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A B S T R A C T

Brain Computer Interfaces (BCI) are a domain of hardware/software in which a

user can interact with a machine without the need for motor activity, commu-

nicating instead via signals generated by the nervous system. These interfaces

provide life-altering benefits to users, and refinement will both allow their ap-

plication to a much wider variety of disabilities, and increase their practicality.

The primary method of acquiring these signals is Electroencephalography (EEG).

This technique is susceptible to a variety of different sources of noise, which

compounds the inherent problems in BCI training data: large dimensionality,

low numbers of samples, and non-stationarity between users and recording

sessions. Feature Selection and Transfer Learning have been used to overcome

these problems, but they fail to account for several characteristics of BCI. This

thesis extends both of these approaches by the use of Search-based algorithms.

Feature Selection techniques, known as Wrappers use ‘black box’ evaluation

of feature subsets, leading to higher classification accuracies than ranking

methods known as Filters. However, Wrappers are more computationally

expensive, and are prone to over-fitting to training data. In this thesis, we

applied Iterated Local Search (ILS) to the BCI field for the first time in literature,

and demonstrated competitive results with state-of-the-art methods such as

Least Absolute Shrinkage and Selection Operator and Genetic Algorithms. We

then developed ILS variants with guided perturbation operators. Linkage was

used to develop a multivariate metric, Intrasolution Linkage. This takes into

account pair-wise dependencies of features with the label, in the context of the

solution. Intrasolution Linkage was then integrated into two ILS variants. The

Intrasolution Linkage Score was discovered to have a stronger correlation with

the solutions predictive accuracy on unseen data than Cross Validation Error

(CVE) on the training set, the typical approach to feature subset evaluation.

Mutual Information was used to create Minimum Redundancy Maximum Rel-

evance Iterated Local Search (MRMR-ILS). In this algorithm, the perturbation
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operator was guided using an existing Mutual Information measure, and

compared with current Filter and Wrapper methods. It was found to achieve

generally lower CVE rates and higher predictive accuracy on unseen data than

existing algorithms. It was also noted that solutions found by the MRMR-ILS

provided CVE rates that had a stronger correlation with the accuracy on

unseen data than solutions found by other algorithms. We suggest that this

may be due to the guided perturbation leading to solutions that are richer in

Mutual Information.

Feature Selection reduces computational demands and can increase the

accuracy of our desired models, as evidenced in this thesis. However, limited

quantities of training samples restricts these models, and greatly reduces

their generalisability. For this reason, utilisation of data from a wide range of

users is an ideal solution. Due to the differences in neural structures between

users, creating adequate models is difficult. We adopted an existing state-

of-the-art ensemble technique Ensemble Learning Generic Information (ELGI),

and developed an initial optimisation phase. This involved using search to

transplant instances between user subsets to increase the generalisability of

each subset, before combination in the ELGI. We termed this Evolved Ensemble

Learning Generic Information (eELGI). The eELGI achieved higher accuracy than

user-specific BCI models, across all eight users. Optimisation of the training

dataset allowed smaller training sets to be used, offered protection against

neural drift, and created models that performed similarly across participants,

regardless of neural impairment.

Through the introduction and hybridisation of search based algorithms

to several problems in BCI we have been able to show improvements in

modelling accuracy and efficiency. Ultimately, this represents a step towards

more practical BCI systems that will provide life altering benefits to users.
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1
I N T R O D U C T I O N

In this thesis we present our research on search techniques for improving the

effectiveness of training datasets in Brain Computer Interface applications.

We introduce intelligent operators that are effective in Feature Selection, and

improve the performance of systems trained on a population of users (Instance

Transferral). We begin by introducing BCI and the problems needing to be

addressed in this challenging area, then move on to the possible solutions,

before introducing the contributions of this thesis.

1.1 the need for bci

Brain Computer Interfaces (otherwise known as Brain Machine Interfaces) are a

domain of hardware/software in which a user can interact with a machine

without the need for motor activity [185], communicating instead via signals

generated by the nervous system. In real world applications, this interface sup-

ports users in controlling artificial limbs, underpins assisted communication

devices, administering psychological treatments, and finds use in recreational

applications [19]. If a method of accurately measuring the structures and be-

haviours of the brain can be devised, a new horizon in science will open to us:

from replacing missing limbs, to augmenting what is already there. However,

this is far from a trivial task.

The brain is an exceptionally complex organ with a large degree of plasticity.

This means that simple, catch-all models for predicting signals are all but

impossible, and we must customise the models for each user to some degree.

This customisation can be expensive in terms of computational costs, data

requirements, and can also lead to over-fitting. For these reasons we turn to

intelligent search methods to ensure that the model is customised as accurately

and efficiently as possible using the limited data available.

2
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1.2 the bci paradigm

Figure 1.1: A simplified diagram of the Brain Computer Interface paradigm

Brain Computer Interface (BCI) applications typically seek to acquire neurological

signals and derive a discrete classification of the user’s intent. For example,

allowing a user to select onscreen prompts to control a communication device.

To achieve this, they rely on the architecture in Figure 1.1.

Signal Acquistion detects and records the neurological signals. Signal Pre-

processing removes artefacts and generates numerical representations of the

data, known as features, for creation of a predictive model. Feature Selection

selects only the most relevant features to create a model; ensuring a strong

representation of the patterns that are required for the system. Classification

involves training a model, and using it to assign classes to new, unlabelled

inputs. BCI Output can be used to control hardware or software.

1.3 problems in the data

BCI relies on signals that originate from the electrical activity in a network of

~860 billion interconnected neurons, of more than one thousand different types

[72]. Each of these individual neurons is connected to an average of seven

thousand others, resulting in an estimated total of one quadrillion connections.

Directly sampling the electrical activity of this entire network is impossible,

and even localised sampling comes at great cost.

Approaches to obtain neurological recordings can be separated into two

main groupings; invasive and non-invasive. While invasive recordings can

[ 12th May 2019 at 10:26 ]



1.3 problems in the data 4

allow exceptional spatial and temporal resolutions, they involve sub-cranial

surgery with potentially severe health risks and prohibitive financial costs

[123]. With these problems in mind, we find that the non-invasive method, Elec-

troencephalography (EEG), is the most popular method of detecting neurological

signals for BCI [129]. This technique avoids difficulties associated with invasive

methods, but introduces and exasperates others including: Signal-to-Noise

Ratios, lack of training data, non-stationarity, and increased dimensionality

[140]. Each of these problematic areas are now summarised briefly.

1.3.1 Signal to Noise Ratio

EEG involves the placement of electrodes on the scalp surface, measuring

the electrical fields of the underlying neural matter, and relaying it back to

a computer for processing. This technique has become prominent over other

more invasive methods due to its ease of maintenance, substantially safer lack

of invasive procedures, and relative low cost [186]. However, it does present

some non-trivial problems: as the electrodes that detect the electrical fields are

placed on the scalp, the signal must be powerful enough to penetrate two to

three centimetres of cranium, skin and other biological material [179]. For this

level of energy to be generated, approximately one hundred million neurons

over six square centimeters of neural matter must be active [156], resulting

in low spatial resolution, contamination of signals between electrodes, and

natural band passing of the frequencies when travelling through the skull. The

signal is further distorted by additional electrical signals being detected from

eye movements (electro-oculography), muscle movements (electromyography),

and environmental noise (for example, the 50 Hz band often consists of

electrical activity from nearby wall sockets [123]).

1.3.2 Difficulties in Collection of Training Data

User concentration is paramount to ensure that the training data acquired is

of adequate quality to create good models. Unfortunately, BCI paradigms are

often tediously repetitive tasks, resulting in the recording of large training
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sets requiring a substantial quantity of time. This results in user concentration

deterioration, and unreliable instances being introduced into our datasets

[172]. The recording sessions are also limited by the expense of the equipment,

the technician, and the user’s willingness to continue. Due to these issues, BCI

recordings contain relatively small numbers of samples, making it difficult to

create an adequate model.

1.3.3 Non-Stationarity

One of the key issues in BCI is that the signals are non-stationary: neural

patterns not only differ between users, but are also subject to temporal drift;

where patterns within data obtained from a single user change drastically over

time [80]. Zero Training systems, trained exclusively on users from previous

sessions, are an ideal goal; however, this non-stationarity means highly accurate

Zero Training systems may not be possible. Consequently, focus must be placed

on minimising the user-specific training information required by maximising

the effectiveness of the data available.

1.3.4 Curse of Dimensionality

In recent years, new types of recording equipment have been developed and

significant increases in electrode densities have been attained. However, these

further exasperate the already considerable computational load by increasing

the dimensionality of the signals, and adding additional inconvenience and

expense to the end user. In EEG for example, it is recommended that the

sampling rate be approximately three times higher than the upper limit of

the filter e.g. 70 Hz requiring no less than 200 samples per second [162]. As

32-256 channel devices are commonly used, in excess of 50,000 samples per

second are to be expected which inevitably proves to be very computationally

expensive. Advances in another recording technique known as intercellular

recording, have doubled the number of recordable neurons every seven years

since the 1950s [165], and suffers the additional issue of limited bandwidth.
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1.4 possible solutions

Ideally, a portable BCI should be created that allows maximum degrees of

control over peripherals while still maintaining a functional response time [96].

To achieve this, we must increase the Signal to Noise Ratio, while decreasing

the volume of data presented to the classifier to ensure that it can respond

quickly [20]. Feature Selection has been demonstrated to be an effective solu-

tion to this problem: Rejecting a substantive portion of the data can not only

lower the computation requirements, but can also increase predictive accuracy

[112, 145] and potentially allows additional classes to be included, increasing

the Degrees Of Freedom for the user [52].

The high dimensional nature of BCI data is further complicated by the small

number of training instances available, sometimes known as the ‘large p, small

n’ problem [34]. While Feature Selection reduces this problem, additional

instances are sometimes necessary. Transfer Learning allows knowledge to be

taken from prior participants for the purpose of developing future models [80].

However, variations between different users can cause poorly fitted models,

which can be overcome through Instance Transfer [180]. This optimisation of

weights and movement of data is non-trivial and exceedingly difficult due

to the aforementioned issues. The resulting large and complex search spaces

mean that Search-based algorithms for use in Feature Selection and Transfer

Learning are a critical area of research in BCI.

In summary, Brain Computer Interfaces provide the worst-case-scenario

for machine learning: high dimensionality, low numbers of training samples,

low signal-to-noise ratios, non-stationary sources, and cross-contamination

between vectors. We can use search based techniques to address these prob-

lems. Feature Selection involves obtaining near optimal feature subsets to reduce

the dimensionality of the data, thus decreasing the training and prediction

time costs, creating simpler models, and increasing the predictive accuracy

[190]. Instance Selection allows detection of relevant, participant independent

instances to train models for new patients, reducing calibration times, financial

expense, and user distress.

[ 12th May 2019 at 10:26 ]



1.5 contributions of this thesis 7

Specifically, we ask the following questions;

RQ1 Can existing feature selection methods be improved upon by integration

of additional measures of solution subset relevance?

RQ2 Do solutions found by algorithms that include these measures better

generalise to new, unseen data?

RQ3 Can datasets from prior users be better utilised to improve models for

new users? Specifically, can they be used to: (i) reduce the training data

required; (ii) increase predictive accuracy; (iii) mitigate difficulties in

interpreting user-input with neurological damage; and (iv) mitigate the

effects of temporal drift.

1.5 contributions of this thesis

The primary focus of this thesis is to improve search techniques for Feature

Selection and Instance Transfer for EEG data in Brain Computer Interface

applications. The overall contribution will be the utilisation of Information

Theory based metrics, Linkage information, and classifier accuracy to obtain

more generalisable feature subsets, and optimisation of data subsets between

users for creation of ensemble methods. This is divided into the following

more specific contributions:

1. An exploration of search methodologies for Feature Selection on Brain

Computer Interface datasets. We have shown that Wrapper methods

typically find higher quality feature subsets than Filters, giving further

support to results found in literature. Iterated Local Search (ILS) was

applied to the BCI field for the first time, and demonstrated to perform

comparably with more computationally expensive techniques such as

Genetic Algorithms, and the state-of-the-art embedded method: LASSO;

2. Intelligent operators were developed to account for feature interaction

within the search space. Linkage Information and Information Theory based

metrics were used to guide the permutation operators in ILS, with the

aim of increasing the predictive accuracy of models on unseen data;
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3. An investigation into effective fitness measurements for the generalis-

ability of optimal feature subsets. A common measure of solution quality

in Wrapper approaches is Cross-validation error rates achieved from

training data. However, we show that it is a poor indicator of solution

improvement when the model becomes over-fitted. Metrics, such as our

Intrasolution Linkage Score, may provide better indications of a subset’s

generalisability to new data. This effect may also be mitigated by includ-

ing additional metrics in the search process, as demonstrated by our

algorithm, Minimum Redundancy Maximum Relevance Iterated Local Search

(MRMR-ILS);

4. A new method of optimising datasets for creating ensembles. BCI ap-

plications typically have small datasets with high dimensionality. While

Feature Selection can reduce this dimensionality, limited sample numbers

are still an issue when trying to create an adequate model. A state-of-

the-art method known as Ensemble Learning Generic Information (ELGI)

creates an ensemble of models based on recombining the current user,

with data from past users. We have developed a technique for the op-

timisation of the datasets used in this process. Using a local search to

perform instance transfer, we were able to increase the generalisibility

of the dataset, before recombination with user-specific data. We called

this Evolved Ensemble Learning Generic Information (eELGI). We found that

this technique created models that were able to achieve higher predictive

accuracies even when we reduced the quantity of user-specific data avail-

able. Further improvements were seen in the models resistance to neural

drift: over time, a user’s neural patterns change, rendering well fitting

past models ineffective. Using our technique, we find that BCI systems

remain much more effective over the dataset’s two week period.
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1.6 structure of this thesis

This thesis is structured in the following manner:

Chapter 2 - Background gives a detailed overview of Brain Computer Interfaces.

It first begins with the biological origin of neurological signals, and how

they can be detected for use in BCI. The methods which can be used to

elicit signals for identification are then discussed. Preprocessing methods

are then explained, and an overview of different classification methods is

given.

