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Abstract Neuromorphic systems are implementations in silicon of elements of neu-
ral systems. The idea of electronic implementation is not new, but modern micro-
electronics has provided opportunities for producing systems for both sensing and
neural modelling that can be mass produced straightforwardly. We review the the
history of neuromorphic systems, and discuss the range of neuromorphic systems
that have ben developed. We discuss recent ideas for overcoming some of the prob-
lems, particularly providing effective adaptive synapses in large numbers.

1 Introduction

Neuromorphic systems are electronic implementations of neural systems. Such im-
plementations may take place at a number of different levels. For example, one may
model sensory or sensorimotor systems, or one may model specific neural systems
at many different levels, ranging through (at least) whole brain, brain region, cor-
tical column, mid-brain or brainstem nucleus, neural microcircuits, single neurons,
structural parts of neurons (dendrites, axons, soma), patches of membrane, down to
ion channels encased in the neural bilipid membrane. Some go further, suggesting
modelling quantum effects at synapses and in the dendrite [Ham07] [Hir91], but
there do not appear to be electronic (as opposed to software) implementations of
these models.

Different technologies have been used for these implementations at different
times, reflecting the prevailing electronic technologies, and current systems are (of
course) implemented in either analogue or digital very large scale implementation
(aVLSI or dVLSI). According to Wikipedia (http://en.wikipedia.org/wiki/Neuromorphic)
the term was coined by Carver Mead (see below), in the late 1980’s, but the ideas
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have roots that go back well before this. The idea of an equivalent circuit for a
neuron goes back at least to 1907 ([Lap07]), where a neuron is modelled by a re-
sistor and a capacitor. Since then, various technologies have been used to model
both neurons and sensory surfaces, and these are discussed in sections 2 to 4. There
are particular issues that arise in these different types of models, such as matching
the speed of the implementation to the environmental changes of interest, or finding
ways to store large numbers of possibly adaptive synaptic weights. More recently,
a number of new methods of using VLSI technology have been proposed for im-
plementation, as well as some novel techniques for storing adaptable weights, and
these are reviewed in section 5.

A different form of electronic implementation of neural systems is to directly
implement a formal model of a neuron, or of a neural system, for example the
McCulloch-Pitts neuron [MP43], or the weightless systems used by Aleksander
and Stonham [AS79]. These have been the basis for silicon implementations: in
the McCulloch-Pitts case, one example (of many) is the Intel chip [Cor90], and in
the weightless case, the work of Aleksander et al simply using memory technology
[ATB84], and Austin using more specialised silicon implementations [AK98]. We
do not discuss these or related work further in this chapter, since they are not strictly
“neuromorphic”: nonetheless, these remain interesting approaches.

2 Early forms of neuromorphic systems: systems built from
discrete components

The 20th century saw huge leaps in the capabilities of electronic components.
Although these were used initially primarily for communication purposes, and
later for digital calculation and computation, a small number of researchers also
saw electronic technology as a mechanism for modelling neural systems. Indeed,
Hodgkin and Huxley’s work on the dynamics of active cells [HH52] is often
presented both as a set of equations and as an electrical equivalent circuit. In
the 1960’s for example, FitzHugh used analog computers to model single neu-
rons, gaining detailed insights into their operation from these implemented models
[Fit66] (see http://www.scholarpedia.org/article/FitzHugh-Nagumo model). Others
followed with simple electronic models of neural processes [Lew68][JH69],[Roy72]
[Bro79]. On the larger scale, Runge [RUV68] built a fairly detailed model of the pi-
geon retina using 145 Cadmium Sulphide sensors and 381 neural analogue circuits
taking up 50 circuit boards. Early electrical models of the cochlea are discussed in
[KS59], including a transmission line of 178 sections, with each section comprising
two inductors and four capacitors. Although this type of work did permit the build-
ing of electronic models, and their testing (and comparison with real neural and
sensory systems), they were not intended for direct incorporation into equipment,
but were purely research models of particular systems.

The approach of using discrete components is limited by the complexity and ex-
pense of building such systems. It is not practical to build large numbers of such
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systems, and as a result, they were useful for research purposes, attempting to im-
prove understanding of the original system by re-creating it in hardware, but not for
more general applications.

