ! and that a neuron receives ! input spike
trains, all with the same weight !. If all !!input currents are independent, the variance of
the input current is proportional to !!!", while if all currents are sampled from the same
neuron it rather corresponds to one spike train of weight !" and the variance is thus
instead proportional to !!!!!. Similar differences due to multapses are induced in the
input current covariances due to common input. Thus minor details potentially alter the
entire covariance structure of the network activity and can lead to problems in
reproducing results that relate to second order properties if not properly documented.

If the aim is conciseness of description, even the simple balanced random network of
Brunel (2000) can become cumbersome. A possible, already lengthy yet incomplete

! 9!

description could be: “every neuron receives !!synapses from randomly drawn subsets
of !! excitatory neurons and !! = ! − !! ! inhibitory neurons, such that no connection is
established more than once and no neuron connects to itself”. A more concise and
formal description in tabular form was suggested in Nordlie et al. (2009). When it comes
to more complex network models with additional biologically motivated detail (e.g. Hill
and Tononi 2005, Izhikevich and Edelman 2008, Phoka et al. 2012) the situation soon
becomes worse, and the benefit of a formalized tabular representation is evident
(Nordlie et al. 2009).

A first step towards standardizing the description of connectivity is to agree on a
common terminology or ontology, such as the Computational Neuroscience Ontology
that is currently under development (http://purl.bioontology.org/ontology/CNO) to
unambiguously describe and annotate network models. Along these lines, we suggest
unambiguous definitions for the terminology and structure of connectivity primitives,
defined by community agreement. These can be high-level, relating to network classes
such as “ER random networks”, “all-to-all” or “ring networks”, but also can be very low-
level primitives, specifying connection patterns on the basis of individual nodes and
connections, such as “random convergent connect” (Nordlie et al. 2009). This approach
allows for both declarative, shorthand descriptions of networks as a whole, if the network
class is well-defined and the procedure of network generation does not matter. It also
allows for more refined procedural descriptions in terms of connectivity building blocks,
which is particularly important when operations during network generation need to be
performed in a certain order. The approach is also useful when connectivity patterns are
highly stereotypic and only the parameters vary (as in the models of Hill and Tononi
(2005) and Phoka et al. (2012)). Such connectivity patterns can have different properties
in that they can be:

node-centric versus set-centric: For a node-centric approach, one might ask, “given a
node, what nodes is it connected to?”. Random convergent connections are an example
(Nordlie et al. 2009). For a set-centric approach, in contrast, one asks “what
characterizes a set of connections?”. As an example, form a set by drawing !
connections with random sources and targets.

local versus global: In a local approach, individual connections are established
irrespective of the state of the rest of the network. Global requirements establish
connections in a way that depends on the state of other nodes or connections.

deterministic versus probabilistic: A deterministic pattern invariably will result in the same
connectivity with every instantiation, whereas a probabilistic connectivity pattern
specifies the statistics of connectivity across instantiations.

value-dependent versus attribute-dependent: An example of value-dependent
connectivity is distance-dependent connections. Attribute-dependent connections are of
the form “has property A” or “is of type B” for example.

Finally, boundary conditions should be specified, and if networks are embedded in some
type of metric space, also this metric and the node conditions should be given.

Finding naming conventions however often collides with the inertia of established
terminology, or simply the complexity of the network objects to be described. Thus a
formally minimal, i.e. mathematical, specification of connectivity would resolve the
problem of terminological ambiguities. This was recently put forward in the form of the
Connection Set Algebra (CSA; Djurfeldt 2012). This operator-based approach

! 10!

automatically resolves the problem of expressing the procedural order of certain network
generation operations, since this is inherently expressed in the order of operator
composition. In CSA, a set of network connections is represented by an object called a
connection-set. This object can be subdivided into a mask, expressing the existence of
connections, and zero or more value sets, expressing parameters associated with
connections, such as a weight or delay. The CSA uses index sets to refer to the nodes
(synapses, neurons, etc.) to be connected. For example, when connecting a source and
target neuron population, source neurons are enumerated using non-negative integers,
which together form an index set !. Similarly, an index set ! enumerates the targets. The
mask can then be regarded as a set of pairs !, !, ! ∈ !, ! ∈ !, with one pair per existing
connection. This is equivalent to a connection matrix. A value set is a function of source
and target indices !×! → ℝ.

