Weighing up the options: Finding the right solution when lots of things matter

Sandy Brownlee

Outline

- Decision making, multiple objectives
- Optimisation
- Building design
- Evolutionary algorithms
- Other real world applications

Jordon Cox, 18, realised it would cost him £50 to travel from Sheffield to Shenfield in Essex by train but if he "went the extra 1,017 miles" he could fly via the German capital and save £7,72.

MICHELIN CROSSCLIMATE THE FIRST SUMMER TYRE CERTIFIED FOR WINTER

- So what if we care about more than one thing?
- More than one *objective*?

a statio

9

- Vilfredo Pareto
 - 1848 1923
 - Italian engineer,
 sociologist,
 economist, political
 scientist, and
 philosopher
- Pareto optimal front:

 The trade-off of optimal designs / options / solutions

Time for 0-60 mph

Optimisation

Single-objective

- Minimal cost easy
- Minimal energy tricky!

13

Multi-objective

- Minimise cost to improve house, and the energy required to run it
- 5 things to vary, 4 levels each
 - Wall insulation
 - Replace windows
 - Replace door
 - Floor insulation
 - Roof insulation
- How many possible variations?

Exhaustive search

• 5 variables, 4 values each:

 $4^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1,024$

• 10 variables:

 $4^{10} = 1,048,576$

• 50 variables:

 $4^{50} = 1,267,650,600,228,229,401,496,703,205,376$ or about 10^{30}

Combinatorial explosion

Evolutionary algorithms

- Survival of the fittest
- Inheritance from parents to offspring

EAs for optimising buildings

Energy Use

Energy Use

Example 1: Cellular Windows

Example 2: Risk of mould growth

- Hospital ward in Kuala Lumpur
- Optimise air conditioning / ventilation configuration to identify high risk conditions
- Risk related to long, warm, damp periods

Some other applications...

More efficient software

- What's more important?
 - Run faster
 - Better results
 - Longer on battery
- More on ANNs
 - for associative memory
 - 12 May
 - Bruce Graham

Greener Aircraft Taxiing

Figures from: Ravizza, S; Chen, J; Atkin J; Burke, E & Stewart, P. (2013) The trade-off between taxi time and fuel consumption *in airport ground movement*. Public Transp 5:25–40. DOI 10.1007/s12469-013-0060-1

Greener Aircraft Taxiing

Figures from: Ravizza, S; Chen, J; Atkin J; Burke, E & Stewart, P. (2013) The trade-off between taxi time and fuel consumption in airport ground movement. Public Transp 5:25-40. DOI 10.1007/s12469-013-0060-1

Picassevo

- Free from the iPhone app store
- https://appsto.re/gb/en1Nab.i
- Developed by our partners in the DAASE project at UCL:

– <u>http://daase.cs.ucl.ac.uk</u>

Ongoing research

- exploring the Pareto front
- more efficient search methods
- human in the loop

F

Thanks!

- <a>www.cs.stir.ac.uk/~sbr --- <a>sbr@cs.stir.ac.uk
- Picassevo: <u>https://appsto.re/gb/en1Nab.i</u>
- Article on nature-inspired algorithms
 - "Why we fell out of love with algorithms inspired by nature" (link from homepage above)
- Next Lecture: 31st March
- Zero: the history of an unappreciated number.
 Dr Anthony O'Hare

Example 3: Office building

Exploring the Pareto front

- A heating set point
- B cooling set-point
- C temp for nat. vent
- D glazed area (N Upper)
- E glazed area (S Upper)
- F mech. ventilation rate
- G external wall type
- H ceiling and floor type
- I shading overhang (S)