3 Modern Neuromorphic Systems

In 1989, Carver Mead published his second seminal book (his first was [MC80]),
”Analog VLSI and Neural Systems” [Mea89]. This book brought together ideas on
the ways in which analogue field-effect transistor based circuits, particularly those
operating in the subthreshold domain (where currents change exponentially with
gate voltage change), were similar operationally to neural membranes. The book
describes at length how circuits which emulate elements of neural systems may be
constructed. It also contains some highly influential system examples, drawn from
the auditory and visual domain. Even now, most current works in systems refer-
ence some of the content of this book. It laid down a path for those who wanted
to implement models of neural systems directly in VLSI hardware. This has the
major advantage of being easy to replicate, so that a successful design can be built
relatively cheaply in bulk and possibly become a low-cost system component. How-
ever, unlike systems built from discrete components, it is not possible to alter the
circuitry once it has been built, nor even to monitor internal voltages unless that
voltage is made available off-chip. Further, there is generally a long delay between
submission of a design to a chip foundry and receiving testable chips back. These
problems make developing such systems much more difficult.

Nonetheless, researchers in a number of groups have worked to develop circuits
for a number of different neural types of applications, based partly on the ideas
and circuits in Mead’s book. Quite a number of novel circuits developed by the ana-
logue designers in the neuromorphic systems community are discussed in [LKI+02].
Some of these are essentially related to sensory systems, whilst others are more re-
lated to the actual underlying neurons themselves. In addition there is a body of work
on emulating aspects of the cortex itself, whether modelling the components of the
cortex or attempting to build complete models of small parts of cortex [MG07], as in
the Blue Brain project (http://bluebrain.epfl.ch/: these are primarily software simu-
lations, and are outside the scope of this review. Below, we present a brief review of
the current range of neuromorphic systems: a full-scale review is beyond the scope
of this article.

3.1 Neuromorphic systems for sensory processing

Implementations of neural systems are generally only considered to be neuromor-
phic if they work in real time. Real time operation is an absolute requirement for
sensory systems, and many the neuromorphic systems have been targeted specifi-
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cally at sensory systems. Below, we review particularly visual, auditory, olfactory
and tactile neuromorphic systems. There has recently also been interest in propri-
oceptary sensors as well [WZPF06]. So far as the author is aware, there have not
been any neuromorphic implementation of systems for taste! The other character-
istic of neuromorphic implementations is that they operate in parallel, and this has
particular advantages for sensory systems as discussed in section 3.1.4.

3.1.1 Neuromorphic systems for vision

The earliest neuromorphic visual system appears to be that of Runge, discussed
earlier. In terms of VLSI based designs, one of the earliest is described in Mead’s
book, chapter 15, which was a version of [MM88]. This paper discusses a ”silicon
retina” which implements both the transduction (basic photoreceptor circuit which
has a near-logarithmic response), and a horizontal resistive layer which models the
outer plexiform layer of the retina. The original retina had 48 by 48 pixels. The
system produces an output which is the difference between the centre intensity and
a weighted average of the the surrounding intensities, which is quite unlike what
happens on a digital camera. The overall effect is that the response to a static edge is
a spatial derivative, rather like what happens in a real retina. In addition, the response
to a featureless surface is essentially zero independent of the brightness.

Many other papers have developed the ideas within this paper. Better photore-
ceptors are proposed and analysed in detail in [DM96]. These are used to develop
a more effective contrast-sensitive retina in [AMSB95]. By performing additional
processing at the silicon retina, one can make the system able to model specific
visual capabilities. For example, a time to collision detector[Ind98], and a model
of the fly elementary motion detector has been built [HK98], and more recently a
depth from motion system [YMW+06]. One particularly interesting recent advance
has been a system which detects intensity changes in an overall brightness indepen-
dent way, and transmits these serially using AER, thus enabling sensing of rapidly
altering visual scenes without the huge data rates implied by the need to process
whole frames [LPD08].

