
A Brief Introduction to R

Computing Science and Mathematics Skill Sharing

Alexander E. I. Brownlee
Mila Goranova

Rough content outline

1. basics of syntax: assignment, data types, printing, blocks, conditionals and loops, functions,
help

2. data structures: scalar, vector, dataframes, loading from csv etc.
3. simple examples: multiply a vector, mean, sum, length, histogram; selecting data with which()
4. common stat tests
5. manipulating data
6. handy plots
7. ggplot
8. a linear model + syntax
9. machine learning: caret package
10. packages – e.g. https:

//cran.r-project.org/web/packages/available_packages_by_name.html
https://awesome-r.com

1

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://awesome-r.com

Intro

R is a statistical programming language. It’s free and has a rich variety of third party open-source
libraries.

R – available from https://www.r-project.org
R Studio – IDE available from https://www.rstudio.com
This is a brief introduction covering the basics!

A lot of syntax and examples. Mainly to show what’s possible. Slides will be available for reference.

* thanks to Kevin Swingler who prepared the BD6 R practical notes on which at least some of this is
based

2

https://www.r-project.org
https://www.rstudio.com

R Studio

3

Basic syntax

Basic Syntax

Assignment: x<-1

(note R also supports = and -> but they can cause confusion! = is also used for equality, and right
assignment is just hard to read)

Delete a variable: rm(x)

Print a variable: either just type its name and enter, or print(x)

Concatenate strings for output:

> cat(x,x,sep=",")
1,1

(note that functions have mandatory and optional arguments. You can also choose to explicitly
name them, but don’t have to.)

Commands can be separated by either a newline, or by ;.

Blocks of code delimited by braces {...}

4

Basic syntax

if (a==1) b=2 else b=3

For, While and Repeat loops are also supported, but we don’t need them much because many
operations can be applied to whole lists etc. in one operation.

> x<-c(3,4,5)
> for (a in x) print(a)
[1] 3
[1] 4
[1] 5
> for (a in 1:3) print(a)
[1] 1
[1] 2
[1] 3

5

Declaring a function

> multints<-function(n1,n2) {
> result<-n1*n2;
> result
> }
> multints(3,6)
[1] 18

You can also see the source of an existing function (not always available though...)

> multints
function(n1,n2) {
result<-n1*n2;
result

}

6

Help

e.g. ?mean will load the documentation for a given function

e.g. ??histogram will search the documentation for a given term

7

Types

Common data types: logical (TRUE/FALSE), numeric, character (string), factor (categorical)

Common variable types: scalar, vector, matrix, data frame

R is dynamically typed

You can change types at will:

> x<-3
> class(x)
[1] "numeric"
> x<-"fish"
> class(x)
[1] "character"
> x<-as.factor(x)
> class(x)
[1] "factor"

summary(x) will print a text summary of any variable (what you get depends on the type)

8

Vectors

Ordered lists of values of the same type.
> x<-c(1,3,54,7,89,5)
> x
[1] 1 3 54 7 89 5
> x[3]
[1] 54
> y<-x[2:4]
> y
[1] 3 54 7
> y<-x[-3]
> y
[1] 1 3 7 89 5
> y<-x[x>10]
> y
[1] 54 89
> x>10
[1] FALSE FALSE TRUE FALSE TRUE FALSE
> x<-seq(5,8,by=0.5)
> x
[1] 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Note: indices start at 1 not 0!
9

Factors

Categorical or nominal variables. Limited set of values. Created automatically when we read in a
file, or convert a character vector.

> x<-as.factor(c("apple","pear","pear","banana"))
> x[5]<-"orange"
Warning message:
In `[<-.factor`(`*tmp*`, 5, value = "orange") :
invalid factor level, NA generated

> table(x)
apple banana pear

1 1 2
> levels(x)
[1] "apple" "banana" "pear"

It is also possible to specify levels separately, and to give them an ordering so that e.g. min(x)
makes sense.