Chapter 3 - Literature discusses publications concerning the optimisation of

BCI data. Feature Selection is first discussed in terms of Filter, Wrapper and

Embedded methods, after which Hybrid methods are introduced. Transfer

Learning methods are then discussed, with focus given to the use of

Ensembles in BCI.

Chapter 4 - Methodology gives details on the Datasets, Preprocessing, and Fea-

ture Extraction methods used in this thesis. This is followed by parameter

descriptions including Solution Size, Fitness Functions and Tools used.

Chapter 5 - Linkage provides our first contribution chapter. In this, we

provide a preliminary exploration of different Wrapper methods, and

discuss indications of feature interactions. Linkage-aware operators and

metrics are then developed, followed by further preliminary testing. Our

first Iterated Local Search variants are introduced, in the form of a

Linkage-aware ILS. These are then evaluated and discussed.

Chapter 6 - Mutual Information describes a well established Information

Theory-based Filter, Minimum Redundancy Maximum Relevance (mRMR),

in terms of Entropy and Mutual Information. We then describe our ILS

variant Minimum Redundancy Maximum Relevance Iterated Local Search

(MRMR-ILS). Following this, the methodology is detailed, and experi-

mental results comparing it against existing Filter and Wrapper methods

presented. Conclusions are then drawn.
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Chapter 7 - Instance Transfer begins by discussing transfer learning in BCI,

with focus on the use of Ensembles. The state-of-the-art approach En-

semble Learning Generic Information (ELGI) is described. A methodology

for experimentation and a detailed description of our optimisation ap-

proach, Evolved Ensemble Learning Generic Information (eELGI), is given.

Experimental results are then presented and discussed.

Chapter 8 - Summary and Conclusions give an overview of this thesis. The

motivation for Brain Computer Interfaces is given, followed by problems

in their implementation. We then offer our contributions, before explicitly

stating them. A general conclusion is then given to demonstrate how our

contributions directly address the problems in the field, followed by real

world impacts of these advancements. The thesis is then concluded in a

summary with suggestions for future work.
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2
C H A P T E R 2 - B A C K G R O U N D

In order to establish the challenges facing BCI systems, we will first con-

sider the Biological origins of the signals in Section 2.1, and the manner in

which they are measured (Section 2.2). Non-Invasive BCI systems rely on

paradigms to modulate these signals, which are desribed in Section 2.3. Details

of Preprocessing techniques (Section 2.4) and initial Dimensionality Reduction

through Feature Extraction are then given (Section 2.5). Finally, a description

of Classifiers common in BCI are given (Section 2.6).

2.1 biology

Complex sequences of signals have been observed originating from a single

cell in invertebrates, but it appears that behaviour in higher vertebrates is

always governed by a larger number of processes [79]. At the heart of these

processes in the human brain is a network of ∼860 billion interconnected

neurons, of over one thousand different types [72]. Each neuron is connected

to an average of seven thousand others, resulting in an estimated total of one

quadrillion connections [9]. While the connections are arranged in only a few

common structures, these still allow for great complexity. With so many sources

of information, recording individual neurons (intracellular recordings) is an

impracticality. We are therefore faced with methods which listen to populations

of neurons (intercellular) by application of electrodes. The following section

describes the biological source of neural signals.

2.1.1 Neurons

Firstly, it is important that we describe the structure, variety, and processes

of neurons as variations in these factors introduce a great deal of complexity

12
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into neural decoding. While there are two main classifications of nerve cells,

the information desired to convey ‘intent’ for BCI is carried through the

neurons [75]. The number of connections to and from each neuron greatly

varies between neuron types; motor neurons in the spine can have around

ten thousand contacts while a neuron within the brain itself can exceed one

million contacts [79].

As seen in Figure 2.1, a nerve cell can be divided into 4 main morphological

regions; the body, dendrites, axon, and presynaptic terminals. The cell body is

typically oval in shape, receiving input signals from a number of thread-like

dendrites, and passing on its signal down the axon, a channel, often wrapped

in a lipid sheath (myelin), that branches into terminals that end in enlarged tips

known as buttons. These buttons are in close proximity with the post-synaptic

(signal-receiving) cell, separated by a very small space known as the synaptic

cleft.

Figure 2.1: An example of a typical presynaptic (signal generating) neuron with its

synapses making contact with a postsynaptic (signal receiving) cell [173].

2.1.2 Signal Transmission

The process for signal transmission in all nerve cells follows a similar proced-

ure; input signal, trigger signal, conducting signal, and output signal [79], each

of which generates a detectable electrical signal known as a potential. The input

signal is typically received at the dendrites, in which neurotransmitters bind to
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surface proteins and generate an electrical charge known as a ‘receptor potential’.

This potential is usually faint, decaying in a matter of millimetres [79], but

should the sum of all receptor potentials supersede the threshold at the trigger

zone, a larger electrical potential, known as an action potential is generated.

The action potential is then carried down the axon.At the end of the axon,

this signal triggers the release of neurotransmitters which bind to the dend-

rites of the next (postsynaptic) cell, which generates a receptor potential [30].

Different behaviours are observed according to the different characteristics of

neuron categories. Beating neurons are spontaneously active, firing even when

there is no stimulation, whereas bursting neurons only fire when triggered.

In beating neurons, a synaptic potential could trigger a single or a number of

action potentials in a bursting cell, while beating neurons simply increase the

frequency of theirs [79]. As action potentials are remarkably stereotyped, it

is not uncommon for action potentials in sensory and motor neurons to be

indistinguishable. The two key features carrying information in neurons are;

quantity of fires, and their timings. The number of action potentials generated

is determined by a range of different factors, largely dependent on the type of

neuron.

2.1.3 Detectable Neural Signals

Signals are detectable variations in physical phenomena over time. In BCI,

there are two main classifications of detectable signals; hemodynamic and elec-

trophysiological. Hemodynamic responses are measured by detecting changes

in the properties of the blood circulating the neural matter [19]. Demand for

energy, in the form of glucose, is higher for active neurons, therefore we see

an increase of blood flow within millimetres of the active region. This increase

in blood flow also delivers higher levels of oxyhaemoglobin than the neurons

require, resulting in a change in the ratio of oxyhaemoglobin to deoxyhaemo-

globin [149]. As oxygenated blood is diamagnetic and the deoxygenated blood

is paramagnetic, this process can be measured by external equipment, like

that captured by Functional Magnetic Resonance Imaging in figure 2.2.
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Figure 2.2: Differing areas of activation between imagined left and right hands squeez-

ing a ball. Captured using fMRI by detecting decreases in the magnetic

properties of blood in the regions. Image adapted using figures from [167].

Electrophysiological signals in BCI are generated by the action potentials

of the firing neurons. Continuous-time signals are measurable at any point in

instant time, however for use in the BCI domain, it is common to create discrete-

time signals by sampling the continuous-time signal at set intervals. While

this sampling reduces the resolution of the signal, adequate sampling speeds

can preserve the waveform as in figure 2.3. Two of the defining properties of a

signal are their amplitude (the magnitude of the signal) and their frequency

[113].
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Figure 2.3: Diagram displaying discrete sampling of an analogue signal preserving

the waveform. The number of complete wavelengths (λ) over a given time

period (t) dictates the frequency (as this is typically measured in seconds,

the unit tends to be Hertz (Hz)

2.1.3.1 Frequency Bands

Analogue neural recordings rely largely on differentiation between 3 main

frequency bands that reflect the activities of groups of neurons.

low frequency bands: The lowest frequency band encompasses 6-13

Hz in Local Field Potentials (LFP), under 2 Hz in Electrocorticography (ECoG)

and around 67 Hz in Electroencephalography (EEG) and Magnetoencephalography

(MEG) recordings [179]. Changes within this range tend to be of limited use

for BCIs as it represents large populations of neurons and, due to its slow

frequency, only low bit rates are possible.

mid frequency bands : The next band is inclusive of both the µ and β

rhythms which are both highly correlated with actual and intended movement

[95]. In LFPs this band consists of 16-42 Hz, in ECoG it is 6-30 Hz and EEG and

MEG register it at 10-30 Hz. These frequencies are of specific interest in the field
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of BCIs for prosthetics as they appear to desynchronize in the sensorimotor

cortex when the user attempts a movement, and more interestingly, imagines

a movement; suggesting that they may provide a potential method of control

in prosthetic devices designed for users who lack muscle control [136]. While

it is generally agreed that these rhythms lack the detail needed to decipher

the directional intentions of limb movement [123], some researchers, such as

Wolpaw [185] contend this idea and have continued to adapt EEG-based BCIs

with some success including 2D cursor control.

high frequency bands: The higher frequencies that constitute the

Gamma banding are recorded as 62-87 Hz in EEG and MEG, 34-128 Hz

in ECoG, and 63-200 Hz in LFPs [179]. When observing the motor cortex, it

has been noted that there is a close correlation between the firing of individual

neurons and the gamma band during muscle contractions [51]. This would

suggest that it may provide a non-invasive source of information that is rich

enough to convey directional information and is drawing increasing interest

from the field. Unfortunately, this band is especially prone to noise artefacts

such as electromyography (electrical signals originating in the muscles) and

electrooculography (electrical signals caused by eye movements) [123].

Table 2.1: Summary of frequency bands according to each recording method

Recording Technique

LFP ECoG EEG MEG

Frequency Band (Hz)

Low 6-13 <2 67 67

Mid 16-42 6-30 10-30 10-30

High 63-200 34-128 62-87 62-87

2.1.3.2 Amplitude

Amplitude of the wave is most commonly used to observe changes in the

energy of specific bandwidths, but can be used on its own for identification of

neural activity. An example of this is the P300 wave; when a person is attentive
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to a specific stimulus, and something unexpected occurs, a spike in neural

activity is seen approximately 300 milliseconds later [118]. This is otherwise

known as the ‘oddball’ paradigm [123]. This technique is a typical example of

Peak Picking methodologies that depend on Event Related Potentials (ERPs)

and is further covered in Section 2.3.

2.2 types of bci recording

Neural data can be obtained in a number of ways, each with advantages and

disadvantages. One of the most distinguishing features that sets them apart is

the invasiveness of the technique. This section is structured according to this

premise and will begin with highly invasive methods, and move through to

non-invasive. As the techniques become less invasive, the ability to detect the

activity of individual neurons is lost and instead, reliance on the activity of

neuronal populations is required. Figure 2.4 demonstrates the level at which

each technique detects neural activity.

Figure 2.4: Recording techniques in order of invasiveness. Single and Multiple Unit

Activity (SUA and MUA) signals shown to detect discrete firing of indi-

vidual neurons, as techniques become less invasive, they rely on regions of

activity, and therefore detect analogue signals. Diagram taken from [179].
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2.2.1 Invasive Methods

Invasive methods have the benefit of being able to measure the electrophysiolo-

gical activity of the neuronal population directly, with high spatial and tem-

poral resolution, but the user must undergo invasive, expensive, and poten-

tially dangerous surgery [185].

2.2.1.1 Intracortical Electrodes

Intracortical recordings are known as fully invasive as they perforate the

neural matter using small electrodes. This approach comes with all the risks

associated with surgical intervention and brings with it the additional risk of

the user’s body rejecting the foreign object, while offering a substantially richer

level of information than that presented by extra-cranial approaches. One of the

greatest strengths of gaining this level of detail from the neurons is the ability

to match neuronal firings directly to desired movements without the need to

train users with arbitrary mental associations [179]. There are 3 variations of

intracortical methods; intra cellular, in which individual action potentials are

recorded, inter cellular, where local action potentials are recorded, and Local

Field Potentials (LFP) in which all local potentials are detected.

Intracortical recordings focus on deriving the signal of a single neuron’s

action potential via the insertion of an electrode, often within a small glass en-

closure. Allowing an axon to grow through it creates an isolated environment

due to the high resistance of the glass and provides an accurate signal with

a very high Signal-to-Noise Ratio (SNR) [179]. This form of equipment means

that only a few signals can be recorded due to size and invasiveness, but it has

been shown by Scott [157] that individual neurons in the sensorimotor cortex

can convey information such as position and velocity. While intracellular re-

cordings demonstrate substantial potential, relying on data from such a small

subset of relatively random neurons has inherent restraints.

Intercellular electrodes can be used to detect the action potentials within

100 µm of the electrode tip which can be individually identified, and this is

known as the Single Unit Activity [179]. An alternative to this is to use Multi

Unit Activity; by utilising the filtered, but unsorted, higher frequency signal

[ 12th May 2019 at 10:26 ]



2.2 types of bci recording 20

and using the averaged action potentials of the local neural population, it

is possible to reduce the computational demand and also extend the viable

recording distance from the tip [29]. Using this form of signal is a relatively

new development in the field but it has already yielded interesting results

allowing three dimensional control of a robotic arm with a 91.6% degree of

accuracy [129]. With a spatial resolution of 100 µm and a temporal resolution

between 50 and 100 Hz, intercellular recordings are undoubtedly the best

candidates for a natural brain-computer interface [99].

Another extracellular recording is the local field potential (LFP). This consists

of the lower frequencies (<250/300 Hz) of the recorded data and is composed

of the local membrane currents, resulting in an analogue signal rather than the

discrete spiking signals described previously [123]. These signals tend to be

outperformed by as little as 12 SU recordings, but are much more robust due

to being less reliant on spatial stability (electrode drift is a serious hindrance

in SUAs). Two dimensional cursor control has been demonstrated using LFPs

but of greater interest is their correlation with Gamma frequencies detected

by electrocochleography (ECoG). These information rich bands are thought to

be a reflection of underlying action potentials, suggesting that LFPs actually

contain a significant level of actual neural firing data, hinting at a potentially

robust and computationally inexpensive method of BCI control [156].