3.1.2 Neuromorphic systems for audition

There has been considerable interest in cochlear models since the work of Helmholtz
and von Bekesy on the nature of the transduction of the pressure wave in the cochlea.
Unlike the case in vision, pressure wave to electrical signal transduction is external
to the device, and uses a (traditional) microphone. Early electrical models of the
cochlea [KS59] discussed earlier were large and unwieldy. Building neuromorphic
auditory subsystems that might actually be used to provide auditory capabilities
for whole systems really had to wait for VLSI capabilities of the type discussed
by Mead. Some of the earliest integrated neuromorphic systems are discussed in
Mead’s book. Lyon and Mead [LM88] describe the implementation of a sequence
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of filters used to build what they called a silicon cochlea: implementation techniques
have been codified in [FA95] . This work has been extended to be more biologically
realistic in [LM89a], and applied to auditory localization [LM89c], pitch perception
[LM89b], voiced speech [LAJ93b] and speech analysis [LW97], [LAJ93a]. The real
cochlea is active, and attempts have been made to implement this in [FvSV97], and
much more recently in[HJvST08]. This is particularly important because of the very
wide dynamic range of the biological cochlea, and the way in which the selectivity
alters with changing sound pressure level.

It is well known that early auditory processing is not simply a matter of trans-
duction, and researchers have considered the processing that occurs in the auditory
brainstem as well. Considerable work has been done on silicon modelling of the
cochlear nucleus, the first port of call of the axons of the auditory nerve [SFV96].
Some of the neurons in the brainstem nuclei respond to what are clearly features,
for example amplitude modulation [SV97] or onsets [GHS02].

3.1.3 Other sensory neuromorphic systems

Neuromorphic systems have been designed for other sensory modalities as well.
There has been considerable interest in olfaction: the electronic nose is a device
that could have considerable application in various industries (such as brewing and
perfumery). In this sensory domain, the sensors detect electrical changes due to
the odorant molecules [SG92]. It is possible to integrate the sensors on to the ac-
tual CMOS chip [Pea97]. Although the idea is relatively straightforward (altering
the electrical properties of an insulating (polymer) layer as a result of the arrival
of air-borne molecules), there are difficulties both in delivery, and, because of the
chemical nature of the sensing, due to issues of drift and poisoning. A spike-based
implementation is described in [KHT+05].

Tactile sensing systems transduce pressure or motion into electrical signals. Neu-
romorphic motion based systems based on models of rodent vibrissae have been
developed: earlier versions do not generally have the vibrissae directly incorporated
on to the CMOS VLSI system, but use the outputs from these sensors directly, and
are intended for robot based applications [PNG+06]. More recently, both the sen-
sor and the electronics have been integrated [AHW+07]. Skin-like sensor arrays
have been developed as well: these are of interest as sensors for grippers, and more
generally, as general tactile sensors. A capitative technique is used in [Roy06], to
produce an array of 59 sensing units which he calls taxels, and a polycrystalline
silicon technique is used in [VAV+06].

3.1.4 Parallelism in sensory neuromorphic systems: greedy processing

Hardware implementations, particularly fully-implemented ones, in the sense used
by Hecht-Nielsen [HN90] (page 267), have the advantage of permitting true paral-
lelism, unlike software implementations, or even systems which are only partially
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implemented (where, for example, a digital floating point multiplier is shared be-
tween a number of synapses). As as result, they can perform numerous different
transformations on incoming (parallel) sensory signals simultaneously. This pro-
cessing can proceed all the time, whether it is needed or not. This ”greedy” pro-
cessing means that values are available immediately should they be required. Such
processing appears to be the case in animal systems, where (for example) in the
brainstem auditory nuclei, all the auditory nerve signals appear to be continuously
processed to produce a representation which arrives at the mid-brain inferior col-
liculus. The visual domain is a little different, since the foveal section of the retina
can only examine a small visual angle at a time: there, the parallelism seems to
occur in the early stages of cortical visual processing (particularly V1).

