
Java	Concurrency	(Part	1)
Multi-Threaded	Object-Oriented	Programming

@javaxnerd

leechristie.com

lee@leechristie.com

Dr	Lee	A.	Christie



Motivation



Moore's	Law

The	number	of	transistors	on	a	chip	doubles	
every	18-24	months.

(Historically	has	correlated	with	CPU	clock	speed)



10	GHz

1	GHz

100	MHz

10	MHz

1	MHz

100	Hz
1970 1980 1990 2000 2010

Intel	CPU	Trends	(Clock	Speed)

(adapted	from	Sutter	2009)

Year

Clock	
Speed

Where	are	our
10	GHz	CPUs?



Quad-Core	Processor

(CNET	2011)

4	GHz	× 4	=	16	GHz
… right?



Core	0 Core	1 Core	2 Core	3

Time

Thread	A
Thread	B

Thread	C

Thread	D

Thread	E

Thread	F Thread	G

Multi-Threading	(on	multiple	cores)



Core	0

Time

Thread	A

Thread	B

Thread	A

Thread	B

Thread	A

Thread	C

Thread	B

Thread	A

Thread	C

Multi-Threading	(time-slicing)

When	there	are	more	threads	than	cores:

The	instructions	are	interleaved

Good	for	background	garbage	collection	(GC)
and	responsive	GUIs



Java	Threads



public class MyTask extends Thread {
public void run() {

// your task here
}

}

Thread a = new MyTask();

Insert	meaningful	class	name	here

Insert	meaningful	instance	name	here



public class MyTask extends Thread {
public void run() {

// your task here
}

}

Thread a = new MyTask();

a.run();

Invokes	run()	on	the	current	thread.



public class MyTask extends Thread {
public void run() {

// your task here
}

}

Thread a = new MyTask();

a.start();



NEW

RUNNABLE

RUNNING TERMINATED

new MyTask()

a.start()

run()method
returns

Dependent	on
OS/JVM	scheduling



public class MyTask implements Runnable {
public void run() {

// your task here
}

}

Runnable r = new MyTask();
Thread a = new Thread(r);

a.start();

Alternate	
form



Sharing	Memory



Totally	independent	threads	==	separate	processes

Why?

Using	the	standard	Java	rules	for	variable	scope	/	visibility

How?



public static String name = ”Felix";

public class MyThread extends Thread {
public void run() {

System.out.println(name);
}

}

Thread a = new MyThread();

a.start();

System.out.println(name);

Accessing	name from	main	thread

Accessing	name from	thread	“a”



public class MyThread extends Thread {
private Holder holder;
public MyThread(Holder holder) {

this.holder = holder;
}
public void run() {

System.out.println(name);
}

}

Holder holder = new Holder();
Thread a = new MyThread();

a.start();

System.out.println(name);

public class Cat {
private String name;
public Cat(String name) {

this.name = name;
}
public String getName() {

return foo;
}

}

In	a	real	application,	you	
would	apply	OO	design	
principals	such	as	
encapsulation.	However,	the	
memory	semantics	are	the	
same	as	accessing	global	
variables.



String name = "Felix";

System.out.println(name);System.out.println(name);

body	of
one	thread

shared
memory

body	of
another	thread

We	will	use	this	layout	
to	hide	boilerplate	code	
for	the	purposes	of	
these	examples.



int x = 0; 

x++;x++;

Q:	What	the	value	of	x after	this	program	runs?

A:	either	1 or	2



int x = 0; 

LOAD x IN TO CPU REGISTER
INCREMENT CPU REGISTER
STORE FROM CPU REGISTER TO x

LOAD x IN TO CPU REGISTER

INCREMENT CPU REGISTER
STORE FROM CPU REGISTER TO x

x++	does	not	map	to	a	
single	CPU	instruction.



int foo = 0; 

println(foo);foo = 42;

Q:	What	does	this	program	do?

A:	prints	either	“0”	or	“42”

We	don’t	know	which	
thread	will	run	first.



int foo = 0;
boolean done = false; 

while (!done) {}
println(foo);

foo = 42;
done = true;

Q:	What	does	this	program	do?

A:	Probably prints	“42”	(maybe	“0”,	or	just	freezes)



Java	runs	exactly	code	you	told	it	to,
in	the	order	you	wrote	it.

Myth

The	compiler	/	Java	Virtual	Machine	(JVM)	/	CPU
may	alter	or	re-order	your	code

for	the	purposes	of	performance	optimization.