10

Data frames

A table; multiple vectors of the same length addressable by name or index

> x<-c(2,4,7)
> y<-c("apples","pears","bananas")
> my_data<-data.frame(counts=x,fruit=y)
> summary(my_data)

counts fruit
Min. :2.000 apples :1
1st Qu.:3.000 bananas:1
Median :4.000 pears :1
Mean :4.333
3rd Qu.:5.500
Max. :7.000

11

Data frames

Indexing is data[row,column]; can also use data$columnname or data["columnname"].
> my_data

counts fruit
1 2 apples
2 4 pears
3 7 bananas
> names(my_data)
[1] "counts" "fruit"
> my_data[2]
fruit

1 apples
2 pears
3 bananas
> my_data[,2]
[1] apples pears bananas
Levels: apples bananas pears
> my_data[1,2]
[1] apples
Levels: apples bananas pears

12

Read/write files

> mydata = read.table("filename")
> mydata = read.csv("filename.csv")

read.csv is just a wrapper for read.table with some sensible defaults for CSVs. Both are highly
configurable: delimiters, headers, nulls, etc.

Note: these will reformat column names (e.g. spaces changed to dots) by default.

13

Redirecting output

Use sink(filename) to redirect text output to a file. sink() will re-enable writing to stdout.

For graphics, use pdf(filename) or png(filename). dev.off() will close the file.

14

Basic stats and plots

Basic operations and stats

> x<-c(3,6,8,10)
> x*2
[1] 6 12 16 20
> mean(x)
[1] 6.75
> median(x)
[1] 7
> sum(x)
[1] 27
> length(x)
[1] 4

15

Basic operations and stats

> x<-c(3,6,8,10,10,10,13,14,15)
> hist(x)
> hist(x,breaks = 3)

barplot() exists for factors.

16

Basic operations and stats

> x<-c(2,5,8,10,12,14)
> y<-c(5,7,8,9,10,12)
> t.test(x,y)
Welch Two Sample t-test

data: x and y
t = 0, df = 7.7253, p-value = 1
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:-4.811595 4.811595
sample estimates:
mean of x mean of y
8.5 8.5

Actually the above returns an object that we can query...
> result<-t.test(x,y)
> result$p.value
[1] 1
> wilcox.test(x,y)
Wilcoxon rank sum test with continuity correction

data: x and y
W = 19, p-value = 0.9357
alternative hypothesis: true location shift is not equal to 0

17

Basic operations and stats

For data frames, operations apply to the whole frame.

> x<-data.frame(a=c(1:10),b=c(31:40))
> sum(x)
[1] 410
> x*2

a b
1 2 62
2 4 64
3 6 66
4 8 68
5 10 70
6 12 72
7 14 74
8 16 76
9 18 78
10 20 80

18

Basic operations and stats

Use apply() or one of its variants to apply a function to rows or columns separately. (MARGIN=1 is
rows, 2 is columns)

> apply(x,MARGIN=2,FUN=mean)
a b
5.5 35.5

> apply(x,MARGIN=2,FUN=sd)
a b
3.02765 3.02765

19

boxplot

data1 <- c
(0.5,4,4.5,6,10,13,14,14.4,14.6,14.9,15,15,16,16.1,16.4,17.3,18,20,26,60)

data2 <- c
(4.5,6,7.5,8.3,10.9,14,16,16.6,16.7,16.9,17,17,18,18.2,19.4,20.3,21,25,26,58)

boxplot(data1,data2)

20

scatterplot

data1 <- c
(0.5,4,4.5,6,10,13,14,14.4,14.6,14.9,15,15,16,16.1,16.4,17.3,18,20,26,60)

data2 <- c
(4.5,6,7.5,8.3,10.9,14,16,16.6,16.7,16.9,17,17,18,18.2,19.4,20.3,21,25,26,58)

plot(data1,data2)

21

correlation matrix

> install.packages("PerformanceAnalytics")
> library("PerformanceAnalytics")
> my_data <- mtcars[, c(1,3,4,5,6,7)]
> chart.Correlation(my_data, histogram=TRUE, pch=19)

mpg
100 200 300 400

-0.85

-0.78

3.0 3.5 4.0 4.5 5.0

0.68

-0.87

16 18 20 22

10
20

30

0.42
*

10
0

30
0

disp
0.79

-0.71

0.89

-0.43

*

hp
-0.45

**
0.66

50
15

0
25

0

-0.71

3.
0

4.
0

5.
0

drat
-0.71

0.091

wt

2
3

4
5

-0.17

10 15 20 25 30

16
20

50 150 250 2 3 4 5

qsec

22

ggplot

The package ggplot2 is a powerful package that lets you create graphics. ggplot builds up plots in
layers, which are combined using +. The basic plot and data are made using the ggplot() function,
then we add the type of function we would like to use to plot our data.