In neuromorphic systems, this greediness takes the form of, for example, contin-
uously processing signals from all the pixels, to produce event based signals which
may then be sent down an AER bus (as in [LPD08]). In the auditory domain, the
numerous band-passed signals are simultaneously processed to search for onsets or
for amplitude modulation, mirroring processing processing the the auditory brain-
stem [SV97]. Greedy processing is useful for computing features in ays that are
invariant under expected alterations in the sensory processing environment (such as
overall illumination changes in vision, or level variation in audition). In addition,
using greedy processing should mean that a higher-level system which required par-
ticular information about some part of an image, or some part of the spectrum would
be able to retrieve this immediately without having to wait of it to be computed.

3.2 Neuromorphic models of neural circuitry, neurons and
membranes

In [Mea89] Mead draws an analogy between ionic currents passing across cell mem-
branes through ion channels and electron currents through field effect transistors op-
erating in subthreshold mode. He also provides a description of an implementation
of neural axons (chapter 12 of [Mea89]). Since that time there has been considerable
interest in neuromorphic models of neurons, implemented at a range of different lev-
els, from simple single compartment models of neurons through to patches of cell
membrane which could be assembled into multi-compartment neuron models. We
delay discussion of neuromorphic models of synapses to section 5. At a rather higher
level, there has been work on modelling neural circuits at a range of different lev-
els: mostly this work has been in software, but there is growing interest in hardware
based implementations.

3.2.1 Single compartment neuromorphic models

Single compartment neural models treat the neuron’s state variable (sometimes
called activation, and sometimes described as the depolarisation of the neuron, de-



Neuromorphic Systems: past, present and future 7

pending on the level of neural realism intended) as a single value: they thus ignore
the complexity of the dendrites, and consider all the conductances as lumped to-
gether. These models generally generate a spike (which may be a realistic neural
spike, or simple an event characterised purely by time of occurrence) when this ac-
tivation crosses some positive threshold from below. Such models are useful (and in-
deed, commonplace in simulations, since both integrate-and-fire neurons and spike
response models (see sections 4.1 and 4.2 of [GK02]) are of this form. Even such
straightforward model neurons can have different degrees of faithfulness to reality:
for example, they may (or may not) implement a refractory period (time after firing
when the neuron cannot fire), relative refractory period (time after firing when it is
possible, but more difficult to make the neuron fire), and may have all the conduc-
tances from the membrane gathered into a single conductance (or ”leak”), or may
consider a number of conductances independently.

One of the earliest neuromorphic single compartment models was [WMT96] in
which a quite detailed leaky integrate and fire (LIF) neuron was implemented: it
also exhibited other characteristics of real neurons, such as facilitation, accommo-
dation and post-inhibitory rebound. A more recent model built in silicon exhibits
the spiking behaviour of a number of classes of cortical neurons [WD08]. Others
have been more interested in using LIF neurons as system components, aiming to
use their computational properties rather than model real neurons: these are used
by [SV97] as part of his amplitude modulation detecting system, and by [GHS02]
as part of a sound analysis system. In these cases, the neuron implemented was a
much simpler form of the leaky integrate and fire neuron. The primary advantage
of these simpler models is that they still display useful computational capabilities
(such as synchronization and co-incidence detection), but require less circuitry to
implement. As a result it becomes possible to implement larger numbers of them on
a single chip.

3.2.2 Neuromorphic models of elements of neurons

Single compartment models entirely ignore the dendrites of neurons, yet these are
frequently large and complex structures. There has been interest in neuromorphic
implementations of dendrites as the timings of the different inputs to these, and the
way in which they are combined can provide powerful computational capabilities
even before signals reach the soma of the the neuron. In the models developed in
[Eli93][NE96] straightforward linear summation can occur, but interaction between
nearby synapses can permit discrimination between different pulse intervals and
patterns, as well as detecting correlations between spike trains. A different aspect
of dendrites is their ability to transmit signals integrated from synapses forward
(towards the soma) at the same time as transmitting action potentials backwards,
and this has been demonstrated in a neuromorphic circuit in [RD01]. This capability
is important for determining when synaptic characteristics should be altered. At the
other end of the neuron, [MHDM95] describe a neuromorphic implementation of
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an axon, permitting low power transmission of a pulse at slow speeds: this could be
useful for matching the speed of silicon with that of events in the real world.