Connection-sets typically express a type of connectivity, such as “ER random” or “all-to-
all” rather than a specific finite set of connections. This is possible because connection-
sets are allowed to be of infinite size rather than adapted to the sizes of specific source
and target populations. CSA is an algebra over connection-sets, where operators are
applied to elementary connection-sets to form the desired connectivity. Given source
and target populations of definite sizes, finite portions of a connection type can be “cut
out” using the CSA intersection operator. CSA objects and operators can be efficiently
implemented as iterators. A demonstration of the CSA implementation in Python is
available at the INCF software center (http://software.incf.org/software/csa).

Since the aim of such precise network structure descriptions is reproducibility, there is
also a need to specify how to test whether a generated network actually corresponds to
the intended structure. This might be a straightforward task, especially if the network is
small and connectivity is simple and stereotypic. For example, for a grid network, one
might check if each node is connected to its!!!nearest-neighbors or generate the
adjacency matrix and determine whether it has the typical, expected band structure.
However, what if the connectivity is probabilistic and each instantiation will be slightly
different, or connectivity is dependent on pairwise distances, but the number of potential
target nodes in a given distance is not homogeneous? The latter is the case when nodes
are embedded on a grid with open boundary conditions: a node in the center of the grid
will have the same number of potential targets in all directions, while a node sitting at the
boundary of the grid will have none beyond that boundary. So if the connection rule is to
connect to all nodes within a certain distance, the number of established connections per
node (the degree) depends on the location of the node. An additional complication is that
the number of nodes and connections is also often very large so that reading out or
storing the complete connectivity for testing purposes may not be practical.

For deterministic networks it is often sufficient to check connectivity for subsets of
neurons. For example, for the grid with open boundary conditions mentioned above, one
could check if nodes in the center, on the edges and in the corners have the expected
number of connections, given the spatial connection profile. For probabilistic networks,
measuring the distribution of the number of connections ! per node, the degree
distribution !(!) can be a useful way to validate the network structure. For the ER
network, the expected degree distribution is a Binomial distribution and a Kolmogorov-
Smirnov (KS) test can be employed to quantify significance. If connectivity is
probabilistic and also dependent on pairwise distance, the number of expected
connections of a node at position !, !(!|!), is in general given by the convolution of the
spatial connection probability profile and the node density distribution. If this is soluble,
as in the case of uniform node density and a Gaussian connectivity profile, the

! 11!

cumulative density function can be derived and KS testing is again possible. For the
topology library in NEST, a comprehensive test suite for all offered standard connection
routines is currently under development.

4 Implementation issues and solutions

Because of their high computational processing and memory requirements, and to ease
analysis, nearly all existing computational models of neuronal networks are significantly
downscaled versions of the corresponding biological system. Downscaling involves
using a smaller number of model elements to represent a larger population in the
underlying system. Unfortunately, neuronal simulators rarely provide explicit support for
such downscaling, leading to ad hoc approaches for model scaling that currently make it
difficult to interpret, share, and connect models. Moreover, publications very often fail to
state explicitly what type of downscaling was used, precisely how the model relates to
the underlying system, and what limitations result from the downscaling.