Invasive methods appear to be the most likely approach for successful,

natural, and fluent BCI control but they come with serious risks. While surgery

itself risks stroke, haemorrhages and anaesthesia complications, the electrodes

are also subject to immune responses. After an electrode has been implanted,

inflammation is to be expected. This inflammation typically subsides in a

week, but chronic inflammation has been known to occur; tissue death around

the implant is a severe, but uncommon occurrence [156]. Less rarely however,

nerve cells known as glia have been observed to encase the electrode, shielding

it from the surrounding currents, effectively disabling it from further use

[89]. This is further compounded by the observed behaviour of neural circuits

migrating away from the foreign object. This currently results in the need

for periodic recalibration of the electrodes but neurotropic mediums are in

development that will encourage neural growth in the effected regions [123].
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It should be noted that, while complications are possible with this technique,

over 25,000 individuals have received such implants with few negative results

and 80% of their original functionality after one year of operation. Indeed,

there have been some cases lasting over 7 years and still retaining usable levels

of performance [44].

2.2.1.2 Electrocorticography (ECoG)

Electrocorticography is known as a minimally invasive technique; while it is

intracranial, it does not perforate the neural tissue itself and results in a low

infection potential. It is performed by removing a portion of the skull and

placing a grid of electrodes on the surface of the brain, just below the dura [75].

The recordings from this grid are very similar to that of electroencephalography

(EEG), but are not filtered by the skull. This results in a better, wider range

of frequencies (a five fold increase due to the lack of the natural low pass

filter), a significantly better spatial resolution, (24 fold due to the proximity

of the sensors to the actual neural activity), and a substantially better SNR

due to less noise from sources such as electromyography (EMG) [129]. As this

method is relatively new and requires surgical intervention, the majority of

the data currently used results from patients with severe epilepsy [75]. Using

ECoG, brain regions that trigger seizures can be identified but while some

patients have been waiting for this form of data collection, BCI researchers

were allowed to investigate. This typically results in limited session times

within a window of 4 to 5 days but long term use has been explored in

monkeys and suggests that, even after months of use, accuracy levels remain

high and no recalibration is required. Even within such short time periods, it

was demonstrated that users could gain a reasonable level on control over a

BCI, controlling multi-dimensional cursors [123]. Perhaps more notably, Chao

[37] demonstrated that asynchronous control of a prosthetic limb is possible

in monkeys. This establishes that directional information can also be acquired

from this method, and that it has a viable future, especially if methods of

implantation can be improved to utilise smaller craniotomies.
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2.2.2 Non-Invasive

To classify as a non-invasive method, the technique must not go beyond the

epidermis of the user [42] which leads to a number of inherent advantages;

primarily, the lack of need for surgical intervention, but other advantages

should not be underestimated: ease of removal, cost of equipment, ease of

replacement and maintenance, and the speed with which it can be deployed.

2.2.2.1 Magnetoencephalography (MEG)

Rather than detecting the electrical fields generated by neurons, magnetoen-

cephalography identifies the magnetic fields created by intracellular currents

in dendrites. Due to the large number of different signals being presented to

the sensors on the scalp, extensive hardware is required, and only SQUIDs (su-

perconducting quantum interference devices) are capable of the task [178]. An

inherent issue with all superconductors however, is the need for temperatures

close to absolute zero to function; creating a severe issue for BCI applications.

The resulting setup requires liquid helium, stored within a Dewar chamber

inside magnetically shielded room to protect against external sources of noise

[123] creating a non-portable and a prohibitively expensive solution. However,

even with these shortcomings, MEG still stands to provide valuable insight

into brain activity; although it is an extra cranial method that records relat-

ively large neuronal populations, it has an excellent temporal resolution of

around 1ms (comparable to intracranial electrodes), advances in multiple coil

implementations greatly increase the spatial resolution, it is less susceptible to

the filtering effect of the skull than electrical fields, and is significantly better

at detecting primary over secondary sources than EEG [163].

2.2.2.2 Functional Magnetic Resonance Imaging (FMRI)

Functional Magnetic Resonance Imaging (fMRI) detects the changes in the

magnetic properties of haemoglobin in the blood vessels surrounding the

neural tissue. When there is increased activity in an area of the brain, the

demand for oxygen also increases, causing the flow of blood containing a

high concentration of oxyhemoglobin (diamagnetic) to the area and causing
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the blood to become paramagnetic after oxygen is extracted. This has been

termed blood oxygenation level dependent (BOLD) imaging [149]. This method

shares the EEG’s lack of invasiveness and has the added advantage of an

excellent spatial resolution over the entire brain. However, this is quickly

negated by its reliance on indirect neural activity; due to this technique’s

inherent need to observe the after effects, rather than the direct action, of the

neurons, the temporal resolution suffers a delay of at least 1 to 2 seconds at

the most basic level. Eklund, Andersson, Ohlsson, Ynnerman and Knutsson

[46] implemented a real-time BCI speller using fMRI and reported correct

identifications of actions within the 87-90% region, but required in excess of

40 seconds per letter. When this delay is combined with the need for a large

piece of nonportable equipment, fMRI is unlikely to serve as a practical BCI,

but it will still prove an invaluable technique to decide where to place sensors

for other interfaces.

2.2.2.3 Near Infrared Spectroscopy (NIRS)

NIRS is an optical technique that produces intense infrared light using an

LED placed directly on the scalp. This light penetrates 1-3 cm and reflected

light is detected by a photodiode (also placed on the scalp [124]. Like fMRI,

NIRS relies on BOLD responses and varying blood flow, but does not require

a stationary patient in a shielded room. Instead, the required equipment is

comparable to EEG, but without the need for gels, which carries with it the

possibility of creating a personal BCI. As this is a relatively new technique, a

number of unresolved issues are still quite prohibitive; it is limited to the outer

cortical layer, its spatial limit is around 1 cm, low bit rate, haemodynamic

response delays, and difficulty in making a clean connection due to obstacles

like hair [123].

2.2.2.4 Electroencephalography (EEG)

EEG is the prevalent method for implementation of BCIs for a number of

reasons, but perhaps the most important comes in the form of high temporal

resolutions and its almost riskless (non-invasive) application [129]. Added to

this, the low cost of the equipment (when compared to other systems such as
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fMRI) and potential for portability [123], renders the rapid expansion of its

application in recent years unsurprising. EEG involves placing electrodes on

the scalp of the user. A minimum of 3 electrodes (more typically in the region

of 64 or 128) are required for this process; one ground, one reference and one

active stream. This is due to EEG not just merely measuring the potentials at

each pad, but the difference between them by removing the common-mode

potential [163] via comparisons with the reference signal. These electrodes are

placed in a standardised pattern known as the 10-20 system [74], which gives

a more consistent and predictable performance, further increasing the validity

of the research field.

EEG systems also have substantial downsides. One problem is that the

impedance between the scalp and the electrode must be sufficiently low to

allow the detection of a wide spectrum of wavelengths, but techniques for

reducing resistance often introduce further complication: ‘wet’ electrodes rely

on the introduction of a gel or saline solution between the contact and the

scalp. This dries out, limiting the recording time to an hour. ‘Dry’ electrodes

are in development but often rely on amplifiers which are susceptible to

environmental noise from sources such as nearby power lines [163]. One of the

greatest challenges facing EEG systems is their low signal to noise ratio, with

background noise being inherited from electrocardiography (electrical activity

of the heart, ECG), electromyography (electrical activity of the muscles, EMG),

and electrooculography (electrical activity of the eye, EOG). These issues are

further compounded by the low spatial resolution; the distance between the

neural surface and the electrodes is naturally a minimum of 2-3 cm due to

the cranium [179] which results in the detection of an ‘area’, rather than the

ability to detect the activity of individual neurons. Due to the rate of decay of

the signal power, Srinivasan [163] projected that almost 6cm2 of neural tissue

must be activated for a measurable signal to be detected, which indicates the

activity in the region of 100 million neurons [156]. This number within such

an area would suggest that EEG may lack the ability to convey the fine detail

needed for the interpretation of more natural cognitive processes, but instead

will need to rely on Evoked Related Potentials (discussed later).
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It should also be noted that the skull acts as a natural low pass filter,

resulting in detections primarily within the 5-70 Hz range, while the actual

frequency generated lies between 5 Hz and 10 kHz. The lower bandings pass

though the barrier relatively successfully, however the richer higher bands

are severely hindered, removing potentially invaluable control information

for the use of BCIs in prosthetics [123]. The actual equipment itself also

requires some refinement; set-up of the electrodes can be time consuming and

cosmetically unattractive, but companies like Neurosky are currently bringing

consumer grade EEG devices to market with a calibration time measured in

tens of seconds. These consumer products are still immature, with significantly

poorer signals than those of their lab counterparts and are currently unsuitable

for complex BCI control [57].

With these issues in mind, the practicality of an EEG-based recording sys-

tem has proven sufficiently attractive to make it, by some measure, the most

common form of BCI in research [155], and the only form to venture into the

commercial market. While it was initially believed to be limited to simple

binary controls, Wolpaw and McFarland [184] demonstrated two-dimensional

controls are possible, later to be surpassed by McFarland, Sarnacki and Wol-

paw’s achievement of three-dimensional control [117]. Other successful EEG-

BCIs include control of communication devices [76, 84, 139, 187, 188] and

restoration of movement to paralysed limbs through detection of associated

neural activity and direct stimulus of the limb [137]. This demonstrates that,

with refinement and further research, EEG-based recording devices have the

potential to fulfil the requirements of many BCI applications, but solutions to

their shortcomings must be sought.

2.2.2.5 Summary

Due to the properties of the skull, non-invasive (extracranial) BCIs will never

have access to the intricate information flows within the brain, especially

those contained within the higher frequencies. This limits the dexterity of

any potential external effector, but ease of use, application, low cost and

relative safety in comparison to invasive methods, will ensure that research

will continue in the field, and potentially into field applications. While EEG-
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Figure 2.5: Photograph of a NeuroScan 64-electrode EEG cap. Image courtesy of [50]

based BCIs are not ideal, they currently appear to be the most feasible and

attractive method of getting a product ready for commercial deployment.

2.3 non-invasive bci paradigms

As non-invasive techniques cannot pass through the skull, the cranium behaves

as a natural Low Pass filter. While this has the advantage of reducing some

noise artefacts, it also introduces others, decreases spatial resolution, and

removes higher frequencies that are potentially much richer in information

than their lower counterparts. To compensate for these disadvantages, it is

possible to observe Field potentials; the summation of potentials (e.g. axonal,

synaptic, action) in a relatively small region. While this does not necessarily

convey the same level of detail as monitoring the firing of individual neurons,

it does present observable changes. These Event Related Potentials (ERPs)

come in two forms; endogenous, internal mediation of potentials or rhythms,

and exogenous, requiring an evoked response being triggered by an external

stimulus [11]. The following section describes the methods which can be

used to create these observable changes, with particular focus given to the

paradigms used in this thesis: sensorimotor and P300 based approaches.
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2.3.1 Sensorimotor

Sensorimotor brain rhythm changes occupy the µ (8-12 Hz) and β (13-30 Hz)

bands discussed previously in Section 2.1.3.1. Observable changes in these

bandwidths are seen in relation to bodily movements, but do not require actual

movement to occur [135]. These changes consist of two modulations; event-

related desynchronisation (ERD), decreases in amplitude, and event-related

synchronisation (ERS), increases in amplitude, before and after movement. To

trigger the modulations for BCI, users are asked to imagine physical move-

ments, but this can be problematic as users will often visualise movement-

associated imagery instead, which elicits different activation patterns. To

counteract this, user training is often required [124]. Another form of sensor-

imotor BCI paradigm is Movement Related Potentials (MRP). MRPs consist of

changes in the lowest bandwidths (<8 Hz) beginning up to 1.5 seconds before

a movement. While these potentials carry directional information regarding

the movements of the user, the bit rate is very low, often requiring averaged

signals over repeated trials [179].

2.3.2 Slow Cortical Potentials (SCP)

SCPs are voltage shifts around the 1 Hz frequencies. Negative shifts represent

increased neuronal activity, while positive shifts represent a decrease, both

of which last between 300 milliseconds and several seconds [56]. As with

sensorimotor potentials, Slow Cortical Potentials have been shown to be

present in both able and less-able bodied individuals but SCP require user

training. This training can be affected by a number of factors, such as the

user’s pain levels, mental state, relationship with trainer, and even after several

months of practice, can only achieve accuracy rates within the 70-80% range

[123]. Endogenous methods are more elaborate than exogenous in that they

purposefully evoke neural reactions from stimuli, and simply measure the

responses.
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2.3.3 Visually Evoked Potentials (VEP)

Visual Evoked Potentials (VEPs) are triggered when a user is presented with

a visual stimulus, with the magnitude of the response greatly increasing if

the stimulus is brought closer to the centre of vision and additional attention

is given to it [181]. VEPs come in two primary forms: transient, and steady-

state. Transient VEPS (TVEPS) tend to appear in response to visual changes

in frequencies lower than 6 Hz, and can be triggered using flashing lights,

a brief appearance of a pattern or the reversal of an existing one [123]. The

measurement of this form of evoked potential is easily contaminated by

EMG and EOG sources, and is rarely chosen over its counterpart, Steady-

State VEPs. SSVEPs are a very common form of BCI control in the literature

due to their high SNR, and classified according to the modulation of the

stimuli presentation; time, frequency and order of stimulus presentation [123].

To control a SSVEP BCI, such as a speller, the user stares at the desired

stimulus and its frequency modulates the frequency of the response detected,

indicating the selected input. While this approach has the advantage of little

or no user training, it does require a user to give complete visual focus to a

stimulus (typically a screen) disqualifying its use as a natural BCI interface for

controlling devices such as prosthetic limbs, and inoperable for sufferers of

neuromuscular diseases that lack the ability to alter their gaze [129].

2.3.4 P300

Another common endogenous BCI control potential is the P300 response. If a

user is observing a number of stimuli flashing seemingly randomly, focusing

on one will trigger a secondary modulation in the field potential 300 milli-

seconds later. This is known as an ‘odd-ball’ response as it appears to increase

in amplitude according to how unlikely the stimulus is [123]. A problem with

this method is that the P300 response is measured relatively to the responses of

the non-attended or expected stimulus meaning that a number of stimuli must

be presented over multiple runs (with appropriate gaps between epochs to

prevent overlapping) and an average difference calculated. This substantially
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decreases the maximum bit-rate of the technique but it does not require the

user to be as attentive as SSVEPs, and also shows some success using auditory

stimuli [84]. It should be noted however, that the amplitude of this ERP ap-

pears to be directly proportional to how often it has been shown, exemplifying

the necessity to achieve reliable classifications with minimal data [119].

