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Abstract. We discuss biologically inspired techniques for processing sound 
with a view to solving the what and where tasks. Starting from an auditory-
nerve like representation, we discuss an onset grouping technique for 
determining when to compute interaural time and intensity differences, and 
hence find the direction (where) of the source even in the presence of 
reflections. We have not yet implemented the what task, and we discuss some 
possible strategies. 

Introduction 

Perception of the environment is usually taken to mean understanding the 
environment sufficiently for appropriate interaction. Perception may be visual, 
auditory, olfactory, or tactile, or some mixture: perception in animals is frequently 
achieved by integration across modalities. However, such integration needs to occur 
at the right level: we therefore propose an auditory system whose results will be used 
in conjunction with other modalities. Robot perception is concerned with the what and 
where tasks, and with how these are used in the perception/action loop. Audition (or 
auditory perception) is particularly important for the detection of entities that cannot 
be seen, for example because of occlusion or darkness, and for perception of 
particular signals, such as commands and alarms.  

 
One key difference between auditory and visual perception is that in auditory 

perception (and in olfaction), interest is focused on the sources of the stimuli, rather 
than on reflections, whereas in visual perception, the opposite is true. There is a 
probable ecological base for this: animals (and robots) expect to interact with the 
producers of sounds directly, but not with light sources. In the ecology of a robot, 
sounds may be commands, alarms, or simply the characteristic sound produced by 
particular objects (like computer fans). Thus in auditory perception (for robots as well 
as animals) the what and where tasks refer to sources, not passive reflectors of sound.  
Another way of describing this is in terms of invariances: generally, vision systems 
(whether designed or natural) attempt to make their operation invariant to changes in 
illumination, and designers of auditory systems try to make their systems invariant to 
changes in reflections from surfaces. Of course, vision systems can also detect 
changes in illumination, and auditory systems can detect changes in room 
reverberation.   



2      Leslie S. Smith 

 
Another key difference between audition and vision is the role of time. A static 

visual image can be interpreted, but a static sound is meaningless. One approach 
(taken in most speech analysis work [1]) is to consider sound as a sequence of 
vectors, with the elements of each vector representing the sound energy in some small 
spectral area during some small time period. Though reasonable results are obtained 
with clean speech (high SNR), results are relatively poor at lower SNRs. The primary 
difficulty is that this type of technique assumes that it is interpreting a single sound 
(speech) source: where there is interfering noise, we clearly need to choose to 
interpret only some part of the sound field, and not to try to interpret it as  a whole. 
Animal auditory systems start by splitting the signal up into many bands, as do 
traditional speech recognition systems. However, unlike systems based on Fourier 
transforms, they maintain information about the fine time structure of the signal in 
each band. This allows them to use Gestalt-based grouping techniques to determine 
dynamically which bands should be considered together [2].  Further, they use two 
independent sound processors, with a degree of asymmetry and with a baffle (head) 
between them. This results in differences in transfer functions between the sound 
source and the two detectors for different directions (including heights), enabling 
spatial hearing [3]. Other differences between robot and animal auditory systems 
include outer ear pre-emphasis to certain spectral areas, middle ear stiffness 
variability (increasing the dynamic range of the system) and non-linear variation in 
bandpass characteristic with sound level (whose function is unclear) [4].  Our aim has 
been to include bio-mimetic techniques where these can proffer advantages, but to 
restrict these to techniques that are likely to be implementable. 

Usable bio-mimetic techniques for auditory processing: the what 
and where tasks. 

The only easily available form of sound transduction is the microphone. This has 
the advantage of cheapness and robustness (as well as sensitivity), but is much less 
sophisticated than the transduction techniques used by mammals. We can make up for 
this by processing the electrical signal(s) after transduction. Currently we are using 
binaural sound captured either using a model head or a mock-up of a flat panel 
display (with microphones at the top left and right). Our algorithms can be used on 
any pair of microphones, so long as the setup has been characterised (i.e. the 
interaural intensity and time differences (IID and ITD) are known for different angles 
and frequencies).  We model the effect of the cochlea (and organ of Corti) by using a 
bank of bandpass filters with near constant Q (Gammatone filters [5]), and then 
turned these filter outputs into a set of spike trains, rather like the coding used in the 
auditory nerve: see figure 1. 
 

The system works over a wide dynamic range by using multiple spike trains coding 
the output of each channel. Each spike codes a positive-going zero crossing. Each 
spike train Si for i = 1…N, (where N is the number of spike trains generated from a 
single bandpass channel) has a minimum mean voltage level Ei that the signal must 
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have reached prior to crossing zero during the previous quarter cycle. For N spike 
trains, these Ei are set by Ei = D * E0  for i = 1 … N where E0 is fixed for all bands. D 
was generally set to 1.414, providing a 3dB  difference between the energies required 
in each band. Note that if a spike is generated in spike train k, then a spike will be 
generated in all spike trains up to k, providing a thermometer-like encoding. This 
technique is similar to that used by in [6], where Ghitza noted that it improved 
automatic speech recognition in a noisy environment. This coding system does not 
directly detect features, but it assists in detecting certain features while maintaining 
precise timing information. 