Reality



int foo = 0;
boolean done = false; 

while (!done) {}
println(foo);

foo = 42;
done = true;

How	might	the	optimiser	break	our	program.



int foo = 0;
boolean done = false; 

while (!done) {}
println(foo);

done = true;
foo = 42;

Nobody	will	notice	if	they	
are	re-ordered

These	two	lines	of	code	
seem	independent

How	might	the	optimiser	break	our	program.



int foo = 0;
boolean done = false; 

if (!done) {
while(true) {}

}
println(foo);

done = true;
foo = 42;

Now	we	can	avoid	the	
redundant	re-checking.

The	loop	condition	is	not	
modified	in	the	body	of	

the	loop

How	might	the	optimiser	break	our	program.



• two	or	more	threads	in	a	single	process	access	the	same	memory	location concurrently,	and
• at	least	one	of	the	accesses	is	for	writing,	and
• the	threads	are	not	using	any	exclusive	locks	to	control	their	accesses	to	that	memory.

Definition	:	Data	Race

the	order	of	accesses	is	non-deterministic,	and	the	computation	may	
give	different	results	from	run	to	run	depending	on	that	order.

Result

(Oracle)



Thread	Safety	101	:	Locks



final Object lock = new Object();

// code here

synchronized (lock) {
// critical section

}

// more code

// code here

synchronized (lock) {
// critical section

}

// more code



final Object lock = new Object();

// code here

synchronized (lock) {
// critical section

}

// more code

// code here

synchronized (lock) {
// critical section

}

// more code

Mutual
Exclusion



final Object lock = new Object();
int x = 0;

synchronized (lock) {
x++;

}

synchronized (lock) {
x++;

}

Could	be	a	larger	block	with	many	
reads	and	writes	to	shared	memory.

Mutual
Exclusion



final Object lock = new Object();

// code here

synchronized (lock) {
// critical section

}

// more code

// code here

synchronized (lock) {
// critical section

}

// more code

When	one	thread	unlocks,	
everything	above	that	point	
“happens	before”	everything	
after	a	subsequent	lock	by	
another	thread.



final Object lock = new Object();

// code here

synchronized (lock) {
// critical section

}

// more code

// code here

synchronized (lock) {
// critical section

}

// more code

We	still	don’t	know	which	block	will	execute	first.



final Object lock = new Object();

// code here

synchronized (lock) {
// critical section

}

// more code

// code here

synchronized (lock) {
// critical section

}

// more code

We	know	re-ordering	won’t	move	operations	
from	inside-to-outside	of	the	critical	section.



int foo = 0;
boolean done = false;
final Object lock = new Object(); 

synchronized (lock) {
while (!done) {}

}
println(foo);

foo = 42;
synchronized (lock) {

done = true;
}

Excludes	the	updating	thread



int foo = 0;
boolean done = false;
final Object lock = new Object(); 

boolean ready = false;
while (!ready) {

synchronized (lock) {
ready = done;

}
}
println(foo);

foo = 42;
synchronized (lock) {

done = true;
}



int foo = 0;
boolean done = false;
final Object lock = new Object(); 

synchronized (lock) {
while (!done) {

lock.wait();
}

}
println(foo);

foo = 42;
synchronized (lock) {

done = true;
lock.notify();

}



Sharing	Objects	Safely



final Foo foo = new Foo();

foo.bar(9);
int x = foo.baz();
for (Bar b : foo.bars()) {

b.qux();
}

if (foo.bing()) {
foo.bar(4);

}

Q:	Is	this	safe?

A:	Read	The	Manual!



final List<String> list = new ArrayList<>();

list.add("Java");
for (String x : list) {

println(x);
}

list.add("Hello");
list.add("World");
list.remove(0);

Why	might	
concurrent	
accesses	to	an	
object	fail?



A B C D E F null null null null

size	=	6

list.insert(3, "D");

A B C E F null null null null null

size	=	5

From	a	single-threaded	
context,	calling	a	method	
moves	an	object	from	one	valid
state	to	another	valid state.



A B C E E F null null null null

size	=	5

A B C E F null null null null null

size	=	5

A B C D E F null null null null

size	=	5

A B C D E F null null null null

size	=	6

list.insert(3, "D");

Intermediate	invalid
states	may	be	seen	
by	another	thread.