One of the most common applications of the P300 signal in BCI is the P300

Speller. The first account of this paradigm was in [47], in which a grid of

6x6 alphanumeric characters were displayed on screen, as seen in Figure 2.6.

A user was asked to focus on a single character, and each row and column

was flashed in a random sequence. Other variations of this technique have

been developed, including a Single Character Speller. These involve each

character being flashed alone, which requires approximately twice the time

frame for a single round of the speller. This disadvantage is offset by much

larger P300 responses, but still proves less accurate than the Row Column

paradigm initially described [59]. This may be due to a number of issues

inherent to the design of this kind of BCI; P300 responses can be missed if

stimuli are presented within 500ms of each other, and are lessened if they do

occur [147]. This effect is worsened when similar stimuli create the ‘Crowding

Effect’, making the target less novel and reducing the response[48].

Figure 2.6: Visual stimuli presented to the user in (a), where each column and row are

flashed randomly. When the column or row containing the user’s target

letter flashes, the P300 wave in (b) is observed in the signal, approximately

300 miliseconds later. Diagram taken from [148].

[ 12th May 2019 at 10:26 ]



2.4 data preprocessing 30

2.3.5 Summary

Two of the most important paradigms in non-invasive BCI are Sensorimotor

Rhythms and P300 Spellers. Sensorimotor Rhythms can be modulated by the

user, without the need for external stimulation. This renders them viable op-

tions for control of BCI devices that are intended for use in ‘passive’ activities,

such as prosthetic limbs. P300 Spellers require a user to attend a stimulus.

While a stimulus is attended, the user will be unable to accomplish other tasks,

but this method allows the user to select from a wider variety of outputs. This

results in a highly effective mode of communication. Datasets using these two

paradigms were the focus of this thesis, and are described in Section 4.1.

2.4 data preprocessing

After the signal is acquired from the brain, there are a number of simple

techniques commonly applied to reduce artefacts within the data, before

presentation to the classifier. This step is especially important when dealing

with BCI signals, as they are notoriously noisy.

2.4.1 Referencing

Electrode referencing uses an electrode in a region near to the brain, which

contains as little neural activity as possible. This allows detection of potential

sources of noise from the eyes and muscles, that can be subtracted from the

electrodes that are intended for neural recording. This electrode is referred

to as a common reference, and it is normally attached to the nose, mastoids,

or earlobes. Alternatives to this approach are average referencing (subtraction

of the average activity over all electrodes), and current source density (CSD)(a

method which involves subtracting the average summed signal from only the

electrodes that surround the one in question). These methods, especially CSD,

have been shown to increase performance in some cases. However, recordings

from non-expert users may be problematic as they require a large number of

electrodes [14] to be evenly spaced on a two dimensional plane [4].
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2.4.2 Frequency Filtering

As the skull behaves as a natural bandpass filter, frequencies of above 30 Hz

are likely to originate mainly from external sources. Due to this, it is common

practice to set a maximum bandwidth of 30 Hz, and to almost always remove

the gamma band, despite it being the richest band for motor decoding [123].

On the other hand, the lower frequencies are prone to contamination from

EOG and eye-blinks. In sensorimotor tasks, it is generally accepted that a

bandpass filter of between 8 and 30 Hz is effective to capture both the µ and

the β bands in which the desired information resides [106].

2.4.3 Normalisation

It is common for different brain regions to generate markedly different amp-

litudes, which can mislead classifiers into over weighting this aspect and failing

to discriminate between the more subtle signal dynamics. Normalisation of

the signal is common by subtraction of the mean, and division by variance [93].

This must be done with care: amplitude (particularly in P300 applications) is

often a powerful discriminatory feature.

2.4.4 Artefact Removal

Artefacts from EOG and EMG are highly problematic within BCI systems.

Removal of these is often done manually in studies within neuroscience, but

this is impossible for Brain Computer Interfaces, in which near spontaneous

classifications are required. As seen in figure 2.7, the difficulty in identifying

unwanted artefacts varies with the source. A technique known as winsorizing is

often used to remove outliers such as those caused by eye blinks. To do this, the

outliers are replaced by a value representing a predefined selected percentile

of the data. As seen in Figure 2.7, a blink is quite easily identified, but electrical

activity from muscle sources (EMG) is much more subtle. This problem comes

from EMG signals being broadband, which includes the sensorimotor bands,

β and µ. Spatial filtering (see Section 2.5.1) techniques can help to alleviate
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this problem, as EMG occurs primarily in the peripheral regions of the skull,

with the central regions generally being less affected [93].

Figure 2.7: Examples of different noise sources. (a) EEG signal with no obvious noise,

(b) blink, (c) eye movement (EOG), (d) 50 Hz interference, (e) Muscle

movement (EMG), (f) Heart beat (ECG) [16]
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2.5 types of features

Features are the underlying characteristics of a signal; sequences or simultan-

eous occurrence of which create a pattern and are indicative of an underlying

mental process. The identification of these is performed by a classifier. It has

been demonstrated that, while the raw signal is classifiable, it is of substantial

benefit to undergo an enhancement phase known as Feature Extraction [105].

Feature extraction typically creates a new search space by decomposing the

recordings in terms of time or frequency. This serves two primary purposes;

dimensionality reduction and to preserve and enhance the relevant properties

of the signal, reducing the computational demand while increasing the classi-

fication accuracy. This transformation of the data can affect the representation

of the data, change the search space, and alter the performance of different

classifiers. Extracted features are the inputs to the machine learning phase of

the BCI system.

2.5.1 Time Domain Features

Time domain features are predominantly used for BCI paradigms that relate

to temporal changes, such as P300 responses. In these cases raw signals can be

sufficient, but more complex data transforms can be performed [106].

2.5.1.1 Autoregressive Modelling (AR)

To create an AR model, a weighted linear combination is created by combining

a number of previous samples in order to predict future input samples [151]).

Features are created as the weights ai of the autoregressive parameters that

are multiplied by the signal X(t) when measured at time point t, while taking

into account a noise term (Et).

X(t) =

P∑
i=1

aiX(t− i) + Et (2.1)
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While AR models tend to provide good frequency resolutions, especially

on short samples, selection of an incorrect model order P can cause loss in

spectral detail or false spikes in the spectrum [161].

2.5.1.2 Hjorth Parameters

Hjorth parameters seek to quantify a signal at different timepoints in terms of

activity, mobility and complexity. Activity is defined as the mean power of the

signal (Equation 2.2), Mobility is defined as the mean frequency of the signal

(Equation 2.3), and Complexity is defined as the deviation from a sine wave

(Equation 2.4) [4].

Activity(X(t)) = VAR (X(t)) (2.2)

Mobility(X(t)) =

√√√√√Activity

(
dX(t)

dt

)
Activity (X(t))

(2.3)

Complexity(X(t)) =
Mobility

(
dX(t)
dt

)
Mobility (X(t))

(2.4)

This form of feature is typically seen in motor imagery paradigms, but have

been shown to be capable in emotional classifications as well [177].

2.5.2 Frequency Domain Features

To extract frequency domain features, the signal recorded at each electrode is

divided into time epochs, which is then decomposed into separate bandwidths

before processing [145]. These features are widespread in literature as they are

readily applied, quickly computed, and easily interpreted.

2.5.2.1 Bandpowers

To track changes in modulations within certain frequencies, the signal may

be bandpassed according to the band of interest. The signal should then

be squared to ensure only positive values remain, and the peaks smoothed

via low-pass filtering or integration [93]. As described in Section 2.3.1, the

frequencies of most interest in sensorimotor BCIs are within the α and β
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frequencies, but the more precise frequency within each of these bands is

user-dependent [135]. Fast Fourier Transform methods are typically more

effective when there are multiple frequency bands of interest.

2.5.2.2 Power Spectral Density (PSD)

Power Spectral Density is a feature extracted from the frequency domain most

often found in literature. This is typically estimated using an average of the

minimum and maximum densities returned by Welch’s method. To do this,

the signal is divided into segments and the following steps are then applied

[127];

For each sample n in the signal x, divide it into K overlapping sections of

length M.

xi[m] = x[m+ iD],
i = 0, ...,K− 1

m = 0, ...,M− 1

(2.5)

where iD is the data point at the start of the ith sequence. A window is then

applied to the section and a periodogram calculated.

Pi(f) =
1

NU

∣∣∣∣∣
N−1∑
n=0

w[m] · xi[m]e−j2πfm

∣∣∣∣∣
2

(2.6)

where U = 1
M

∑M−1
m=0 w[m]2 is a normalisation constant.

Finally, the spectral density can be estimated by averaging the periodograms

calculated from the K sections.

Pw(f) =
1

K

K−1∑
i=0

Pi(f) (2.7)

By overlapping these windows, it reduces the variance by averaging a

number of different periodograms [5]. As shown in Figure 2.8, PSD features

dominate the literature, especially that involving sensorimotor data. This is

due to its high success rates and proven efficiency across a number of BCI

applications [106], with Herman et al providing evidence that it is the most

robust method of feature selection for motor imagery [73].
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Figure 2.8: Review of Feature Extraction methods reported in [14]

2.5.2.3 Spatial Filtering

Spatial filtering is an especially interesting process as it can be used in a

number of ways within the BCI paradigm: as a signal preprocessing measure to

remove artefacts, feature extraction by collapsing the dimensionality of the raw

signals, or for feature selection. The following methods can be used for these

purposes.

principal component analysis (pca) Principal Component Ana-

lysis projects the data onto lower dimensions so that the variables are as

uncorrelated as possible [164]. The first principal component explains the

largest share of the variance in the dataset, with each subsequent variable

explaining the remaining variation. While this is a common approach, it is

limited to linear combinations, tends to under perform when compared with

other methods for feature selection, and is prone to detecting noise sources
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rather than the desired neurological information. That is, if the variance in a

channel is predominently explained by environmental noise, such as 60 Hz

electrical lines, it will be identified as the principle component [93].

independent component analysis (ica) ICA seeks to create stat-

istically independent variables from the signal; a more difficult task than

generating uncorrelated variables by PCA. It assumes that the recordings of

neural activity are the accumulation of different, independent processes. It

seeks to separate them as a ‘cocktail party’ problem: focusing on separate

sources of information in a noisy signal. This has been shown to be particularly

effective in identifying artefacts caused by eye activity [4].

common spatial patterns (csp) To enhance signals, an approach

often seen is Common Spatial Patterns (CSP). This technique is similar to PCA,

but takes the predictive labels and spatial information regarding electrodes into

account by calculation of a matrix in which class differences are maximised.

This results in the possibility of inverting the filtering matrix, to restrospectively

discover the physical origins of the neurological signals that best seperate the

classes [93]. This technique is very effective when dealing with sensorimotor

BCI recordings, but is subject to a number of disadvantages. Among those

disadvantages are: high sensitivity to artefacts, requirement for large numbers

of electrodes, and identical electrode placement in all samples due to the

spatial basis of the technique [4].

2.5.3 Time-Frequency Domain Features

In order to retain the advantageous information provided by both temporal

and frequency domains, time-frequency features were developed. The most

popular of these, is the Wavelet Transform.

2.5.3.1 Wavelet Transforms

Wavelet Transforms are a spectral estimation technique in which any gen-

eral function can be expressed as an infinite series of wavelets [5]. Due to
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neural recordings being non-stationary, a wavelet transform is potentially more

powerful than relying on the signal’s power alone as it allows for variable

sized time windows. This results in higher resolution in low frequencies by

using larger windows, while retaining the ability to use shorter windows for

high frequencies [111]. The two most common wavelet transform methods are

Discrete Wavelet Transform (DWT) and Wavelet Packet Transform (WPT). While

WPT provides better high frequency resolutions, the lower computational

complexity of DWT is preferred as useful EEG signals rarely exceed 60Hz

[54]. After the signal has been transformed, information such as the Relative

Wavelet Energy can be extracted and used to form the feature vectors [152].

2.5.4 Feature Vector Construction

Feature vectors are constructed in the form of a Nf x Ni matrix where Nf

is the number of features and Ni is the number of instances. Nf commonly

consists of a concatenation of features created from each electrode [76], but

concatenation of features created from different time epochs, frequency bands,

and spatial locations is possible [145]. This form of dimensionality reduction

creates two dimensional data frames for presentation to the classifier, but

draws attention to the need for further dimensionality reduction. For example,

a 64 channel EEG recording, with features extracted from 8 frequencies, results

in each sample being represented by 512 features.

2.5.5 Summary

As evidenced in Figure 4.7, Power Spectral Density is the feature most com-

monly used in literature for sensorimotor imagery BCI [14]. This is due to a

number of reasons, including their demonstrated ability to create more gen-

eralisable models [150], and their ability to preserve the distinction between

relevant frequency bands and time epochs, providing information of interest

to clinicians [166]. Three of our datasets use this paradigm, and it was there-

fore selected as our Feature Extraction technique in Chapters 5 and 6. A full

description is given in Section 4.1.5.
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2.6 classifiers

Classifiers assign a label to a set of inputs based on prior observed patterns.

In this thesis, we focus on BCI tasks in which a discrete classification of user

intent is required using supervised learning, rather than problems which

involve unsupervised learning. Thus, we are concerned with tasks that require

a specific outcome, such as typing, rather than those achieved using clustering

techniques more commonly used in diagnostic applications such as epileptic

seizure detection [17]. These patterns differ within paradigms in BCI and it is

important to make selections based on the characteristics of the problem, while

safeguarding against known pitfalls of each technique. Amongst the most

important aspects of classifier choice for BCI is the prevention of over-fitting to

the noisy, high-dimensional, and small training sets available, while retaining

the ability to detect the identifying properties of each class.

This section begins by defining a taxonomy, and then moves on to describe

linear classifiers (Fisher’s Linear Discriminate Analysis - Section 2.6.2 and Bayesian

Linear Discriminate Analysis - Section 2.6.3) . This continues onto Support Vector

Machines (Section 2.6.4) as a bridge between linear and non-linear methods,

followed by non-linear classifiers (k Nearest Neighbours - Section 2.6.5 and

Artificial Neural Networks - Section 2.6.6 ).