Model scaling should be explicit

Here we primarily focus on neuron, synapse, and dendrite downscaling for clarity, but
similar arguments apply to other model elements. Two fundamentally different
approaches to downscaling may be distinguished: lumping and subsampling. For
lumping, multiple neurons or synapses are combined into larger units for simulation, with
properties averaged or summed as appropriate. For subsampling, each model element
retains a one-to-one relationship with an element in the biological system, but is treated
as a representative of a larger population not explicitly modeled, with adjustments to
parameters to compensate for the missing elements. Two types of subsampling can be
further distinguished, depending on the spatial layout of the elements: either modeling a
small patch at full density (a clustered approach), or a larger patch at low density (a
distributed approach). Of course, combinations of approaches are also possible. Clearly,
each of these types of downscaling requires different adjustments to parameter values
and has different implications for the analysis and interpretation of results. For instance,
lumped models will tend to have longer effective time constants than subsampled ones
(see for example Borisyuk et al. (2002)), and time delays between neurons will be larger
in a distributed sample than in a clustered sample.

For simple firing-rate point neurons, downscaling by lumping or distributed subsampling
is reasonably well defined, with linear scaling that works well over a large parameter
range (Bednar et al. 2004). For example, each synaptic input to a neuron in a distributed
subsampled firing-rate network that simulates 10% of the actual neurons in a region will
have to be scaled up by a factor of 10 to represent the contribution from the 90% of the
neurons not being modeled. The Topographica simulator provides explicit support for
downscaling networks of firing-rate neurons, requiring all parameter values to be
expressed independently of the type and amount of downscaling (Bednar 2008). With
scale-independent parameters, the amount of downscaling can then be varied easily for
each run (e.g. to test that results are robust to downscaling), and the specific scaling
assumptions can be reported explicitly in publications.

However, other simulators rarely provide any direct support for downscaling neurons or
synapses in networks, and the various ad hoc approaches in use can dramatically affect
model behavior. Some theoretical results are available that help to systematically
downscale numbers of synapses while preserving basic characteristics of the network

! 12!

dynamics under certain conditions. In the asynchronous irregular state, characteristic of
large cortical networks, the summed current-based synaptic input to each neuron is well
approximated by a Gaussian noise. The mean and variance of this noise determine the
firing rate in networks of binary (van Vreeswijk and Sompolinsky 1998) and integrate-
and-fire model neurons (Brunel 2000). Maintaining the same firing rate is one particular
choice for defining equivalence between the full-size system and the downscaled
version. This can be achieved by an appropriate choice of synaptic weights, the ratio
between excitatory and inhibitory weights, and external input (van Vreeswijk and
Sompolinsky 1998, Brunel 2000, Burkitt 2006). These results remain useful even under
sufficiently mild deviations from the conditions under which they were derived. Modelers
should use such theoretical findings in order to increase the chance that downscaled
models are in fact comparable to their full-scale counterparts.

Scaling networks of compartmental model neurons connected through conductance-
based synapses presents its own unique challenges. The central issue is preserving the
effects on the postsynaptic cell of hundreds or thousands of synapses spread across
highly branched dendrites. To produce a computationally tractable network model, two
compromises must be considered at the cellular level: (1) a reduction in the number of
afferent cells, and (2) a reduction in the complexity of the modeled dendrites (by
lumping).