 

 
Fig. 1.  Producing the model auditory nerve output.  Each band produces multiple AN-like 
spike trains with different sensitivities. 

 

The where task 

The where task is concerned with determining the location of the sound sources.  
Frequently, one is interested in the location of the primary (foreground) sound source, 
though sometimes one is interested in the location of many different sound sources. 

In our model, (see figure 2) the AN-like spike trains are used as input to a layer of 
leaky integrate-and-fire neurons through model depressing synapses (which transfer 
excitation for the first few spikes, but then depress until their pre-synaptic activity has 
ceased for a time). These neurons provide similar responses to certain of the neurons 
in the cochlear nucleus (CN), the area of the brainstem where the auditory nerve 
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terminates. They pick out onsets (rapid increases in energy) in particular frequency 
bands, (in a similar way to the onset responses of the octopus and bushy cells of the 
CN [7]) and amplitude modulation following onset (similar to the stellate cells of the 
CN [7]).  Their precise characteristics depend on the parameters of the depressing 
synapses and of the leaky integrate-and-fire neurons: in particular, the depressing 
synapse recovery time, the leakiness of the LIF neuron, and the refractory period 
influence the precise characteristic that the neuron firing signifies. More details of the 
synapses and neurons may be found in [8].  

 
Fig. 2.  Using clustered onsets to gate the processing of the AN signals to determine ITD and 
IID at onset time. 

 
 

Not only do these LIF neurons detect onsets and amplitude modulation, but they do so 
while maintaining precise timing.  Although the filterbank introduces delays which 
depend on the filter bandwidth, by using identical filters for both channels, we can 
still achieve precise measurement of onset timings, and of the relative phase of 
amplitude modulation. Further, we can use the exact timing of onsets in different 
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frequency bands to group together those parts of the signal that share common onset 
time. We can then choose to determine the IID and ITD at (or just prior to) these 
times. Interestingly, an alternative parallel implementation can choose to determine 
these values continuously, and then ignore them except at these grouped onset times: 
in this way, the ITD and IID becomes available instantly an onset has been 
determined. The main advantage of determining ITD and IID at onset times that 
onsets generally result from the signal arriving from the direct (unreflected) path. 
Thus the ITD and IID relate to the signal source, and not to a mixture of the source 
and reflections.  We note also that we can choose to ignore large areas of the 
spectrum, even although they may have considerable sound energy. so long as that 
energy level is relatively constant. Further discussion and results can be found in [9]. 

 

The what task 

The what task is concerned with determining information from each (or perhaps 
just from the foreground) source stream. This information may be a simple name label 
(such as “the river is flowing”), or may have further information (such as “… and the 
river is very fast today”),  or it may have rather more semantic content (for example, “ 
the car engine is making a rattling noise that it should not be making”). At the most 
complex end is the task of understanding what one speaker is saying, in noise. 

Our basic assertion is that solving the what task can be achieved through the 
interpretation of a sequence of auditory features.  These features are identified 
through characteristics of the sound stream, chosen so that each feature is likely to 
have originated from a single sound source. Candidate features include onsets, 
amplitude modulation, frequency modulation, envelope modulation (see [2] for 
further discussion of possible features). One view of what to do after identifying 
features has been to (dynamically) selectively amplify different areas of the spectrum 
(frequency bands).  This is clearly critical for reconstruction of any source, but also 
may introduce artifacts caused by rapid changes in amplification. We suggest 
omitting this stage, and using the feature streams directly for interpretation. The 
features themselves are annotated: for example,  an onset feature might be annotated 
with which  bands it occurred in, the overall length of the onset, and the characteristic 
onset contour, or an amplitude modulation feature with which bands it occurred in, its 
frequency. 

 One of the main problems with this approach is grouping features across time: 
how can one decide which features belong with which other features when there are 
multiple sound sources? One possibility is to find the direction from which the sound 
constituting of each feature comes, and then to assume that each source is static (or 
slow-moving), as used in [10]. Yet people are quite able to distinguish different 
sounds (and to concentrate on a foreground sound) from a source such as a monaural 
radio (in which directional cues are missing), so that there must be other techniques in 
use as well. Indeed, people are often not very good at determining the direction that 
sounds arrive from [11].  Another possibility is to consider the parameters of each 
identified feature, and to try to use common characteristics across features to perform 
this across time grouping.  This is an approach that has not yet been tried by us: yet 
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intuitively, it is attractive. For example, consider two different musical instruments 
playing in counterpoint: such a sound is easily separated by people (even when played 
through a monaural speaker). Presumably one of the cues for this is the similarity of 
the timbre of each note from a single instrument. This  is could be interpreted as being 
based on the parameters of the features generated by each note.  

Conclusion 

We have discussed a biologically inspired set of techniques for auditory processing: 
these techniques are usable for robot audition. We have shown their utility in the 
where task, and have discussed strategies for their use in the what task as well. The 
next task is to implement these. 
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