23

ggplot

install.packages("ggplot2")
library(ggplot2)

ggplot(mpg, aes(x = displ, y = hwy, colour = class)) +
geom_point()

24

ggplot

The ggplot() function takes the following parameters:

• dataset - in this examplempg is a build-in data set contains a subset of the fuel economy data.
• aes() function - aesthetic mapping specifying the variables and how to colour them. In our
example we have chosen to visualize the displ and hwy variables from the data set and colour
them by variable class.

• geom_point() function - a geom function to represent the data points. We have chose to create
a scatterplots for the two variables using geom_point(). There are a lot of available function
and a good summary could be found here -
https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf .

ggplot(mpg, aes(x = displ, y = hwy, colour = class)) +
geom_point()

25

More ggplot

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(span = 0.3)

26

More ggplot

ggplot(mpg, aes(displ,hwy, colour = class, size = cyl)) +
geom_point() +
labs(subtitle="Fuel usage",

y="highway miles per gallon",
x="engine displacement, in litres",
title="Fuel Economy Data",
caption = "Size of Nodes by Number of Cylinders") +

scale_color_brewer(palette="Set3") + theme_bw()

27

More ggplot

ggplot(mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color=class)) +
facet_wrap(~ class, nrow = 2)

28

3D Scatter Plot

install.packages("plotly")
library(plotly)
plot_ly(x=mpg$displ, y=mpg$hwy, z=mpg$year, type="scatter3d", mode="markers",

color=mpg$class)

29

Manipulating data

Selecting data

> x<-c(5,7,8,9,10,12)
> which(x>=10)
[1] 5 6
> x<-c(5,7,8,9,10,12,3,21,4)
> which(x>=10)
[1] 5 6 8
> x[which(x>=10)]
[1] 10 12 21

> x=data.frame(a=c(5,7,8,9,10,12),b=c("a","b","c","d","e","f"))
> x[which(x$a>=10),2]
[1] e f
Levels: a b c d e f

30

Merging datasets - cbind

Takes two sequences of vectors, matrices or data frames and combines them by columns.

my_data_one <- read.csv("filename-1.csv", header = T, sep = ",")
my_data_two <- read.csv("filename-2.csv", header = T, sep = ",")
my_data_both <- cbind(my_data_one, my_data_two)

The row number of the two must be equal.

31

Merging datasets - rbind

Takes two sequences of vectors, matrices or data frames and combines them by rows.

my_data_one <- read.csv("filename-1.csv", header = T, sep = ",")
my_data_two <- read.csv("filename-2.csv", header = T, sep = ",")
my_data_both <- rbind(my_data_one, my_data_two)

The column number of the two must be equal.

32

Melting

Sometimes we need to rearrange the data into what is called ”long form”. This is often needed for
libraries like ggplot. The function to do this is melt() in the reshape2 library.

> dat
FactorA FactorB Group1 Group2 Group3 Group4

1 Low Low -1.1616334 -0.5228371 -0.6587093 0.45064563
2 Medium Low -0.5991478 -1.0461138 -0.1942979 2.47985577
3 High Low 0.8420797 -1.5413266 0.6318852 -0.98948125
4 Low Medium 1.6225569 -1.2706469 -0.8026467 -0.32332181
5 Medium Medium -0.3450745 -1.3377985 1.4988363 0.36541918
6 High Medium 1.6025044 0.7631882 -0.5375833 0.85028148
7 Low High -1.2991011 -0.2223622 -0.6321478 -1.57284216
8 Medium High -0.4906400 -1.1802192 0.1235253 0.09891793
9 High High 0.3897769 -0.3832142 0.6671101 0.23407257