At the level of the interaction of the ion channels on the membrane itself, the
first major model demonstrating both the sodium and potassium conductances was
implemented in [MD91]: this model demonstrated that spike generation in a neuron-
like way could be emulated electronically using subthreshold aVLSI circuitry. This
work has been extended and improved in [RDM98][RD00]. A different approach
which uses novel semiconductor fabrication techniques is adopted by [NLBA04]:
this approach uses properties of he semiconductors more directly, rather than using
circuitry. In [SNT+08] they extend this approach and use a tunnel diode to regen-
erate electronic signals. The effect is like that of neural axonic conduction, but at
a rather higher speed. Logically, both of these approaches would allow a hardware
implementation of a multi-compartment neuron to be built up from these patches of
membrane.

3.2.3 Modelling neural circuitry

As well as modelling neurons or parts of neurons, there is also interest in neuromor-
phic implementations of neural circuitry. There are two different motives for this:
firstly engineers would like to be able to use circuits of neurons to achieve partic-
ular processing functions, and secondly, modellers would like to be able to model
particular arrangements of neurons that they find from neuroanatomy. An example
of the first of these is a model of a winner takes all (WTA) network. These essen-
tially choose one (or possibly more than one) of a set of interconnected neurons
with different inputs, and select the one with the greatest activation (the winner).
This is a useful capability, and models of these have been around for some time
[LRMM89][PAS97]. Improving these by making them smaller, or by adjusting the
timescale of the inputs is still an area of research [MG07].

Developing models of small volumes of cortex in silicon is an avowed aim of a
number of groups (for example the Brains in silicon group at Stanford University,
as well as Rodney Douglas at the Zurich Institute for Neuroinformatics (personal
communication), and the subject of at least one PhD thesis [Mer06]. As matters
stand, however, this are is still dominated by huge software simulations [DLJ+08].

4 Implementation technologies for neuromorphic systems

Emulation of neural systems can be implemented in many different ways, rang-
ing from software on standard digital computers, through to application specific
integrated circuits (ASICs) implemented either in digital or analogue technology,
possibly with additional technologies piggybacked on to implement elements that
are difficult in CMOS. In general, to be called neuromorphic, there has to be some
element of direct hardware implementation: otherwise one simply has a software
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model. (There is some discussion about whether an implementation based on effi-
cient software on a multiple core processor might yet be called neuromorphic: we
will not enter this discussion!) The other factor that is required in neuromorphic
implementations is real-time operation, as discussed in section 3.1.

In Mead’s original work, the implementation technology was sub-threshold ana-
logue VLSI: however, many systems which are taken to be neuromorphic use digital
technologies. There remain many choices still about the form of the implementation.
One possibility is to use field programmable devices, whether field-programmable
digital arrays, or field-programmable analogue arrays. These have the major advan-
tages of being much easier and faster to configure, and avoiding the long delays
inherent in the fabrication of ASICs. In addition, they may be reprogrammed unlike
ASICs. However, the circuit density achievable is much less than that of ASICs,
and the power consumption is much higher: this can be a particular problem for
small or mobile devices. Further, where one is integrating sensors as well, field-
programmable devices are not an option: one needs to choose an ASIC based im-
plementation. It is important to note that the designers of neuromorphic ASICs gen-
erally have to use the technologies and foundries developed for digital chips, since
this market is far bigger, and it is not currently possible to develop manufacturing
technologies for this small niche market.

Even ASICs do not solve all the problems. In particular issues relating to inter-
connectivity and adaptiveness present problems. The planarity of CMOS devices
places severe limits on interconnection possibilities. Further, most CMOS technolo-
gies are intended to produce components which are stable and always behave the
same way, rather than components whose characteristics can evolve. There are also
issues of ensuring that the speeds within the system (for example integration times)
actually fit with events in the world whose timescales are often of the order of hun-
dreds of milliseconds, rather than the nano- to micro-second range more usually en-
countered in the ASIC domain. Recently, a number of groups have developed novel
technologies to address the issues of interconnectivity and adaptivity, and these are
discussed in section 5.