2.6.1 Classifier Taxonomy

For the definitions below, we assume that datasets for classification consist

of a set of input vectors X and corresponding labels Y; where X consists of

xi ∈ RD, i ∈ {1...N}, and yi ∈ {−1, 1}, C = |Y|.

Classifiers are defined by four main properties [106]:

1. Generative/Discriminative - Generative classifiers learn models for each

class, whereas discriminative classifiers discover a means of discrimina-

tion between them.

2. Static/Dynamic - Static classifiers do not take temporal information into

account for classifications, whereas dynamic classifiers can.
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3. Stable/Unstable - Stable classifiers tend towards a low level of complexity,

resulting in small variations in the training set making little difference,

whereas the performance of Unstable methods is more heavily impacted

by outliers.

4. Regularized - the complexity is controlled to prevent overfitting, and

protect against outliers.

2.6.2 Fisher’s Linear Discriminant Analysis (FLDA)

FLDA is one of the most popular classifiers in EEG BCI, largely due to its

efficiency, low complexity and general stability when presented with variations

in datasets. To perform its classifications, the LDA separates the data into

individual hyperplanes representing each class [52], and a feature vector is

labelled according to which region it appears. Similarly to PCA, it seeks to

explain the variance in the data, but is a supervised method, meaning that

it takes the class labels into account, as seen in Figure 2.9. This means that

it looks for a dimensional transformation that emphasises the differences

between classes, rather than those that emphasise the variance.

Figure 2.9: Diagrams displaying the differing intents of PCA and LDA by displaying

the indended ‘line of fit’. As seen in (a) the PCA seeks to explain the

variance in the data, but fails to separate the classes. The LDA in (b) finds

a different hyperplane than that of the PCA, encouraging a better split.

Diagram taken from [41].
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The LDA classifier can be expressed as:

g(x) = wTx+w0 (2.8)

where w is a weight vector, x is the input and w0 is a threshold. The weight

vector (w) used for projection of the dimensions onto a lower dimension can

be achieved by a number of methods, but FLDA optimises a cost function in

the form of a Rayleigh quotient [76]

J(w) =
wTSBw

wTSWw
(2.9)

where Sw is the within-class matrix:

Sw =

2∑
k=1

∑
xi∈Ck

(xi −mk)(xi −mk)
T (2.10)

and Sb is the between-class matrix:

Sb =

2∑
k=1

nck(mk −m)(mk −m)T (2.11)

where mk is the mean of class k, Ck is the training data vectors belonging

to class k, and nck is the number of instances in that class [131].

While this method tends to provide good results, it does not have the

reported accuracies of other classifiers, often chosen for its ease of use rather

than its ability. When dealing with numbers of features that exceed that

number of samples, classification accuracy is noticeably reduced [13].

2.6.3 Bayesian Linear Discriminant Analysis (BLDA)

An extension of the FLDA approach is Bayesian Linear Discriminant Analysis

(BLDA). Regularisation is used to address the primary issue with FLDA;

overfitting due to noisy, high dimensional data [191]. By using the expectation-

maximisation algorithm to optimise the hyperparameters for Bayesian Linear

Regression [88], improvements in classification have been made over the

FLDA. This renders the BLDA amongst one of the best classifiers in BCI,

and reports the best accuracies in a number of P300 speller studies [13], even

outperforming the more complex Support Vector Machine (SVM) [48]. For
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a detailed description for the implementation of BLDA for use in the P300

paradigm, see [76].

2.6.4 Support Vector Machine (SVM)

SVMs are well suited to the task of decoding neural signals for BCI as they

can detect linear and non-linear relationships between features and classes.

They perform their classifications by projecting the dataset onto a higher

dimensional space and introducing a hyperplane that maximises its distance

from the most difficult to place points either side of the decision boundary, as

shown in Figure 2.10.

This is known as the ‘margin’. Rather than offer a ‘hard decision’, a soft

margin is applied, allowing some points to be moved across the boundary to

the correct class. This regularisation helps to mitigate the effects of outliers,

to which a complex classifier such as SVM can be sensitive. To find this

hyperplane we solve the minimisation problem:

minw,b
1

2
||w||2 + c

N∑
i=1

ξi (2.12)

where ξ are slack variables that relax the constraints to create a soft margin,

and c is the regularisation parameter to control for model complexity.

SVMs are popular in BCI literature due to fast training times when com-

pared to other approaches like the multi-layer perceptrons [134], high gener-

alisation abilities, resistance to overfitting, and insensitivity to the curse-of-

dimensionality [104]. They have been shown to be particularly effective in the

classification of motor imagery data [123].
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Figure 2.10: A depiction of a Support Vector Machine (SVM). A hyperplane is dis-

covered that maximises the margin between the nearest support vectors

of each class. Diagram taken from [104].

2.6.5 k-Nearest Neighbour (KNN)

Classes typically cluster in the feature space, and k-Nearest-Neighbours ex-

ploits this to perform classifications [104]. This involves using a metric to

assess the distances between the features of an unlabelled instance, and that

of the nearest k examples from a training set. By discovering the k nearest

neighbours, misclassification due to outliers can be decreased. Each of the k

neighbours are assigned a weight according to their distance as defined by:

wi =


dk−di

dk−d1
if dk 6= d1

1 if dk = d1
(2.13)

where di is the distance to the i-th nearest neighbour from the test instance,

with d1 being the nearest, and dk being the furthest neighbour. The instances

within the class that create the largest sum of weights is predicted to be the
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test samples class. KNN is a popular classifier in many applications, but is

rarely used in BCI. As EEG tends to involve high dimenional datasets [123],

technqiues using Euclidian distance measures become inappropriate due to

the exapansion of the space [120], leading to the failure of KNN in a number

of studies [106].

2.6.6 Artificial Neural Networks (ANN)

Artificial Neural Networks are modelled on the structure of neurons in the

brain. They are widely applied as they have been shown to be highly gener-

alisable, discovering patterns that traditional statistical approaches struggle

with [123]. ANNs consist of a network of interconnected and weighted nodes,

where these weights are adjusted during the training process. A training set

is presented to the network, and depending on the output, the weights are

altered and the process repeated. This is continued until the output labels

achieve an acceptable degree of similarity to the input labels.

The most widely used ANN in BCI is the Multilayer Perceptron (MLP). An

MLP is created with an input layer, one or more hidden layers, and an output

layer of artificial neurons. A network such as this is a universal approximator,

in that, with a large enough network, any continuous function can be represen-

ted. This results in a classifier which is vulnerable to overtraining; a substantial

issue when dealing with datasets with the noisy characteristics of BCI [104].

Despite the need for expert design and regularisation, they have been applied

to binary and multiclass problems using a wide range of BCI paradigms, but

when compared with the classifiers described previously, typically achieve

lower classification accuracies [13].
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C H A P T E R 3 - L I T E R AT U R E

This chapter discusses literature relating to Feature Selection and Transfer Learn-

ing in Brain Computer Interfaces. Feature Selection algorithms are described in

order of Filters, Wrappers, Embedded, and Hybrid Methods. These sections relate

to Chapters 5 and 6. Application of Transfer Learning in BCI is then discussed

in relation to Chapter 7.

3.1 feature selection

As discussed in previous chapters, EEG data is subject to a range of noise

sources, limited quantities of training data, and substantial numbers of fea-

tures. These factors expose it to the ‘curse of dimensionality’. Reducing this

dimensionality through feature extraction is limited in that these techniques

often encompass the noise, rather than exclude it. Pruning the information

sources can be a useful alternative. By selecting only the most infomative

features computational load can be decreased [8], feature relevance increased

[60], accuracy improved [4], and the sparsity of the feature space can be greatly

reduced [130].

There are three primary divisions of feature selection techniques: Filters,

Wrappers and Embedded methods. Filters utilise a ranking method and have

no reliance on the classification stage of decoding, instead judging each in-

dividual feature on the basis of its relevance. Unlike Filters, Wrappers do

not rank features, but instead evaluate subset effectiveness by training the

classifier. This allows the classifier to serve as a ‘fitness function’ which results

in a longer training process, but since BCIs are typically trained offline, the in-

crease in classification accuracy takes precedence. Embedded methods involve

a feature selection technique incorporated into the classifier. These techniques

46
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have shown some promise in the field, but are limited, in that feature selection

and classifier selection cannot be separated.

This chapter details the current state-of-the-art techniques used in the field

of Feature Selection for Brain Computer Interfaces. It begins by describing

Filter methods, Wrapper Methods, and Embedded Methods. It then extends

into the foundation of our work; Filter-Wrapper hybrids.

3.1.1 Filters

Filter based methods rank variables according to a criterion, independently of

the chosen classifier. These performance measures are traditionally defined

within one of four categories: dependency (correlation), consistency, distance,

and information measures [190]. More details on each of the categories are

given below. The advantages of such techniques tend to be that they are

typically less computationally expensive, simpler to implement, and resulting

feature subsets are more generalisable as they are not tied to a specific classifier

[160]. That being said, they lack the ability to exploit specific characteristics of

the machine learning algorithms intended for use, and therefore rarely obtain

the highest classification accuracies.

3.1.1.1 Dependency (Correlation)

A reasonable assumption when selecting features, is that a correlation between

a feature and the class label is indicative of a ‘good’ feature. Correlation-Based

Feature Selection (CFS) was introduced in [62], where features were selected

on their correlation with the class labels, while also ensuring low correlation

with each other. This reduces redundancy in feature subsets, a known issue

in BCI feature selection [91]. Sen et al compared Fast Correlation Based Filter

(FCBF) to Minimum Redundancy Maximum Relevance (mRmR) and Fisher Score

Algorithm (FS) [158]. The authors used a two tier approach in which features

were first eliminated if they failed to reach a given threshold of correlation

with the class labels, and then redundant remaining features were removed by

evaluating their correlation with each other.
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3.1.1.2 Consistency

Consistency measures were introduced in [101] in which feature subsets

were chosen based on the distance to their Consistent State (having the same

values across instances for each class label). Ranking variables based on their

correlations with a class label can neglect interaction effects between them, a

factor that can prove important in classification tasks. Instead, Consistency of a

subset is determined by evaluating the difference between variables and their

class, being declared ‘Inconsistent’ if their only difference is the class label

[160]. In [141] a greedy Consistency based algorithm was found to increase the

accuracy of a motor-imagery BCI task while reducing the size of the feature

set, but failed to find better solutions than other Filter methods.

3.1.1.3 Distance

Distance measures focus on increasing the separability between classes [190].

A popular example is the Relief algorithm, which engages in quality estimation

of each feature based on its locality in the search space. Each instance tracks

its two nearest neighbours that are a part of the same class (nearest hit), and

are a part of a different class (nearest miss) [153]. To extend the classification

abilities of this algorithm beyond 2 classes and increase proficiency with

noisy datasets, ReliefF was developed, in which k nearest neighbours were

sought, rather than just 2. The weakness of this approach however, is that the

k value must be explored: if k = 1, noise within the data will cause reliability

issues; if k is too high, an appropriate selection will fail to occur [145]. The

performance of ReliefF in literature is somewhat inconsistent: In [91], ReliefF

was found to under perform in comparison to other filter techniques that rely

on Consistency and Information Theory, while [141] found it to perform better

than the Mutual Information based technique, mRMR.

3.1.1.4 Information Theory

Information Theory has been shown to be a promising avenue for providing rank-

ing criteria for Filter-based Feature Selection in BCI. A simple maxRel based

approach achieved higher average accuracies than the Filter Bank Common Spa-
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tial Pattern (FBCSP) Filter and FBCSP Wrapper in [61]. In emotional recognition

BCIs, [12] demonstrated that Minimum-Redundancy-Maximum-Relevance can

outperform more complex wrapper approaches such as the Genetic Algorithm-

SVM (GA-SVM) in both accuracy, and dimensionality reduction. Similarly, in

[115], minimum Redundancy Maximum Relevance Feature Selection (mRMR) was

found to be slightly better than Relief, and statistically much better than CFS,

PCA and Minimal Redundancy, achieving an increase in the region of 15% over

the unfiltered feature set.

In [143] six methods were compared: CFS, ReliefF, Consistency, mRmR, C4.5,

and a wrapper approach using a Genetic Algorithm (GA).

The most stable accuracies were found by ReliefF and mRMR; while the

highest accuracies and smallest subsets were returned by the GA. However, the

mRMR performed favourably to the other filter approaches, and not far behind

the GA. Mutual Information Best Individual Feature Selection (MIBIFS) became

popular after being used in the winning entry of Berlin BCI Competition IV

[170]. In this work, the most relevant frequency bands were selected by MIBIFS:

a simple ranking of features according to their mutual information with the

label, and selecting a predefined number. A similar technique was used in [105],

[126] , [63] , and in [49], where it was compared to the Mutual Information-

based Rough Set Reduction (MIRSR) algorithm, a technique which uses mutual

information to select highly relevant features, while using rough set theory’s

‘knowledge reduction’ to control for redundancy. In a subsequent study, [10]

used a slightly more advanced, iterative form of MIBIFS. To select salient

channels, the channel that shared the highest mutual information with the

label was selected. This channel was then concatenated with each remaining

channel, and the channel with the highest additional mutual information was

selected. This was repeated until no more increases from additional channels

was possible. A further advancement on this can be seen in [58] in which

features are added until no further increase can be found. A known issue with

this variety of approaches is that, when new features are added to the solution,

they can render earlier features redundant. To combat this, a backwards step

is implemented to remove features from the currently selected subset that can

increase the mutual information with the label (relevance). An intensive review
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and comparison of information theoretic approaches for motor-imagery is

available in [114].

3.1.2 Wrappers

Wrappers in the form of Evolutionary Algorithms (EA) have proven highly

successful in the feature selection field [27, 36]. The typical approach is to

use classifier accuracy as the fitness function: the EA begins by generating

solutions and splitting the training set into two subsets. The classifier is then

trained using the first subset, and its ability to correctly identify the labels of

the second subset is used to derive the solution quality. This gives wrappers

an advantage over filters: nuances in the data important for the classifier are

taken into account during the subset selection. This can be seen in performance

comparisons between less sophisiticated statistical dimensionality reduction

techniques performing similarly [130], while being easily outperformed by the

simplest of wrapper methods (sequential selection) [144].