Immutable

Thread-Safe

Conditionally	Thread-Safe

Thread-Compatible

Thread-Hostile “… cannot	be	rendered	safe	to	use	
concurrently	…”

(IBM	developerWorks)

“… can	be	used	safely	in	concurrent	
environments	by	using	synchronization	
appropriately	…”

ArrayList

Vector
“… each	individual	operation	may	be	thread-
safe,	but	certain	sequences	of	operations	
may	require	external	synchronization	…”

“… class's	specification	continue	to	hold	
when	the	object	is	accessed	by	multiple	
threads	…”

“… immutable	object's	externally	visible	state	
never	changes,	… it	can	never	be	observed	to	
be	in	an	inconsistent	state	…”

String

CopyOnWriteArrayList

Different	Levels	of	Thread	Safety	for	Different	Classes



final List<String> list = new ArrayList<>();
final Object lock = new Object();

synchronized (lock) {
list.add("Java");
for (String x : list) {

println(x);
}

}

synchronized (lock) {
list.add("Hello");
list.add("World");
list.remove(0);

}

ArrayList is	thread	
compatible,	so	we	
can	use	it	with	locks.



final List<String> list = new Vector<>();

list.add("Java");
synchronized (list) {

for (String x : list) {
println(x);

}
}

list.add("Hello");
list.add("World");
list.remove(0);

According	to	the	
documentation	for	Vector,	
we	only	need	to	lock	on	
iteration.

Lock	on	the	
list	itself,	not	
another	lock.



final List<String> list
= Collections.synchronizedList(new ArrayList<>());

list.add("Java");
synchronized (list) {

for (String x : list) {
println(x);

}
}

list.add("Hello");
list.add("World");
list.remove(0);

Vector	is	an	older	(almost-deprecated)	
class.	We	can	get	the	same	conditional	
thread	safety	using	a	wrapper	on	ArrayList.



final List<String> list = new CopyOnWriteArrayList<>();

list.add("Java");
for (String x : list) {

println(x);
}

list.add("Hello");
list.add("World");
list.remove(0);

CopyOnWriteArrayList is	thread-safe.	When	you	iterate	
over	the	elements,	you	see	a	snapshot	even	if	another	
thread	modifies	concurrently.



Step	1:	Assume	it’s	not	safe.

Can	I	safely	concurrently	do	{some	operations}	with	{some	object}?	

Step	2:	Read	the	documentation.



Concurrency	Utilities



final Random rnd = new Random();

double y = rnd.nextDouble();double x = rnd.nextDouble();

Is	it	safe	to	concurrently	
use	the	default	random	
number	generator?



final Random rnd = new Random();

double y = rnd.nextDouble();double x = rnd.nextDouble();

This	is	thread-
safe.	By	why?	
Let’s	look	inside	
the	class.



long seed = initialize();

protected long next() {
seed = f(seed);
return g(seed);

}

This	is	the	general	
structure	of	a	
random	number	
generator.



long seed = initialize();

protected long next() {
seed = f(seed);
return g(seed);

}

Read	followed	by	a	write!
Not	atomic!

Another	read	could	
modify	the	seed	
after	we	read	by	
before	we	write.	
This	is	a	data	race.



long seed = initialize();
final Object lock = new Object();

protected long next() {
synchronized (lock) {

seed = f(seed);
}
return g(seed);

}
A	second	read,	another	
thread	may	update	first!

Another	thread	
could	modify	
before	we	read	
again.	Another	
data	race.



long seed = initialize();
final Object lock = new Object();

protected long next() {
long next;
synchronized (lock) {

next = f(seed);
seed = next;

}
return g(next);

}

This	is	how	Java’s	Random 
actually	worked	in	1.0*

*Technically	not	line-for-line.	Actually	the	whole	
method	was	locked,	but	this	shows	a	lock	
around	the	critical	section	only.



store	
succeeded

store	
failed

read	seed

compute	next = f(seed)

store	next to	seed

Cr
iti
ca
l	S
ec
tio

n

AQUIRE	LOCK

RELEASE	LOCK

compute	g(next)

read	seed

compute	next = f(seed)

CAS	next to	seed

compute	g(next)

“Pessimistic” “Optimistic”



final AtomicLong seed = new AtomicLong(initialize());

protected long next() {
long current, next;
do {

current = seed.get();
next = f(current);

} while (!seed.compareAndSet(current, next))
return g(next);

}

We	can	do	this	
optimistically	with	a	
compare-and-set	
operation.



final AtomicLong seed = new AtomicLong(initialize());

protected long next() {
long current, next;
do {

current = seed.get();
next = f(current);

} while (!seed.compareAndSet(current, next))
return g(next);

}

Remember	the	
previous	value.



final AtomicLong seed = new AtomicLong(initialize());

protected long next() {
long current, next;
do {

current = seed.get();
next = f(current);