4.1 Signal coding

An important issue for implementation technologies is the nature of the signal rep-
resentation both on-chip, and for transfer between chips. Essentially there are three
overall possibilities: analogue, digital, and pulse-based signals. Analogue represen-
tations essentially imply analogue implementation, which has the advantages of im-
plicit real-time operation and perhaps lower power. Further, signals in the world
are normally analogue, simplifying interfacing. However, transistor variation across
chip can make reliable circuit design very difficult, and the standard digital fabri-
cation processes may not be as reliable for analogue as for digital designs. Digi-
tal designs, on the other hand, offer the usual digital advantages: noise immunity,
ease of manufacture, high density, and effective use of the standard manufacturing
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processes. However real-time operation needs to be ensured in the design, and the
digital signals require to be interfaced to the analogue world: in addition, some op-
erations which can be small and simple in analogue implementation, such as mul-
tiplication, can require relatively large amounts of chip real estate to implement
digitally.

One compromise is to use pulse or spike based representations. It is well known
that spikes are used for communication between most neurons in animal brains,
although the precise nature of the representations used in these is still under debate.
Spikes provide a mechanism for asynchronous communication between electronic
circuits: the actual spike is binary (it is an all or nothing event), but the precise
time of the spike is essentially analogue. Between the elements on a single chip,
spikes may be sent directly, but the planar nature of chips means that being able
to send spikes between any pair of circuits on chip may not always be possible.
One solution to this is to use internal routing as in [MHH+08]. Equally clearly,
the small number of connections coming off a chip means that simple spike coding
cannot in general, be used for communication between arbitrary circuits on different
chips. One technique for overcoming this limitation is to use a bus. For such a bus
to work effectively, it needs to be standardised. The address-event bus[Boa00] (see
http://www.pcmp.caltech.edu/aer/) is the current standard in this area. Of course,
such a bus implies a maximal rate at which spiking events may be transferred, and a
maximal precision to the timing of transmitted events: however, digital transmission
busses do have a very high (and known) bandwidth so that one can calculate whether
this is likely to be a problem at the design stage.

5 Adaptivity and interconnectivity for neuromorphic systems

Two characteristics of neural and neuromorphic systems that set them aside from
traditional computer systems are adaptivity and a high degree of interconnection
between the elements. The adaptive elements are normally at the interconnections
between the neural circuit elements, since they are generally modelled on synapses
whose plasticity is an important element in learning in real neural systems. If there
are n neurons there are normally O(n2) interconnecting synapses, so that it is im-
portant that the circuitry modelling the synapse is small and low-power. (There are
other possibilities: if synapse implementation circuitry is sufficiently fast, it may be
shared in time between a number of emulated synapses (partially implemented in
the terminology of [HN90]). This does, however, make the circuitry more complex,
but may be appropriate in digital implementations where synapses can include large
multipliers.)

Synapses need to provide some specific capabilities: they need to be able to trans-
mit a signal from the pre-synapse neuron (however this signal is coded), whilst
modulating this signal, providing some particular alteration (in voltage or current,
again depending on the nature of the implementation) at the post-synaptic neuron.
The size of this alteration will need to be adjustable, if the synapse is adaptive. The
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earliest adaptive elements for the first generation of hardware neural networks in-
cluded novel devices such as the memistor [Wid60], an electrochemical adaptive
resistive element (named for being a memory resistor). By modern standards, these
are large and slow. However, the production of reliable adaptive devices which are
small enough to be able to be deployed in large numbers remains difficult. One pos-
sibility is to use a memory word, implemented digitally. The value coded in the word
defines the alteration at the post-synaptic neuron. Though practical for truly digital
implementations, this requires both digital to analog conversion and a technique for
altering the value in analogue implementations. Another possibility is to use floating
gate devices: this is the same technology used to create flash memory devices, and
has been shown to be highly reliable for creating digital memories. It has been used
for synapses [DPMM96][HFD02], using electron injection and electron injection to
increase and decrease the voltage on the floating gate. However, these have not been
used in large numbers. In addition to requiring a technique for long-term storage
of synaptic effectiveness, synapses also change their effects on a shorter time scale
(called synaptic facilitation and depression). A simple short-term adaptive synapse
permitting both facilitation and depression is described in [CBD+03], and a more
sophisticated implementation including NMDA voltage-gated channels is described
in [BI07].