3.1.2.1 Sequential Selection

Sequential selection can be implemented in two ways; Sequential Forward Search

(SFS) and Sequential Backward Search (SBS). SFS starts with one random feature,

adding another, and evaluating the new subset, accepting if it improved. SBS

starts with the entire search space, removing one feature, and evaluating,

ensuring that there has not been a significant negative impact to the solution

fitness. As the search space is often too large to attempt evaluations containing

all potential features, SBS is uncommon. One of the main problems in SFS is the

rigidity of its solutions: due to the correlations between features in the domain

discussed in this thesis, the information provided by a particularly strong

feature may be contained between several lower ranking features. That is,

after adding a larger number of features, some of the first selected may prove

redundant. SFS does not have a method of removing these redundant features.

To overcome this, a deviation of the algorithm was developed called Sequential

Forward Floating Search based on the principle Plus-L-Take-Away-R [123].

In this, each step involves removing previous features (typically at random)
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while adding to the overall feature count. Although Sequential Selection has

been demonstrated to be an effective method, it is consistently outperformed

in Feature Selection by its counterparts GA and PSO as it lacks their ability to

move around the search space and avoid becomming trapped in local optima

[145].

3.1.2.2 Particle Swarm Optimisation

As with Sequential Selection, Particle Swarm Optimisation (PSO) iteratively

attempts to find the best solution, but utilising a much more elaborate method.

In PSO, a population of candidate solutions are created called a ‘swarm’.

This ‘swarm’ consists of individuals that move throughout the search space,

eventually clustering around optima. It achieves this by having each particle

keep a record of the highest quality solution it has encountered, and through

each iteration, the particle’s trajectory is accelerated towards that point in the

search space [6]. There are a number of variations of this technique, the most

prominent being the neighbourhood version in which particles communicate

with each other, accelerating towards the best solution in the neighbourhood.

PSO has been deployed in feature reduction in a number of studies; one notable

experiment was carried out by Jin et al. [81] in which a variation known as

Discrete Particle Swarm Optimisation was used for electrode selection. In

a comparison against F-Score (a comparative technique) DPSO achieved an

additional 8% greater accuracy. Multi Objective PSO was investigated by Hasan,

Gan and Zhang [68] in a comparison against SFFS and again, a clear advantage

was found using the PSO technique with less channels being required with

only a 2% loss in accuracy. PSO has also demonstrated to be effective in

frequency selection [189] and optimisation of CSP [154].

3.1.2.3 Genetic Algorithm

Genetic Algorithms (GA) are powerful tools in optimisation problems and have

demonstrated considerable results in feature selection for BCIs [112]. An initial

population of potential solutions is (typically randomly) generated with each

solution consisting of a chain of features known as ‘genes’. After initialisation,

genetic algorithms utilise three operators; selection, crossover and mutation
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[112]. The selection operator is modelled on the principle of ‘natural selection’

in which the fittest organisms will survive to pass on their genes. This is

achieved by selecting the fittest individuals within the population via an

objective function and using their components to create the next generation.

The crossover operator then recombines the selected solutions to form the next

generation. An example of this is the selection of a single point in the solution,

and pairs of individuals swap their genes after this point. The limitation here

is that only the original randomly selected elements can be combinatorially

explored, ignoring the rest of the search space. To combat this, a mutation

operator is introduced: in Feature Selection implementations, one or more

genes in the solution are randomly selected and replaced with alternative

genes selected at random from the entire feature space. This not only widens

the scope of the exploration, but also helps prevent the algorithm becoming

trapped in local optima [124].

Genetic algorithms are one of the most popular search methods used for

Feature Selection in BCIs [145]. While they are somewhat more computation-

ally demanding, offline learning of classifiers allows us to focus on improving

accuracy at the expense of speed. During their earlier implementations, stand-

ard genetic algorithms reported results that produced classification accuracies

of around 74–76% [112] but have since been refined to produce in excess of

90% classification accuracy [134] (in two class problems, such as ‘Yes or No’

and ‘Left or Right’) on some datasets. This superior performance over filter

methods is further supported by Dias et al. [43], who reported a substantially

lower rate of classification error for GA than seen in Recursive Feature Elimin-

ation, Across-Group Variance and RELIEF, a trait that appears fairly consistent

across the literature. Further comparisons include [141], where it found smaller

subsets with higher degrees of accuracy than CFS, Relief and mRMR were

found. The substantial increase in classification accuracy obtained from genetic

algorithms has arisen largely from adapting the generalised operators to better

suit the BCI arena. Rejer [145] notes that a traditional GA will lean towards im-

proving accuracy of the classifications with the minimum number of features,

but it is often the case that a slight decrease in accuracy is acceptable when a

significant decrease in features is possible. To realise this, they modified the
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mutator function to behave in a similar fashion to SFS; preserving the GA’s

ability to explore the solution space while giving precedence to the smaller

feature sets observed in the SFFS method. This resulted in smaller relatively

consistent feature sets that markedly outperformed the state of the art LASSO

embedded method.

3.1.2.4 Memetic Algorithms

Memetic Algorithms (MA) have recently been used, and proven to be a viable

technique, in a range of feature selection problems [98]. One of the caveats with

Genetic Algorithms is that they lack a mechanism which allows exploitation

of the immediate search space surrounding the solutions in their population.

MAs have sought to overcome this by integrating a local search technique into

the overall metaheuristic. This can be achieved through a hybridised genetic

algorithm, in which a random mutation Hill Climbing search is performed on

each of the newly created offspring before returning them to the population

[28]. This technique was further compared to a GA in [55], demonstrating a

higher accuracy on NP-Hard combinatorial problems.

3.1.2.5 Iterated Local Search

Iterated Local Search (ILS) can be thought of as a nested Hill Climbing algorithm.

A local search refines a solution, before a perturbation operator moves it into

a new region of the search space. A local search is performed again, and

compared against the solution found before the perturbation, as seen in

Figure 3.1. This results in the comparison of two local optima: if the most

recent local search has found a higher quality solution than that prior to the

perturbation, it is accepted. If not, the solution found at the previous local

optimum is perturbed and local search applied again. It is important that this

perturbation is strong enough that it escapes the local basin of attraction, but

not so strong that it resembles multi-start local search [110]. Despite wide use

in other domains, ILS has not been applied to any problem within the BCI field

prior to this thesis. In [64], it was used for Feature selection on simulated and

real genomic datasets, performing comparably, or better than, state-of-the-art

methods: LASSO, elastic net and ridge. It has also been used in gene selection
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for cancer identification in [45]. In this, it was found to perform better than a

Genetic Algorithm, and produced further higher accuracies when used as the

local search mechanism for a Memetic Algorithm. Within ILS implementations

in other application domains, guiding perturbation with problem knowledge

has been found to improve performance [15, 175]. A variety of different

perturbation strategies exist in the wider literature: Population Based ILS (PILS),

in which records of previous solutions are retained to restrict the perturbation

[171]; ILS with guided mutation (ILS/GM) uses a technique similar to Estimation

of Distribution algorithms in that it takes statistical information regarding

the search space into account [194]; and µCHC which uses a micro-EA for

diversification [110].

Figure 3.1: Search path of the Iterated Local Search (ILS) Algorithm [64]

3.1.2.6 Other Evolutionary Approaches

A comprehensive literature review on other evolutionary approaches that have

been applied to Feature Selecion in BCI, such as Differential Evolution (DE),

Harmony search (HS), Invasive weed optimization (IWO), Biogeography based optim-

ization (BBO), Teaching learning based optimization (TLBO), and Non-dominated

sorting genetic algorithm-II (NSGA-II), is provided in [168].
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3.1.3 Embedded

Embedded methods involve a feature selection technique incorporated into

the classifier. These techniques have shown some promise in the field, but are

limited, by their definition, in that feature selection and classifier selection

cannot be separated [16].

3.1.3.1 Least Absolute Shrinkage and Selection Operator (LASSO)

One of the most popular embedded methods is the Least Absolute Shrinkage

and Selection Operator (LASSO). By constructing a linear model that minimises

the regression coefficients through penalising and utilising the residual sum

of squares to calculate the error, a spatial filter bank can be created [145]. This

method has been shown to be computationally less demanding than wrapper

methods, yet it still provides a strong solution with few features. However,

the standard LASSO method always includes the first and last eigenvectors,

causing overfitting due to the commonality of outliers and the non-stationary

nature of the dataset [174].

3.1.3.2 Recursive Feature Elimination

Recursive Feature Elimination (RFE) utilises the ranking procedure that is often

contained within the classifier by simply removing the feature with the lowest

ranking criterion after each run [192]. Within small training sets, RFE can

successfully remove a large proportion of the features. However, it does not

take in counter dependent features: individuals may score lowly, but together,

they may prove invaluable to the overall classification. While authors such as

Chen and Jeong [39] attempted to solve this issue with adapted RFE techniques,

it still is uncompetitive when compared with wrappers.

3.1.4 Hybrid Approaches

A relatively uncommon approach in BCI is the combination of filters and

wrappers in hybrid methods. A common form of this is a two-stage approach:

a filter method is first applied to remove the most redundant individual
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features, before a wrapper is applied to the remaining features. A variation

of this is seen in [53], where Sequential Forward Floating Search (SFFS) was

combined with mRMR by using the mutual information approach to select

a set of candidate features for addition and removal at each phase. This

reduced the computational training cost of utilising the classifier across all

the candidate features. Ant Colony Optimisation (ACO) was combined with

Differential Evolution (DE) in [86]. This technique used a mutual information

evaluation function as the Selection Measure in ACO, and evaluated each

of the ants using a Linear Discriminate classifier. This technique was also

evaluated in [85].

In other feature selection applications, hybridised approaches involving

mutual information are somewhat more prevalent. Mutual information was

used to reduce the search space in advance of running a Genetic Algorithm in

[169] and Particle Swarm Optimisation in [7]. It has also been successfully used

within memetic algorithms as a local search method to refine the solutions

found by PSO in Particle Swarm Optimisation Backwards Elimination (PSOBE)

[122] and in Genetic Algorithms [195]. A common observation, however, is that

mutual information is almost always used as a local search operator in these

cases, and to this author’s knowledge, has not been used as a diversification

mechanism prior to this thesis.

3.1.4.1 Linkage

In evolutionary algorithms, linkage is a relationship or dependency between

decision variables. As far back as 1975, Holland [77] suggested that operators

aware of linkage information might be necessary for efficient GA search. The

linkage model used by an EA can be implicit (e.g., linkage learning GA [66])

or explicit (e.g. multivariate Estimation of Distribution Algorithms [69, 109]).

Interest in approaches that explicitly make use of the linkage and the structure

that it imposes on the search space remains current, for example [25, 40, 183].

However, it has also been shown [24, 26, 70] that some aspects of linkage are

essential for fully ranking all solutions to a problem and locating the global

optima. Indeed, including such non-essential dependencies in the problem

model used by the algorithm can hamper performance [21, 100, 138]. In [71],
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a method for probing the search space for the interactions between variables

was introduced. This later became known as the Linkage Detection Algorithm. It

has previously been applied to Feature Selection [27], but not in the field of

BCI.

3.1.5 Feature Selection Summary

In summary, Feature Selection is a known and effective manner in which

classifier performance can be improved in terms of accuracy, speed, memory,

and computational requirements. Furthermore, in the field of BCI, these

advantages can materialise in the form of less equipment; thus reducing cost,

saving time, and increasing the practicality of BCI devices.

The primary divisions of Feature Selection methods are Filters and Wrappers.

Filters employ ranking measures to determine the most relevant features which

typically results in fast and deterministic feature choice. Wrapper methods

utilise stochastic techniques which require longer computational time, but are

known to find feature subsets that create better fitting models based on the

chosen classifier. The choice between Filter and Wrapper methods is often

made on practical grounds: given that the limiting factors of BCI applications

are often equipment expense and predictive accuracy, Wrapper methods are

a worthwhile investment, but caution must be exercised as over-fitting is a

known issue.

3.2 transfer learning

Another potential area for optimisation involves adding relevant data to the

training set. While Feature Selection relies on excluding data that may be det-

rimental to the classifier performance, it has been shown that selecting data

from other participants, and combining it with that of the target participant,

can enhance the predictive model [188]. In BCI, Transfer Learning allows us to

transfer knowledge gained from one patient, to another; potentially alleviating

the ‘large p, small n problem’. This problem is defined as when the dimension-
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ality p is high, and the number of samples n are low, a model can change

substantially with small fluctuations in the training sample [97].

The difficulty in using multiple participants is exemplified in the non-

stationary nature of brain signals: neural patterns not only differ between

participants, but are also subject to temporal drift, where data obtained from

a single participant changes drastically over time [80]. Zero Training systems,

trained exclusively on participants from previous sessions, are an ideal goal,

but this non-stationarity means highly accurate zero training systems may

not be possible. Consequently, we must instead focus on minimising the

participant-specific training information required by maximising the effective-

ness of the data available.

Obtaining sufficient data from an individual for the creation of an accurate

system comes with significant costs, so utilising databases from other parti-

cipants offers an attractive avenue to alleviate this burden. Transfer Learning

has been employed in a number of domains that have access to multiple

data sources, allowing inferences to be made on data from previously unseen

sources. For a more in-depth discussion of the wider field, [182] provides a

recent and thorough survey. More specifically, BCI literature typically reports

domain adaptation approaches [80], the most popular of which being Common

Spatial Patterns [18]. This involves creating a transformation of the data that

will allow a single classification rule to be applied across all instances. A much

less commonly explored approach is ‘Rule Adaptation’ [80], in which a number

of rules are created from the existing datasets, and then applied to the new

instances. Note that both cases rely upon the natural distribution of the data

as grouped by their original participant. Some attempts have been made to

group datasets by known variants such as gender [32], and others using the

information extracted from the trained models [103]; but little has been done

in regards to instance selection for each model.

3.2.1 Ensembles

One method for incorporating data from other domains is the use of ensembles.