33

Melting

> melt(dat)
Using FactorA, FactorB as id variables

FactorA FactorB variable value
1 Low Low Group1 -1.16163338
2 Medium Low Group1 -0.59914783
3 High Low Group1 0.84207974
4 Low Medium Group1 1.62255690
5 Medium Medium Group1 -0.34507455
6 High Medium Group1 1.60250438

...
36 High High Group4 0.23407257

34

Models

Linear regression

linearmodel<-lm(data$TaxiTime ~ data$distance + data$angle_sum)

This will perform a simple linear regression, and store the model in the variable called
linearmodel.
Syntax is a bit strange: before the ~ is the variable we want to predict, and after the ~ are the
variables we are using as inputs.

> linearmodel

Call:
lm(formula = data$TaxiTime ~ data$distance + data$angle_sum)

Coefficients:
(Intercept) data$distance data$angle_sum

1.555937 0.002670 0.006377

35

Linear regression

> summary(linearmodel)

Call:
lm(formula = data$TaxiTime ~ data$distance + data$angle_sum)

Residuals:
Min 1Q Median 3Q Max

-8.442 -3.788 -0.440 2.453 40.504

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.5559371 0.5427447 2.867 0.00423 **
data$distance 0.0026700 0.0003437 7.768 1.92e-14 ***
data$angle_sum 0.0063771 0.0011696 5.452 6.22e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.011 on 1032 degrees of freedom
Multiple R-squared: 0.2091,^^IAdjusted R-squared: 0.2076
F-statistic: 136.4 on 2 and 1032 DF, p-value: < 2.2e-16

36

Some machine learning...

Install the caret package (library), load it, and load some sample data (R includes some standard
data sets for free!).

> install.packages("caret")
> library(caret)
> data(iris)

Split into training and test data:

set.seed(10)
inTrain <- createDataPartition(y=iris$Species, p=.6, list=FALSE)
training <- iris[inTrain,]
testing <- iris[-inTrain,]

set.seed() sets the random number generator’s seed, which ensures the results are repeatable.
The remaining lines create two variables ”training” and ”test” that have our subsets of the data.

37

Some machine learning...

Train a model on all the training data.

• The first argument follows the notation we used for linear regression: ”Species” is the variable
want to predict, then ~ then all the features we want in the model. A dot (.) means we want all
the features.

• We then specify that we want to use the training data, and the model type is ”ranger”, a kind of
random forest. Models supported by Caret are here:
https://topepo.github.io/caret/available-models.html

• preproc specifies any preprocessing we want to do on the data
• Caret makes use of many other packages and will ask to install them if needed

rfFit1 <- train(
Species ~ .,
data = training,
method = "ranger",
Center and scale the predictors for the training
set and all future samples.
preProc = c("center", "scale")

)

38

https://topepo.github.io/caret/available-models.html

Some machine learning...

By default, caret will explore the hyperparameters for the model, and you can see the results of
that search with ggplot(rfFit1):

39

Some machine learning...

Having got our model, we can then try predicting the values for our unseen data:
> rfClasses1 <- predict(rfFit1, newdata = testing)
> str(rfClasses1)
Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

> confusionMatrix(data = rfClasses1, testing$Species)

Confusion Matrix and Statistics

Reference
Prediction setosa versicolor virginica

setosa 20 0 0
versicolor 0 20 2
virginica 0 0 18

Overall Statistics

Accuracy : 0.9667
95% CI : (0.8847, 0.9959)

No Information Rate : 0.3333
P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.95
Mcnemar's Test P-Value : NA

Statistics by Class:

Class: setosa Class: versicolor Class: virginica
Sensitivity 1.0000 1.0000 0.9000
Specificity 1.0000 0.9500 1.0000
Pos Pred Value 1.0000 0.9091 1.0000
...

40

Some handy packages

• igraph - network analysis and visualisation package
• tidyverse - collection of packages for data science
• latex integration...

41

Questions / discussion

R - available from https://www.r-project.org
R Studio - IDE available from https://www.rstudio.com

42

https://www.r-project.org
https://www.rstudio.com

	Basic syntax
	Basic stats and plots
	Manipulating data
	Models