Recently, there have been some new technologies which have shown promise as
new implementation techniques for synapses. These are based on nanowire cross-
bars whose junctions are built from metal oxides with hysterectic resistances: tin
oxides and zirconium oxides are often used[SPS07]. These devices are actually
memristors [Bus08][SSSW08], ”a class of passive two-terminal circuit elements
that maintain a functional relationship between the time integrals of current and
voltage” (Wikipedia), which makes them able to be resistors with memory. These
are built from a technology known as CMOL (CMOS and molecular electronics),
and are two terminal devices which can be made very small. If these can be imple-
mented appropriately, they offer for the first time a technology which could provide
the appropriate number of synapses which cold be adaptive. However, this is still
very much a matter of research.

6 Looking forward: where are neuromorphic systems headed?

There remains considerable interest in auditory and visual neuromorphic systems
as technologies for eventually producing synthetic sensing systems with the same
types of capabilities as biological auditory and visual systems. The rapid response
of the neuromorphic camera in[LPD08] without the use of large-scale frame tech-
nology represent a real step forward. However, neuromorphic auditory systems have
yet to prove themselves capable: this may be because they have yet to properly in-
corporate the brainstem processing in more than very simple way on to the filtering
technology.
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Another area of progress is likely to be in the integration of different types of sen-
sors on to CMOS systems. Light sensors have been around for a long time, and poly-
mer based sensors are in use in olfactory neuromorphic systems. In addition, micro-
electromechanical systems (MEMS) microphones have now been developed (e.g.
the Infineon SMM310, or the Akustika AKU1126), and these seem to be good can-
didates for integration directly on to CMOS substrates. Different types of sensors for
olfactory and other senses may be based on ion sensitive FETs (ISFETs)[HAC04]
and chemical sensitive FETs (chemFETs) [HN02]: these new technologies are based
directly on FETs and so are clearly integratabtle on to CMOS systems, although
dealing the the nearness of liquids presents some novel problems for such electrical
equipment. There is also work ongoing in the development of proprioceptary sen-
sors [WZPF06]. Being able to directly incorporate the transduction on to the CMOS
system both reduces complexity and component count, and permits processing to be
applied directly to the signal allowing the chip to produce usable outputs directly.

6.1 When will neuromorphic systems come out of the lab?

It is now almost 20 years since Mead’s book [MC80] was published. At this point
neuromorphic systems have had some applications, in robotics, and in some sensors,
as well as in a rather interesting system for training neurophysiologists in how cells
in the visual system respond (see http://www.ini.ethz.ch/ tobi/friend/chip/index.php).
They have also been applied to toys: some of the Wowwee toys use neuromprphic
hardware (http://www.wowwee.com/. They have yet to really catch on even in the
autonomous robotics area. Why is this? So far they have been very much a low bud-
get interest area for researchers, built using technologies developed for other pur-
poses. However, there are signs that this is changing. Recently, DARPA announced
they SyNAPSE initiative (http://www.darpa.mil/baa/BAA08-28.html), and this may
lead to rather larger sums being available for development.

Part of the problem has been the simple capabilities of standard processor tech-
nologies: it has become quite practical to place full-scale computer systems on even
quite small autonomous robots. However, it remains very difficult to perform the
sorts of sophisticated processing that truly autonomous robots require to be use-
ful in the relatively unpredictable real world (as opposed to on top of a table in
an experimenter’s laboratory). For real applications the capabilities of truly paral-
lel neuromorphic systems (for example in dealing with varying light levels and real
acoustic situations) may become more important.

The other likely application area is in interfacing computer-based systems to both
users and the environment. Currently, most computers still use only the keyboard
and mouse for input, and a screen and loudspeaker for output. There are improve-
ments, for example touch screen and multi-touch screens which are being intro-
duced. Yet the hardware of the user interface still conforms to the ”make the user
adjust to the machine” paradigm that disappeared from the software for the user
interface many years ago. Further, if one is building systems that interact directly
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with their environment (without human mediation), then the system must sense its
environment, and make sense of the sensory data directly. This implies both richness
and complexity of the sensory interface (as well as real-time operation) and sophis-
ticated processing that can cope with variation in this sensory data, and extract the
important (invariant) information that is required for behaviour in the environment.
Hardware solutions, as well as integrated sensors appear appropriate for his area,
and it may be that this is where neuromorphic systems will finally make their mark.