A reduction in the number of afferent cells can be handled as a reduced number of
synapses on the target cell, with each synapse having a suitably increased peak
conductance (a lumping approach). With such scaling, the target cell will receive
stronger, more spatially localized inputs. This could distort the postsynaptic response by
enhancing nonlinear interactions between inputs and active membrane currents and
result in significant distortion of network dynamics (Djurfeldt et al. 2008). For example,
dendritic calcium spikes could occur more frequently than expected, due to a few, strong
inputs driving the dendritic membrane to the spiking threshold. An alternative is to
preserve, as far as possible, the actual number of synapses, but with groups of
synapses being driven by the same presynaptic cell (rather than separate cells, as in the
real system). The disadvantage of this subsampling approach is that the inputs, though
of a realistic number, will have unnatural temporal correlations. For intrinsic network
inputs, one of these approaches must be adopted, despite the limitations, if a full-scale
network model is infeasible. In order to properly interpret simulation results, different
sized networks should be simulated with whichever scaling scheme is adopted in order
to assess the likely effects, for example, changing the size of particular neuronal
populations while preserving the number of synapses on each target cell (Orban et al.
2006). Extrinsic inputs can be handled with further alternatives. If a cell receives a large
number of inputs from outside the network being modeled, then those inputs can be
modeled by a reduced population of synapses that preserve the synaptic strength
expected in the full population, but receive inputs at a higher mean frequency. This
preserves the mean driving conductance across the population of extrinsic inputs, and
may still maintain appropriate target cell firing statistics due to this input. This has been
demonstrated for a 100-fold reduction in the number of synapses on modeled Purkinje
cell dendrites (De Schutter and Bower 1994, Steuber et al. 2007). The fluctuating current
arriving at the cell body due to spatially and temporally distributed inputs to the dendrites
may possibly be captured by a suitable statistical model, allowing extrinsic inputs to be
modeled as a simple current injection into the cell body. Background input to neocortical
pyramidal cells has been fitted by a single-variable stochastic model similar to an
Ornstein-Uhlenbeck process (Destexhe et al. 2001).

! 13!

Scaling compartmental models of single neurons is also a necessity when building a
large-scale biologically realistic network model, but remains something of an art form
when dealing with highly branched dendrites that have active, nonlinear membrane
properties. Such nonlinear properties may induce specific local processing of synaptic
inputs (see for example Poirazi et al. (2003)). This provides constraints on the level of
morphological detail that needs to be preserved in any reduced compartmental model.
Detailed single cell modeling may need to be undertaken to try to understand how to
preserve such local processing in a simplified dendritic morphology. A two or three
compartment model that captures the distinction between input to the cell body and to
the dendrites may, in fact, be too simple in many cases.

Overall, due to the complex relationship between the downscaled system in these
simulations and the underlying biological system, it is critical for simulators to start to
provide explicit support for downscaling. One possible ideal (implemented in
Topographica, but not yet in spiking simulators) would be to specify all parameters and
architecture in terms of the biological system being modeled, and then separately
specify the scale to be used in a particular simulation, as well as whatever scaling (linear
or nonlinear) is necessary to map between the original and downscaled systems.
Publications can then report both the unscaled network, as an explicit statement of what
assumptions are being made about the underlying system; and the scaling equations, as
an explicit statement of what assumptions are being made about how the simulation
relates to the real system.

Hardware approaches to large-scale modeling

An alternative approach to dealing with scaling issues is to attempt to simulate networks
at the scale of the brain; however, the memory demands of such large networks are
prohibitive. The use of generators rather than specific positions for connectivity, where
data are stored efficiently and accessed as needed, allows for the implementation of
larger networks using traditional software approaches (Smith, 1992). But recently, the
desired increase to brain-scale neuronal network models has driven the development of
novel neuromorphic computer architectures. The use of GPU implementations (see for
example Nageswaran et al. (2009)) has resulted in the development of specialized
simulator environments as well, such as NeMo (http://nemosim.sourceforge.net) and
GeNN (http://sourceforge.net/projects/genn). However, these large-scale GPU based
simulations still require a great deal of memory, limiting overall speed-up. The use of
specialized chips with on-chip communication networks for direct spike transfer can
dramatically improve run-time requirements. This innovative approach is the basis of the
SpiNNaker (Spiking Neural Network Architecture) machine, which is a multi-processor
machine designed specifically to run large-scale networks of point neuron models in
biological real time using millisecond integration steps (Furber and Temple 2007). It has
a bespoke communications infrastructure tuned to carry very large numbers of small
packets, where each packet conveys information about one “spike”. As neuron, synapse
and plasticity models are implemented in software, there is considerable flexibility in how
these are used, and hybrid networks can be accommodated. In principle neural network
models can be mapped onto SpiNNaker from any suitable high-level description
language. An automated design flow from PyNN has been established, which maps the
network topology into the SpiNNaker packet routing hardware and maps neuron
populations onto one or more processors, loading leaky integrate and fire or Izhikevich
neuron models (Izhikevich 2004) from a library as required, where some synaptic
plasticity models, such as spike-time-depending plasticity, are available.