Ensembles typically consist of an array of different classifiers trained with the

[ 12th May 2019 at 10:26 ]



3.2 transfer learning 59

same dataset. Each classifier makes predictions on a test set, and these are

collated in a voting process. This allows multiple different relationships to

be detected for the classification process, many of which may not be obvious,

even to a domain expert. Another approach is to use multiple instances of the

same classifier, trained with different initial datasets.

Ensembles have been used in a number of different BCI applications to

increase accuracy and reduce the amount of training data required for parti-

cipants. Arguably, the most well known P300-Speller ensemble is [139] in which

an ensemble of SVMs were used to reduce variability in signal inputs by

averaging classifier outputs; these, however, relied on a substantial quantity

of participant-specific data. This, like most BCI ensembles [128], used naive

partitioning in which the instances were divided by their associated labels,

whether it be by source domain or by stimuli. This proves useful for weighting

classifiers within the ensembles, allowing information regarding the appro-

priateness of each model and the test-domain to be extracted [103]. It was

demonstrated in [128] that overlapping these naive divisions can actually

increase accuracy, suggesting that having the same training data duplicated

amongst the classifiers can benefit the overall performance.

3.2.2 ELGI

In 2015, Xu et al [187] introduced the Ensemble Learning Generic Information

(ELGI) approach. Rather than using the small amount of training data to train

a classifier, or for weighting the models within a larger ensemble trained

on the data of other participants, ELGI combines the participant-dependent

data with participant-independent data to form a hybrid ensemble. This is

achieved by splitting the datasets of each existing patient within the database

into target and non-target sets. The removed missing instance class (target or

non-target) is then replaced by a copy of the corresponding class from the

participant-specific training data. This results in an ensemble consisting of

2n− 1 classifiers, where n is the number of participants within the database.

An ensemble constructed in this manner allows smaller amounts of user-

specific data to be supplemented by other users, while, to an extent, accounting
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for the non-stationarity between their neurological patterns. This was shown

to allow better generalisability between users, with high levels of accuracy,

and reduced quantities of training data.

3.3 summary

In summary, previous chapters have described the need for BCI, along with the

need to understand both the origin of the detected neurological signals, as well

as their currently problematic classification. This has lead to the development

of techniques to improve the quality of the training data including Feature

Selection and Instance Selection.

Feature Selection methods are grouped into three primary divisions: Filters,

a ranking method in which information is extracted based on the relationships

between variables; Embedded methods, which rely directly on the classifier;

and Wrappers, iteratively assessing feature subsets based on their ability to

classify the training data. Hybrids of these seek to build upon the ability

of Filter methods to detect relationships within the data, while utilising the

classifier-aware nature of Wrapper methods.

Extending on the principle that features can be selected based on their relev-

ance to improve a model, Instance Selection suggests that additional data can

be acquired from other, related sources. As with Feature Selection, detection

and assessment of the most relevant instances for models is paramount; this

has been shown to reduce the amount of user-specific training data required,

while increasing predictive accuracies. It is based on these assertions that we

hypothesise our new hybrid methods Benign and Malign Iterated Local Search,

and Minimum Redundancy Maximum Relevance Iterated Local Search to address

research questions RQ1 and RQ2. We then extend upon the motivations of

Feature Selection in response to RQ3 by developing a novel method of Instance

Selection denoted as evolved Ensemble Learning Generic Information.
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C H A P T E R 4 - E X P E R I M E N TA L S E T U P

This chapter details the experimental setup common across the forthcoming

chapters, and details the BCI case studies used in these experiments.

Each case study consists of a dataset, the paradigm used, and procedure

implemented for extracting appropriate features. We begin by describing

the experiments in terms of participants, recording equipment, paradigm

used, and preprocessing applied. The features extracted, solution size, fitness

function, and tools are then described.

4.1 datasets

The datasets provided by the Berlin Brain Computer Interface Competitions

have been some of the most prevalent in literature over the past few years. Two

of these datasets (D1 & D2) were used in this paper; Berlin BCI competition II,

datasets III and IV1. Both of these datasets have proven popular for benchmark-

ing in literature due to their challenging, but well-defined, nature. Dataset

D3 was acquired from the RIKEN Centre of Advanced Intelligence Project2. It

does not appear as frequently in literature as the competition data, but was

chosen as it is important that we explore a wider variety of state-of-the-art

benchmarks. This will improve the generality of the algorithms used, better

reflecting the diversity seen in real-world applications.

Dataset D4 was first provided in [76]. It uses a speller-like paradigm to elicit

a P300 wave. As one of the most commonly cited datasets in BCI, it provides a

structure that allows exploration of algorithm performance across different

participants and time points. The following section will describe the paradigms

used in each dataset, the conditions of their recording, pre-processing steps,

1 http://www.bbci.de/competition/ii/#datasets

2 http://www.bsp.brain.riken.jp/~qibin/homepage/Datasets.html

62
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and the features extracted.

4.1.1 Dataset D1 - Berlin BCI competition II Datasets III

Paradigm A participant was asked to imagine left and right hand movements

to control an on-screen cursor. A blank screen displayed. The first two seconds

were a resting phase, followed by an auditory signal and cross being displayed

in the centre of the screen to focus the participant’s attention for one second,

as demonstrated in Figure 4.1. The cross then became an arrow, signifying

the motor-imagery (left or right hand movements) that the participant was

required to imagine.

Recording and Preprocessing Three electrodes were placed at positions C3,

C4, and Cz (Figure 4.2), and sampled at 128Hz over a set of 280 9-second trails

with one participant. The signal was then bandpass filtered between 0.5 and

30Hz.

Data Structure There were 280 instances recorded over 7 sessions with breaks

of a only a few minutes. 140 of those instances were randomly assigned as

‘training data’, and the remaining 140 as ‘testing data’.

Figure 4.1: A timeline of the experimental paradigm used in Berlin BCI Competition

II Dataset III. Over each 9 second trial, an auditory cue was played at 2

seconds and a cross displayed to focus the participants attention (a). An

arrow then appeared onscreen (b), instructing the participant of which

hand (left or right) they were required to imagine moving.
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Figure 4.2: The electrode configuration for D1: Berlin BCI Competition II Dataset III

followed the International 10-20 System [74] and placed 3 electrodes at C3,

Cz, and C4

Table 4.1: Description of Dataset D1: Berlin BCI Competition II: Dataset III

Dataset Reference D1

Dataset Name Berlin BCI Competition II: Dataset III

Paradigm Imagined Sensorimotor

Recorded Frequencies 0.5-30Hz

Time Epochs 9

Electrode Count 3

Training Instances 140

Testing Instances 140

Recording Sessions Same Day - Randomly assigned to training/testing
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4.1.2 Dataset D2 - Berlin BCI competition II Datasets IV

Paradigm The participant was asked to sit at a computer with their hands in

a typical position at the keyboard. The participant was then allowed to press

keys at a rate of one per second, in a self-determined order.

Recording and Preprocessing A set of 28 EEG electrodes performed sampling

at 1000 Hz, band-pass filtered between 0.05 and 200 Hz, before being down-

sampled to 100 Hz. The electrodes were arranged according to the international

10/20-system with electrodes being placed on Rows F, FC, C, and CP, and O1

and O2 (Figure 4.3).

Data Structure Three sessions consisting of a one minute rest period, 6 minutes

of data collection, and a one minute rest period were recorded on a single

day. In total, 416 instances were collected: 316 of which were designated as

training, and 100 were provided, unlabelled, as testing data. This resulted in

416 instances of 500 ms, stopping 130 ms before the key-press, each labelled

with either ‘right’ or ‘left’ hand, summarised in Table 4.2.

Figure 4.3: The electrode configuration for D2: Berlin BCI Competition II Dataset IV

followed the International 10-20 System [74] and placed 28 electrodes at

Rows F, FC, C, and CP, and O1 and O2.
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Table 4.2: Description of Dataset D2: Berlin BCI Competition II: Dataset IV

Dataset Reference D2

Dataset Name Berlin BCI Competition II: Dataset IV

Paradigm Intended Sensorimotor

Recorded Frequencies 0.5-100Hz

Time Epochs 1

Electrode Count 28

Training Instances 316

Testing Instances 100

Recording Sessions Same Day - Randomly assigned to training/testing

4.1.3 Dataset D3 - Riken - Subject A

Paradigm Sessions one and two from Subject A were taken from the RIKEN

EEG Datasets homepage3. A participant was asked to sit in a chair and pay

attention to a blank screen. After 2 seconds, an arrow pointing left or right

appeared and for the following three seconds, the participant imagined the

corresponding left or right hand movements, as shown in Figure 4.4.

Recording and Preprocessing The recording was obtained via six channels,

sampled at a rate of 256Hz, which was then band-pass filtered between 2 and

30Hz (Figure 4.5).

Data Structure In total, 264 instances were recorded: session one was selected

as the training dataset with 130 trials, and the 134 trials from session two

serving as the testing data. Unlike Dataset D1, Sessions 1 and 2 are recorded

on different days, and the preceding two second rest period is not included in

the data.

3 http://www.bsp.brain.riken.jp/~qibin/homepage/Datasets.html
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Figure 4.4: A timeline of the experimental paradigm used in the Riken - Subject A

dataset. A non-recorded 2 second resting window (a) preceded a 3 second

epoch of imagined hand movement. An arrow appeared on screen during

the recording window (b) to indicate to the participant which hand to

imagine moving.

Figure 4.5: The electrode configuration for the Riken - Subject A dataset followed the

International 10-20 System [74] and placed 28 electrodes at C3, Cz, C4,

CP3, CPZ, and CP4.
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Table 4.3: Description of Dataset D3: Riken - Subject A

Dataset Reference D3

Dataset Name Riken - Subject A

Paradigm Imagined Sensorimotor

Recorded Frequencies 2-30Hz

Time Epochs 5

Electrode Count 6

Training Instances 130

Testing Instances 134

Recording Sessions Different Days: Training from Day 1,

Testing from Day 2

4.1.4 Dataset D4 - P300 Speller (Hoffman)

Paradigm This dataset was obtained from [76]. Much like the P300 speller

described in 2.3.4, a series of images were shown on a screen, but in this case,

images of objects were used instead of alphanumeric characters. These images

were: a television, telephone, lamp, door, window, and radio. After a warning

tone, the images were flashed by increasing their brightness randomly, one at

a time, and the participant counted the number of times a target object flashed.

Each flash lasted for 100ms with 300ms intervals.

Recording and Preprocessing A 32 electrode configuration was used in line

with the international 10-20 system, but a 4 electrode configuration of this

dataset was used for the purposes of increasing the challenge, and creating a

more economical and deployable BCI. This sampling frequency was 2048 Hz

and down sampled to 32 Hz. The signal was referenced against the mastoid

electrodes, and bandpassed filtered between 1-12Hz. Winsorizing was also

applied to remove noise sources, as described in Section 2.4.4.

Participants Unlike Datasets D1, D2, and D3, Dataset D4 contains multiple

participants. D4 originally included datasets from 9 participants, but Hoff-

mann et al [76] suggests that one participant’s dataset cannot be used, due
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to fluctuations in their consciousness during the recording. The dataset used

included four participants with varying neurological impairments, and four

able-bodied PhD students. Participants 1, 2 and 4 were able to speak with

some dysarthria, but participant 3 was unable to communicate verbally due to

the symptoms of late stages of amyotrophic lateral sclerosis. All four disabled

participants were wheelchair users, with limited or no control over their upper

limbs. Participants 5-8 were PhD students with no known neurological issues.

Data Structure The dataset obtained for each participant follows a common

hierarchical structure: each participant recorded 4 sessions of 6 runs. A ‘run’

is equated to 6 rounds, and a ‘round’ is the flash of all 6 images, 20 times.

The first two sessions were recorded on one day, with the following two being

recorded not more than two weeks later. This results in approximately 3240

trials for each participant, with 810 trials in each session.

Figure 4.6: Images presented in the P300 paradigm for the dataset used in [76]
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Figure 4.7: The electrode configuration for Dataset D4 followed the International 10-20

System [74] and placed 4 electrodes at Fz, Cz, Pz, and OZ

Table 4.4: Description of Dataset D4: P300 Speller (Hoffman)

Dataset Reference D4

Dataset Name P300 Speller (Hoffman)

Paradigm P300 Speller

Recorded Frequencies 1-12Hz

Time Epochs -

Electrode Count 4

Participants 9 (8 usable)

Training/Testing Instances ≈ 3240 per participant

Recording Sessions Different Days: 4 sessions over 2 weeks

4.1.5 Feature Extraction

As discussed in Section 2.5.2.2, the most common and appropriate type of

feature extraction for motor imagery-based BCI is Power Spectral Density (PSD).

As the Berlin BCI and Riken datasets (Datasets D1, D2 and D3) fall into this
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paradigm category, PSD features were extracted. In Section 2.3.1 it was shown

that the most appropriate frequency range for this is between 8 and 30 Hz.

This can be further decomposed into α and β bands, and [145] utilised a

further 5 subdivisions within each: 2 primary bandwidths of 8-13Hz (α) and

13-30Hz (β), and 5 sub-bands within each (8-9, 9-10, 10-11, 11-12, 12-13Hz and

13-17, 17-20, 20-23, 23-26, 26-30Hz). To ensure temporal features could still be

detected, signals were split into different 1 second epochs (time segments) for the

Berlin BCI Competition II Dataset III and Riken datasets (Datasets D1 and D3),

and a 0.5 second epoch for Berlin BCI Competition Dataset IV (Dataset D2).

This results in each feature representing the PSD of a single epoch, recorded

on one channel, over each of the frequency bandings.

Dataset D4 (Hoffman’s P300 Speller) is used for experimentation in Chapter

6. This dataset differs substantially from the previous as it utilises a P300

evoked potential, which renders PSD features less effective. As a BLDA classi-

fier was used, feature extraction was not necessary due to its tolerance of high

dimensionality-to-instances (large p, small n problem) datasets.