Acknowledgements This work started off as a talk at BICS 2008, and was revised through being
given as a seminar at Stirling University and the University of Surrey, and in the light of the
referees’ comments.

References

[AHW+07] P. Argyrakis, A. Hamilton, B. Webb, Y. Zhang, T. Gonos, and R. Cheung. Fabrication
and characterization of a wind sensor for integration with neuron circuit. Microelec-
tronic Engineering, 84(1749-1753), 2007.

[AK98] J. Austin and J. Kennedy. PRESENCE, a hardware implementation of bunary neural
networks. In M. Boden L. Niklasson and T. Ziemke, editors, ICANN98: Proceedings
of the 8’th international conference on artificial neural networks, volume 1, pages
469–474, 1998.

[AMSB95] A.G. Andreou, R.C. Meitzler, K. Strohben, and K.A. Boahen. Analog VLSI neu-
romorphic image acquisition and pre-processing systems. Neural Networks, 8(7-
8):1323–1347, 1995.

[AR88] J.A. Anderson and E. Rosenfeld, editors. Neurocomputing: Foundations of Research.
MIT Press, Cambridge, 1988.

[AS79] I Aleksander and T.J. Stonham. Guide to pattern recognition using random access
memories. IEE Proceedings: Computers and Digital Techniques, 40:2–29, 1979.

[ATB84] I. Aleksander, W.V. Thomas, and P.A. Bowden. WISARD a radical step forward in
image recognition. Sensor Review, 4(3):120–124, 1984.

[BI07] C. Bartolozzi and G. Indiveri. Synaptic dynamics in analog VLSI. Neural Computa-
tion, 19:2581–2603, 2007.

[Boa00] K.A. Boahen. Point-to-point connectivity between neuromorphic chips using address-
events. IEEE Transactions on Curcuits and Systems II, 47(5):416–434, 2000.

[Bro79] W.H. Brockman. A simple electronic neuron model incorporating both active and
passive responses. IEEE Transactions on Biomedical Engineering, BME-26:635–639,
1979.

[Bus08] S. Bush. HP nano device implements memristor. Electronics Weekly, May 2008.
[CBD+03] E. Chicca, D. Badoni, V. Dante, M. D’Andreagiovanni, G. Salina, L. Carota, S. Fusi,

and P. Del Giudice. A vlsi recurrent network of integrate-and-fire neurons connected
by plastic synapses with long term memory. IEEE Transactions on Neural Networks,
14(5):1409–1416, 2003.

[Cor90] Intel Corporation. 80170NN electrically trainable analog neural network. Datasheet,
1990.

[DLJ+08] M. Djurfeldt, M. Lundqvist, C. Johansson, M. Rehn, O .Ekeberg, and A. Lansner.
Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer. IBM
Journal of Research and Development, 52(1/2), 2008.

[DM96] T. Delbruck and C.A. Mead. Analog VLSI transduction. Technical Report CNS
Memo 30, California Institute of Technology Computation and neural Systems Pro-
gram, Pasadena California, USA, April 1996.



14 Leslie S. Smith

[DPMM96] C. Diorio, P.Hasler, B.A. Minch, and C.A. Mead. A single-transistor silicon synapse.
IEEE Transactions on Electron Devices, 43(11):1982–1980, 1996.

[Eli93] J.G. Elias. Artificial dendritic trees. Neural Computation, 5(4):648–664, 1993.
[FA95] P. Furth and A.G. Andreou. A design framework for low power analog filter banks.

IEEE Transactions on Circuits and Systems, 42(11):966–971, November 1995.
[Fit66] R. Fitzhugh. An electronic model of the nerve membrane for demonstration purposes.

Journal of applied physiology, 21:305–308, 1966.
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