! 14!

The SpiNNaker execution model employs asynchronous concurrency, so model results
are to a degree non-deterministic, although there is a millisecond synchronous mode
that supports deterministic operation provided that the neuron input processes are linear
(as it is impractical to control the order in which input spike packets arrive within each
millisecond). The non-determinism of the normal operating mode makes direct
comparison at the level of individual spike times with the results from other platforms
problematic, although higher-level network properties normally will be comparable. The
SpiNNaker machine also performs all computations using fixed-point arithmetic, again
making direct comparisons difficult with most other platforms that use floating-point
arithmetic. These compromises allow for the execution of spiking neural networks of up
to a billion point neurons distributed across a million processors in biological real time,
but lead to questions about how network results should be interpreted and how they can
be compared across architectures. However, similar questions arise when comparing
results across supposedly deterministic simulation environments, as described by Crook
et al. (2012), and these issues should be the subject of further discussion in the
community.

5 What can our community do to help?

Although recent efforts to create an infrastructure throughout the computational
neuroscience community for describing and sharing models are promising, much more is
needed to improve efficiency and ensure reproducibility in our field. There are several
tasks that should be explicitly embedded in simulator environments to aid with some of
the issues outlined here. In particular, simulator developers should ensure that models
and model components can be shared easily using multiple description standards such
as tables, graphs, connection matrices and simulator-independent description
languages, which would aid modelers in effectively documenting models for publication
and exchange. In addition, to promote reproducibility, simulators should provide more
self-documentation such as unit tracking, records of parameter values, version control
approaches, and explicit descriptions of model assumptions. As outlined above, a more
formalized approach to model scaling is needed to aid in interpreting results and linking
models across scales. The community should also continue to invest in efforts to
standardize terminology through the development of ontologies and formal notation, and
to standardize libraries and interfaces across tools, and a sincere effort to create
benchmarks for simulator testing is needed.

Acknowledgments

The workshop that resulted in this work was supported in part by the National Institute of
Mental Health under grant R01MH061905 to SMC and in part by the Research Council
of Norway under grant 178892/V30 eNeuro. Additional funding was provided by the
Institute of Adaptive and Neural Computation in the School of Informatics at the
University of Edinburgh and the Scottish Informatics and Computer Science Alliance.

References

Albert R, Barabási A-L. 2002. Statistical mechanics of complex networks. Reviews of
Modern Physics, 74:47–97.

Bednar J. 2008. Understanding neural maps with Topographica. Brains, Minds, and
Media 3:bmm1402.

! 15!

Bednar JA. 2009. Topographica: Building and analyzing map-level simulations from
Python, C/C++, MATLAB, NEST, or NEURON components. Frontiers in
Neuroinformatics 3:8. doi: 10.3389/neuro.11.008.2009

Bednar JA, Kelkar A, Miikkulainen R. 2004. Scaling self-organizing maps to model large
cortical networks. Neuroinformatics 2:275–302.

Borisyuk A, Semple MN, Rinzel J. 2002. Adaptation and inhibition underlie responses to
time-varying inter aural phase cues in a model of inferior colliculus neurons. Journal of
Neurophysiology 88:2134– 2146.

Bower J, Beeman D. 1997. The Book of GENESIS: Exploring Realistic Neural Models
with the GEneral NEural SImulation System. New York: Springer.

Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F. 2008. Extensible markup
language (XML) 1.0. [cited Jun 2012]. Available: http://www.w3.org/TR/REC-xml

Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower J M, Diesmann M,
Morrison A, Goodman P H, Jr F C H, Zirpe M, Natschläger T, Pecevski D, Ermentrout B,
Djurfeldt M, Lansner A, Rochel O, Vieville T, Muller E, Davison A P, Boustani S E,
Destexhe A. 2007. Simulation of networks of spiking neurons: A review of tools and
strategies. Journal of Computational Neuroscience 23:349–398.

Brüderle D, Müller E, Davison A, Muller E, Schemmel J, Meier K. 2009. Establishing a
novel modeling tool: A Python-based interface for a neuromorphic hardware system.
Frontiers in Neuroinformatics 3:17. doi:10.3389/neuro.11.017.2009

Brunel N. 2000. Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. Journal of Computational Neuroscience 8(3):183–208.

Burkitt AN. 2006. A review of the integrate-and-fire neuron model: I. homogeneous
synaptic input. Biological Cybernetics 95:1–19.

Carnevale NT, Hines ML. 2006. The NEURON Book. Cambridge: Cambridge University
Press.

Cornelis H, De Schutter E. 2003. Neurospaces: Separating modeling and simulation.
Neurocomputing 52-54:1079–1084.

Cornelis H, Coop AD, Bower JM. 2012a. A federated design for a neurobiological
simulation engine: the CBI federated software architecture. PLoS ONE 7(1):e28956.

Cornelis H, Rodriguez AL, Coop AD, Bower JM. 2012b. Python as a federation tool for
GENESIS 3.0. PLoS ONE 7(1):e29018.

Crook S, Davison AP, Plesser HE. 2012. Learning from the past: Approaches for
reproducibility in computational neuroscience. In: Bower JM, editor. 20 Years of
Computational Neuroscience, Springer Series in Computational Neuroscience. New
York: Springer.

! 16!

Crook S, Gleeson P, Howell F, Svitak J, Silver RA. 2007. MorphML: Level 1 of the
NeuroML standards for neuronal morphology data and model specification.
Neuroinformatics 5:96–104.

Davison AP, Brüderle D, Eppler JM, Kremkow J, Muller E, Pecevski DA, Perrinet L,
Yger P. 2009. PyNN: a common interface for neuronal network simulators. Frontiers in
Neuroinformatics 2:11. doi:10.3389/neuro.11.011.2008

Davison AP, Morse TM, Migliore M, Marenco L, Shepherd GM, Hines ML. 2002.
ModelDB: a resource for neuronal and network modeling. In: Kötter R, editor.
Neuroscience Databases: A Practical Guide. Norwell, MA: Kluwer Academic Publishers.
p99–122.

De Schutter E, Bower JM. 1994. An active membrane model of the cerebellar Purkinje
cell: II. Simulation of synaptic responses. Journal of Neurophysiology 71:401–419.

Destexhe A, Rudolph M, Fellous J-M, Sejnowski TJ. 2001. Fluctuating synaptic
conductances re-create in vivo-like activity in neocortical neurons. Neuroscience
107:13–24.

Djurfeldt M. 2012. The Connection-set Algebra—a novel formalism for the representation
of connectivity structure in neuronal network models. Neuroinformatics 10:287–304.

Djurfeldt M, Hjorth J, Eppler J, Dudani N, Helias M, Potjans T, Bhalla U, Diesmann M,
Hellgren-Kotaleski J, Ekeberg O. 2010. Run-time interoperability between neuronal
network simulators based on the music framework. Neuroinformatics 8:43–60.

Djurfeldt M, Ekeberg O, Lansner A. 2008. Large-scale modeling - a tool for
conquering the complexity of the brain. Frontiers in Neuroinformatics 2:1. doi:
10.3389/neuro.11.001.2008

Eberhard JP, Wanner A, Wittum G. 2006. Neugen: A tool for the generation of realistic
morphology of cortical neurons and neural networks in 3D. Neurocomputing 70:327–
342.

Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig M-O. 2008. PyNEST: A
convenient interface to the NEST simulator. Frontiers in Neuroinformatics 2:12. doi:
10.3389/neuro.11.012.2008

Furber S, Temple S. 2007. Neural systems engineering. Journal of the Royal Society
Interface 4:193-206.

Galluppi F, Rast A, Davies S, Furber S. 2010. A general-purpose model translation
system for a universal neural chip. In: Wong K, Mendis B, Bouzerdoum A, editors.
Neural Information Processing. Theory and Algorithms, volume 6443 of Lecture Notes in
Computer Science. Berlin/Heidelberg: Springer. p58–65.

Gamma E, Helm R, Johnson R, Vlissides J. 1994. Elements of Reusable Object-
Oriented Software. AW Publishing.

! 17!

Gewaltig M-O, Diesmann M. 2007. NEST (NEural Simulation Tool). Scholarpedia,
2(4):1430.

Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TR,
Davison AP, Ray S, Bhalla US, Barnes SR, Dimitrova YD, Silver RA. 2010. NeuroML: A
language for describing data driven models of neurons and networks with a high degree
of biological detail. PLoS Comput Biol 6(6):e1000815.

Gleeson P, Steuber V, Silver RA. 2007. neuroConstruct: a tool for modeling networks in
3D space. Neuron 54:219–235.

Goddard N, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D. 2001. NeuroML:
model description methods for collaborative modelling in neuroscience. Philosophical
Transactions of the Royal Society B 356:1209–1228.

Goodman D, Brette R. 2008. Brian: a simulator for spiking neural networks in Python.
Frontiers in Neuroinformatics 2:5. doi: 10.3389/neuro.11.005.2008

Hedley WJ, Nelson MR, Nielsen PF, DP Bullivant, Hunter PJ. 2000. XML languages for
describing biological models. In Proceedings of the Physiological Society of New
Zealand, volume 19.

Henker S, Partzsch J, Schüffny R. 2012. Accuracy evaluation of numerical methods
used in state-of-the-art simulators for spiking neural networks. J Comput Neurosci
32:309–326.

Hill S, Tononi G. 2005. Modeling sleep and wakefulness in the thalamocortical system.
Journal of Neurophysiology, 93(3):1671–1698.

Hines M. 1989. A program for simulation of nerve equations with branching geometries.
Int. J. Biomed. Comput. 24:55–68.

Hines ML, Carnevale NT. 1997. The NEURON simulation environment. Neural Comput.
9(6):1179–1209.

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM. 2004. ModelDB: A
database to support computational neuroscience. J Comput Neurosci 17(1):7–11.

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP. 2003. The
systems biology markup language (SBML): A medium for representation and exchange
of biochemical network models. Bioinformatics 19:524–531.

Izhikevich EM. 2004. Which model to use for cortical spiking neurons? IEEE
Transactions on Neural Networks 15:1063-1070.

Izhikevich EM, Edelman GM. 2008. Large-scale model of mammalian thalamocortical
systems. Proceedings of the National Academy of Sciences 105(9):3593–3598.

Koene RA, Tijms B, van Hees P, Postma F, de Rikker S, Ramakers G, van Pelt J, van
Ooyen A. 2009. Netmorph: A framework for the stochastic generation of large scale
neuronal networks with realistic neuron morphologies. Neuroinformatics 7:195–210.

! 18!

Köhn D, Le Novère N. 2008. SED-ML—an XML format for the implementation of the
MIASE guidelines. In: Heiner M, Uhrmacher A, editors. Computational Methods in
Systems Biology, volume 5307 of Lecture Notes in Computer Science. Berlin /
Heidelberg: Springer. p176–190.

Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H,
Schilstra M, Shapiro B, Snoep JL, Hucka M. 2006. BioModels Database: a free,
centralized database of curated, published, quantitative kinetic models of biochemical
and cellular systems. Nucleic Acids Research 34(Database issue):D689–691.