		~	-	-	-	-	•	-		
0.00	1.00	0.5	0.564516	0.98	0.65	0.82	0.11	0	1	1
0.01	0.90	0.5	0.564516	0.98	0.65	0.73	0.11	0	1	1
0.03	0.82	0.5	0.580645	0.98	0.57	0.73	0.11	0	1	1
0.04	0.76	0.5	0.580645	0.98	0.49	0.73	0.11	0	1	0
0.07	0.74	0.5	0.564516	0.98	0.49	0.73	0.11	0	1	0
0.07	0.70	0.5	0.564516	0.98	0.49	0.73	0.22	0	1	0
0.10	0.66	0.5	0.580645	0.98	0.41	0.73	0.11	0	1	0
0.10	0.62	0.5	0.564516	0.98	0.65	0.82	1.00	1	1	1
0.10	0.61	0.5	0.564516	0.98	0.65	0.82	0.11	1	1	1
0.10	0.61	0.5	0.564516	0.98	0.65	0.82	1.00	1	1	1
0.12	0.59	0.5	0.612903	0.98	0.65	0.82	0.67	1	1	1
0.14	0.57	0.5	0.548387	0.98	0.49	0.73	0.11	1	1	0
0.15	0.54	0.4	0.548387	0.98	0.57	0.73	0.67	1	1	0
0.17	0.53	0.4	0.548387	0.98	0.57	0.73	0.67	1	1	0
0.18	0.52	0.5	0.564516	0.98	0.49	0.73	0.11	1	1	0
0.18	0.49	0.4	0.548387	0.98	0.57	0.73	0.67	1	1	0
0.21	0.45	0.4	0.564516	0.98	0.41	0.43	0.11	0.5	1	0
0.21	0.43	0.5	0.564516	0.98	0.57	0.43	0.67	1	1	0
0.21	0.37	0.4	0.548387	0.98	0.49	0.43	0.67	1	1	0
0.24	0.35	0.4	0.548387	0.98	0.49	0.43	0.67	1	1	0
0.27	0.32	0.4	0.548387	0.98	0.41	0.43	0.11	1	1	0
0.32	0.30	0.4	0.548387	0.98	0.33	0.43	0.67	1	1	0
0.33	0.29	0.4	0.548387	0.98	0.33	0.43	0.11	1	1	0
0.35	0.27	0.4	0.580645	0.98	0.35	0.43	0.11	1	1	0
0.35	0.26	0.4	0.596774	0.98	0.24	0.43	0.11	1	1	0
0.36	0.25	0.4	0.548387	0.98	0.29	0.43	0.11	1	1	0
0.38	0.25	0.4	0.596774	0.98	0.33	0.33	0.11	1	1	0
0.39	0.25	0.4	0.596774	0.98	0.33	0.33	0.11	1	1	0
0.39	0.24	0.4	0.596774	0.98	0.33	0.33	0.11	1	1	0
0.41	0.20	0.4	0.596774	0.98	0.33	0.33	0.67	1	1	0
0.46	0.20	0.4	0.596774	0.98	0.33	0.33	0.11	1	1	0
0.46	0.20	0.4	0.596774	0.98	0.33	0.33	0.11	1	1	0
0.47	0.19	0.4	0.564516	0.98	0.24	0.33	0.11		1	0
0.49	0.18	0.4	0.596774	0.98	0.24	0.33	1.00	1	1	0
0.54	0.16	0.4	0.532258	1.00	0.24	0.33	0.11	1	1	0
0.55	0.14	0.4	0.596774	0.98	0.24	0.33	0.67	1	1	0
0.57	0.12	0.4	0.596774	0.98	0.24	0.33	0.11	1	1	0
0.64	0.11	0.4	0.612908	0.98	0.24	0.43	0.11	1	1	0
0.64	0.11	0.4	0.612903	0.98	0.33	0.33	0.00		1	0
0.65	0.09	0.4	0.596774	0.98	0.24	0.33	0.11		1	0
0.00	0.08	0.4	0.612903	0.98	0.24	0.33	0.11		1	0
0.67	0.08	0.4	0.612908	0.98	0.24	0.33	0.11	_		
0.67	0.07	0.4	0.612908	0.98	0.24	0.33	0.11	-	1	
0.00	0.07	0.4	0.612903	1.00	0.24	0.33	0.11		1	0
0.91	0.05	0.4	0.012908	0.98	0.33	0.04	0.11		1	0
0.92	0.04	0.4	0.596774	0.98	0.33	0.04	0.11	1	1	0
0.93	0.01	0.4	0.596774	0,98	0.29	0.04	0.11		1	0
1.00	0.01	0.4	0.612908	1.00	0.24	0.04	0.11	-	1	0
1.00	0.00	0.4	0.012505	100	0.24	0.04	0.11	-	1	0
Corr. with energy:		-0.76	0.63	0.32	-0.86	-0.93	-0.31	0.61	0.00	-0.54