} while (!seed.compareAndSet(current, next))
return g(next);

}

Compute	the	
next	value.



final AtomicLong seed = new AtomicLong(initialize());

protected long next() {
long current, next;
do {

current = seed.get();
next = f(current);

} while (!seed.compareAndSet(current, next))
return g(next);

}

Update	only	if	another
thread	didn’t	get	there	first.



final AtomicLong seed = new AtomicLong(initialize());

protected long next() {
long current, next;
do {

currenat = seed.get();
next = f(current);

} while (!seed.compareAndSet(current, next))
return g(next);

}

Try	again	if	we	were	sniped	
by	another	thread.



final AtomicLong seed = new AtomicLong(initialize());

protected long next() {
long current, next;
do {

current = seed.get();
next = f(current);

} while (!seed.compareAndSet(current, next))
return g(next);

}
Continue	only	after	

we	succeed.



final AtomicLong seed = new AtomicLong(initialize());

protected long next() {
long current, next;
do {

current = seed.get();
next = f(current);

} while (!seed.compareAndSet(current, next))
return g(next);

}

This	is	how	Java’s	
Random works	now!

Compare-and-set	is	a	single	
instruction	on	your	CPU.	The	Java	JM	
uses	native	code	to	implement	this.



final Random rnd = new Random();

double x = rnd.nextDouble();

Single-threaded	program
Safe	for	multi-threading
Efficient	when	used	by	LOTS	of	threads

✓
✓
✗

If	a	lot	of	threads	are	
using	the	random	
number	generator	
often,	threads	will	spin	
around	the	loop	often.



double x = ThreadLocalRandom.current().nextDouble();

Single-threaded	program
Safe	for	multi-threading
Efficient	when	used	by	LOTS	of	threads

✓
✓
✓

ThreadLocalRandom generates	a	new	
Random	for	each	thread.	This	is	an	example	
of	thread-isolation.

ThreadLocalRandom uses	the	class	
ThreadLocal,	which	can	be	used	to	
generate	isolated	instances	of	
classes	for	different	threads.



final AtomicLong x = new AtomicLong();

x.getAndIncrement();x.getAndIncrement();

We	can	replace	locks	
around	x++	with	CAS.



Map<String, Cat> cats = new HashMap<>();

synchronized (cats) {

for (String name : cats.keySet() {

println(name);

}

}

String name = "Mittens";

synchronized (cats) {

if (!cats.containsKey(name)) {

cats.put(name, new Cat());

}

} What	if	we	are	doing	
more	complex	
operations?



ConcurrentMap<String, Cat> cats = new ConcurrentHashMap<>();

for (String name : cats.keySet() {

println(name);

}

String name = "Mittens";

cats.putIfAbsent(name, new Cat());

ConcurrentMap
implementations	
provide	atomic	
conditional	operations.

Iterating	over	a	
ConcurrentMap will	
show	a	snapshot	of	
the	map.



java.util.concurrent

LinkedBlockingDeque

ConcurrentHashMap

ArrayBlockingQueue

ConcurrentSkipList

CopyOnWriteArrayList

...

ReentrantLock

ReentrantReadWriteLock

Condition

AtomicInteger

AtomicReference

DoubleAccumulator

java.util.concurrent.locks

java.util.concurrent.atomic

...

...

Check	out	the	concurrency	utilities	for	
concurrent	collections,	explicit	locks,	
and	atomics.



Finally



Things	to	Remember

Watch	out	for	data	races

Use	locks	for	safe	sharing	of	memory

Read	the	manual	for	sharing	objects

Use	concurrency	utilities	to	cut	down	on	the	need	for	client-side	locking



In	a	Future	Talk	…

Functional	programming	in	Java

Abstracting	away	manual	thread	creation

Queuing	work	to	be	processed	in	the	background

Processing	data	in	highly	parallel	workflows



Further	Reading

“Java	Concurrency	in	Practice”	(Goetz)	covers	a	lot	of	
practical	advice	for	writing	thread-safe	code	in	Java.



Side	References

(Sutter	2009)
http://www.gotw.ca/publications/concurrency-ddj.htm

(CNET	2011)
https://www.cnet.com/news/what-became-of-multi-core-programming-problems/

(Oracle)
https://docs.oracle.com/cd/E19205-01/820-0619/geojs/index.html

(IBM	developerWorks)
https://www.ibm.com/developerworks/library/j-jtp09263/index.html



@javaxnerd

leechristie.com

lee@leechristie.com

Thank	You