Le Novére N, Hucka M, Moodie S Mi H, Schreiber F, Sorokin A, Demir E, Wegner K,
Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L,
Matsuoka Y, Villger A., Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC,
Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E,
Watterson S, Wu G, Goryanin I, Kell DB, Sander C, Sauro H, Snoep JL Kohn K, Kitano
H. 2009. The systems biology graphical notation. Nat Biotechnol 8: 735–741.

Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF. 2008. The CellML model repository.
Bioinformatics 24(18):2122–2123.

Lloyd CM, Halstead MDB, Nielsen PF. 2004. CellML: Its future, present and past.
Progress in Biophysics and Molecular Biology 85:433–450.

Migliore M, Morse TM, Davison AP, Marenco L, Shepherd GM, Hines ML. 2003.
ModelDB: Making models publicly accessible to support computational neuroscience.
Neuroinformatics 1(1):135–139.

Nageswaran JM, Dutt N, Krichmar JL, Nicolau A, Veidenbaum AV. 2009. A configurable
simulation environment for the efficient simulation of large-scale spiking neural networks
on graphics processors. Neural Networks 22:791-800.

Nordlie E, Gewaltig M-O, Plesser HE. 2009. Towards reproducible descriptions of
neuronal network models. PLoS Computational Biology 5(8).

Nordlie E, Plesser HE. 2010. Visualizing neuronal network connectivity with connectivity
pattern tables. Frontiers in Neuroinformatics 3(39):1-15. doi: 10.3389/neuro.11.039.2009

Orban G, Kiss T, Erdi P. 2006. Intrinsic and synaptic mechanisms determining the timing
of neuron population activity during hippocampal theta oscillations. Journal of
Neurophysiology 96:2889–2904.

Pecevski D, Natschläger T, Schuch K. 2009. PCSIM: A parallel simulation environment
for neural circuits fully integrated with Python. Frontiers in Neuroinformatics 3:11. doi:
10.3389/neuro.11.011.2009

Petersonn BE, Healy MD, Nadkarni PM, Miller PL, Shepherd GM. 1996. ModelDB: an
environment for running and storing computational models and their results applied to
neuroscience. J Am Med Inform Assoc 3:389–398.

! 19!

Phoka E, Wildie M, Schultz SR, Barahona M. 2012. Sensory experience modifies
spontaneous state dynamics in a large-scale barrel cortical model. Journal of
Computational Neuroscience DOI: 10.1007/s10827-012-0388-6.

Poirazi P, Brannon T, Mel BW. 2003. Pyramidal neuron as two-layer neural network.
Neuron 37: 989–999.

Ray S, Bhalla US. 2008. PyMOOSE: interoperable scripting in Python for MOOSE.
Frontiers in Neuroinformatics. 2:6. doi: 10.3389/neuro.11.006.2008

Smith LS. 1992. A framework for neural net specification. IEEE Transactions on
Software Engineering 18: 601–612.

Steuber S, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Hausser M, De Schutter
E. 2007. Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54:121–136.

Usui S. 2003. Visiome: neuroinformatics research in vision project. Neural Networks
16:1293–1300.

van Vreeswijk C, Sompolinsky H. 1998. Chaotic balanced state in a model of cortical
circuits. Neural Computation 10:1321–1371.

von Neumann J. 1986. Papers of John von Neumann on Computers and Computing
Theory. Cambridge, MA: MIT Press.

Watts DJ, Strogatz SH. 1998. Collective dynamics of small-world networks. Nature
393:440–444.

Wilson HR, Cowan JD. 1972. Excitatory and inhibitory interactions in localized
populations of model neurons. Biophysical Journal 12:1-24.

Zubler F, Douglas R. 2009. A framework for modeling the growth and development of
neurons and networks. Frontiers in Computational Neuroscience, 3:25. doi:
10.3389/neuro.10.025.2009

!