Dataset Number of Epoch Length Number of Number of Number of

Frequency Length Epochs Channels Features

Bands (seconds)

D1 12 1 9 3 324

D2 12 0.5 1 28 336

D3 12 1 3 6 216

Table 4.5: The number of features extracted from Datasets D1, D2, and D3 is determ-

ined by the number of frequency bands, number of epochs, and number of

channels (electrodes)
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4.2 size of selected feature subset

As noted in Chandrashekar and Sahin [35], there are no ideal methods to

choose the size of the subset for selection. For this reason, we based the

number of selected features, or ‘solution size’, on [145] for Dataset D1 when

using an SVM so as to be consistent with the precedent set in literature. As

there is no background literature for Datasets D2 and D3 that utilise the PSD

features extracted, preliminary exploration was required. An upper limit was

selected as 10% of the complete feature space as recommended in [82]. A

Sequential Forward Search was then performed on each dataset to determine

an appropriate number of features to seed the other algorithms.

4.3 fitness function

Fitness functions for wrappers in feature selection typically consist of k-fold

cross-validation on the training set [92]. This involves randomly splitting the

instances into k sets. One set is then designated as a test set, while the

remaining are used to train the model. The labels of this test set are recorded,

and this process is repeated for all k sets. The accuracies of all k tests are

averaged, giving the Cross Validation Error (CVE). Although some publications

determine the performance of algorithms based on the entire dataset, it is

essential that an ‘unseen’ subset of the data is withheld from the feature

selection algorithm. This is to ensure that the selected subset is generalisable

to future tasks. In the following experiments, we set k = 10, as leave-one-

out cross validation is prone to over fitting, and smaller k results in training

subsets that contain too few samples for the feature subsets being tested [146].

4.4 tools

All software was implemented in MATLAB. The experiments in Chapters

5 and 7 were performed on a machine with an Intel i7-3770 and 16GB of

memory. Experimentation in Chapter 6 was performed using the EPSRC
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funded ARCHIE-WeSt High Performance Computer (www.archie-west.ac.uk).

EPSRC grant no. EP/K000586/1.
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5
C H A P T E R 5 - L I N K A G E

5.1 introduction

While many different algorithms have been applied to the problem of feature

selection in BCI, they often assume the features are independent, lacking the

ability to exploit relationships that may exist between features. A technique

that has been useful in other Feature Selection problems has been to utilise

linkage information [27, 38, 132]. By probing the features to determine their

separate and joint contribution to fitness, we can reveal ‘linkage’ between

them. Linkage aware operators can be devised to exploit this information and

potentially increase performance.

This chapter proposes a method in which operators in evolutionary al-

gorithms can be guided using linkage to increase the classification accuracy

of EEG data. To this end, we initially compare four base algorithms: Hill

Climbing (HC), Iterated Local Search (ILS), Genetic Algorithm (GA), and

Memetic Algorithm (MA) (Section 5.2). Thereafter, linkage is incorporated into

both Hill Climbing (Section 5.3.3.1) and ILS algorithms (Section 5.3.4.2). These

techniques were applied to the dataset provided by the second Berlin BCI com-

petition, in track three (motor-imagery - Dataset D1). Potential explanations

for the behaviours observed are also explored in detail (Section 5.4).

The main contribution of this chapter is to assess the viability of guiding

metaheuristics for the feature selection phase of brain computer interfaces,

using knowledge of pairwise interactions (linkage) between features.

5.2 preliminary algorithm exploration

Information detected from pairwise interactions between variables can be

integrated into a variety of different search based algorithms. We deemed it

76
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important to verify the applicability of said algorithms within the problem field

before adopting one for further experimentation. To this end, four algorithms

were investigated: a Hill Climbing (HC), Iterated Local Search (ILS), Genetic

Algorithm (GA), and a Memetic Algorithm (MA).

5.2.1 Experimental Parameters

In this section, parameters that were used to govern the execution of the

experiments, and the algorithms within, are outlined. The dataset, classifier,

search algorithms and their parameters are defined.

Dataset: The Berlin BCI Competition II Dataset III dataset (as detailed in

Section 4.1, Dataset D1) was used for experimentation in this chapter.

Solution Representation: An integer representation was used for the solu-

tions: an array of integers of a set size, representing the selected feature vectors.

Classifier: As this dataset is based on motor-imagery, a Support Vector Ma-

chine (SVM) was used, as supported by literature in Section 2.6. 10-fold Cross

Validation using the training set was used as a fitness function. Solutions with

lower error rates were deemed to be fitter.

Search Algorithms: All runs were restricted to 100,000 evaluations of the

classifier. The following algorithms were compared:

hill climbing algorithm (hc)

• Description: A Hill Climbing algorithm is a local search algorithm in

which a solution can be subjected to a mutation, and this new mutation

evaluated. If it is deemed to have improved on the previous solution, it

is accepted as the new, current, solution.

• Mutation Operator: single point mutation

• Acceptance Criterion: first improvement
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• Iteration Limit: As each iteration requires only one evaluation of the

solution, 100,000 iterations were used.

iterated local search (ils)

• Description: An Iterated Local Search (ILS) algorithm encompasses a

local search in the form of a Hill Climbing algorithm within a larger,

exploratory search.

• Outer Perturbation ‘kick’: single point mutation

• Perturbation Operator: multi-point mutation (50% of solution)

• Mutation Operator: single point mutation

• Acceptance Criteria: first improvement

• Iteration Limit: Preliminary tests suggested that ‘kicks’ were only required

when the inner local search became stuck in a local optimum. This was

demonstrated by higher performance in experiments which used 1000

Hill Climbing iterations and 100 kicks, compared with 100 iterations and

1000 kicks. Hence, the former was selected for comparison.

genetic algorithm (ga)

• Description: A Genetic Algorithm (GA) is a population based approach

which uses selection criteria to determine the solutions which propagate

(through cross over and mutation) the next generation.

• Population Size: 20 solutions, as selected in [107], which specifically sought

to addess overfitting in wrapper-based Feature Selection. This is further

justified in reference to a GA, with a population of only 10 solutions,

returning some of the highest accuracies reported for this dataset [145].

• Population Type: A steady state model was used, with a pair of offspring

replacing the losing solutions in each tournament.

• Selection Type: Tournament Selection with a tournament size of 2.

• Crossover Operator: Random single point crossover.
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• Mutation Operator: Random single point mutation.

• Iteration Limit: only 2 runs of the classifier were needed per iteration and

therefore the GA ran for 50,000 iterations.

memetic algorithm (ma)

• Description: A Memetic Algorithm (MA) is a relation of the Genetic

Algorithm that also includes a method of local refinement. In this case, a

Hill Climbing algorithm is used for local search.

• Population Size: 20 solutions, initialised at random.

• Population Type: A steady state model was used: a pair of offspring

replacing the losing solutions in each tournament.

• Selection Type: Tournament Selection with a tournament size of 2.

• Crossover Operator: Random single point crossover.

• Mutation Operator: Random single point mutation.

• Inner Hill Climbing algorithm: Prior to child solutions being added to the

population, a Hill Climbing algorithm was applied

– Mutation Operator: single point mutation

– Acceptance Criteria: first improvement

• Iteration Limit: each child solution was subject to a 100 iteration Hill

Climbing algorithm, and with 2 children produced per generation/itera-

tion, the MA ran for 500 iterations.

5.2.2 Algorithm Performance Comparison

Preliminary tests were performed using the aforementioned algorithms, for the

purposes of selecting an appropriate algorithm for modification to exploit link-

age information. After 30 runs of each algorithm, GAs were found to produce
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consistently lower error rates, closely followed by Iterated Local Search (Figure

5.1). Despite a relatively weak configuration for the GA, it outperformed the

other algorithms in the main. This is not unexpected as an investigation into

the effects of population size demonstrated a steep improvement between 5

and 20 chromosomes [107], with a lesser improvement seen between 30 and

100, and with no improvement found in larger populations. The Hill Climbing

algorithm performed inconsistently, typically producing inferior solutions to

the other techniques.

Iterated Local Search was chosen for modification as it produces solutions

that are competitive with those of the Genetic Algorithm, but does not require

a cross-over operator which might disrupt linkage and complicate analysis.

This choice was similar to that of [64].

Figure 5.1: Box plots comparing the error rates of solutions found by each algorithm

over 30 runs.

5.2.3 Evidence of Feature Interaction

In the algorithm selection experiment, 104 solutions with an error rate of less

than 10% were found. As these are high quality solutions, they were analysed

for the strength of each feature’s contribution to the fitness in isolation. A
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plot of feature selection rates for the features, sorted by descending classifier

accuracy is shown in Figure 5.2. Given that the most predictive features were

the most commonly selected, it would suggest that individual abilities are

highly important for feature selection in this problem. However, it should be

noted that there are significant gaps in the selected feature space, suggesting

some feature linkage and that simply choosing the most predictive individual

features would be a less than optimal approach. It is this interaction (or

‘linkage’) that the work in this chapter sought to detect and exploit in the

following experiments.

Figure 5.2: Selected features according to individual predictive accuracy. Each feature

was independently tested as a single feature solution to train the classifier

and cross validation was performed. This allowed features to be ‘ranked’

according to their individual power. 104 solutions with <10% error rate

were detected in the earlier experimental phase and the occurrence of each

feature was tallied.

5.2.4 Discussion of Selected Features

As seen in Figure 5.3, the most commonly selected channel is over the left

hemisphere (C3), followed by the right (C4). The central electrode (Cz) is much

less commonly selected. This is an interesting, but again not unexpected, result

as the left-hemisphere has been shown to be especially important in motor-
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control tasks [87]. More recent studies suggest it is particularly important in

novel motor tasks, which are common in BCI paradigms [121].

Figure 5.3: Most commonly selected channels in best performing solutions found

In regards to bandwidth selection (Figure 5.4), an important observation

can be made; the α frequency band (8-13Hz, and more importantly, the lowest

frequency band (8-9Hz) were most commonly selected. This suggests that

lower, unused frequency bands, such as θ (4-7Hz) or δ (< 4Hz), may be of

interest, despite being often discarded in EEG BCI tasks [125, 144].

Figure 5.4: Most commonly selected frequency bandwidths in best performing solu-

tions found
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The most commonly selected time points are shown in Figure 5.5. The first

second after the directional arrow was displayed onscreen was rarely selected

(epoch 4); however, epochs 5 and 6 appear to contain the features richest

in information. Other notable observations are that the mental status of the

participant just before the auditory stimulus (epoch 2) appears to be of some

interest; and epoch 7 is rarely chosen.

Figure 5.5: Most commonly selected epochs in best performing solutions found

5.3 linkage integration design

Figure 5.6 displays the data flow within the Feature Selection phase of the

proposed metaheuristics with Linkage. At (1), the training data is used to

create a mapping of all pairwise linkages within the feature set, which is then

passed to the metaheuristic. The metaheuristic (2) then selects features and

performs cross-validation using the training data. The fitness returned by the

cross-validation is then used by the metaheuristic to guide the next iteration of

Feature Selection. After stopping criteria have been met, the Feature Selection

phase is ended, and the selected features at that point are passed on to be

used on the testing data (3). As this is a black box optimisation problem, the

classifier accuracy was utilised as a fitness function.
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Figure 5.6: Sequence diagram displaying the incorporation of Linkage in the Feature

Selection phase

5.3.1 Linkage Map Generation

Linkage between features was determined by applying the Linkage Detection

Algorithm [71] to the training data, which has been used in linkage-aware

Estimation of Distribution Algorithms (e.g [23] and [193]). The algorithm starts

with no features selected: the classifier accuracy fφ is determined. The accuracy

fa is calculated having selected only feature a. From this we have a change in

accuracy from the baseline δa = fa − fφ. This is then repeated to find δb when

selecting only feature b, and δab when selecting features a and b. For a pair of

features a and b, the change in classifier accuracy is measured while selecting

the two features separately δa, δb and both together δab. We have called the

difference in these changes in accuracy the Linkage Score, sab = δab − (δa + δb).

If s is non-zero, there is deemed to be linkage between the variables. This

method can be expanded to higher levels of interaction but its complexity

grows rapidly with the level of interaction.

The Linkage Score was calculated for every pair of the 324 features. Depend-

encies (linkage) were classified as benign and malign in [83]. Benign linkage is

that for which the combined change in fitness is in the same direction as the

independent changes (i.e. the signs of δa + δb and δab are the same). Malign

linkage shows a combined change in the opposite direction to the independent
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changes (i.e. the signs of δa + δb and δab are the opposite). These terms were

adopted in the following way. If a pair yields a positive Linkage Score, it

reflects an increase in error rate over the combination of the individual scores

and is deemed ‘malign’. A negative score suggests that there is a reduction in

error rate when the features are combined and is hence a ‘benign’ linkage. We

would expect a ‘good’ solution to include low levels of malign linkage, and

high levels of benign linkage. The operators were designed accordingly.

5.3.2 Linkage in Dataset D1

The Linkage Score (as described in Section 5.3.1) was calculated for all pairings

of the 324 features and is illustrated in the heat map in Figure 5.7. Heat maps

showing only benign and malign linkage scores are also provided (Figures

5.8 and 5.9). Darker regions represent strong levels of linkage, lighter regions

being weakly linked. Linkage scores were more pronounced in the broader

frequency ranges, as seen in Figure 5.7: features 1 to 27 (Frequency Band

f1) and 163 to 189 (Frequency Band f7) have clear bonds, showing that these

features are strongly linked. This was especially noticeable in the malign

linkage scores map, Figure 5.9. The information presented by these maps

was then provided to the linkage exploitation algorithms in the following

experiments.
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Figure 5.7: Linkage scores between all potential feature pairings (am,bn) extracted

from Dataset D1: Berlin BCI II Competition III Dataset. Darker points

represent stronger linkage between pairs of features. Each axis represents a

concatenation of all 324 features, with an example of the breakdown within

each feature given above. Each of the 12 frequency bands (fi) consists of the

Power Spectral Densities extracted from 9 time points (tj) simultaneously

recorded over 3 channels (ck). The lower section of the image demonstrates

the breakdown of the features within a frequency band.
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Figure 5.8: Figure 5.7 filtered to display only benign linkage

5.3.3 Linkage Integration

In order to verify the efficacy of incorporating Linkage Information in wrapper

approaches for this domain, it is necessary to perform preliminary experiment-

ation to answer two questions: “can Linkage Information be used to inform

feature subset selection?”; and “in what manner can it be most effectively

utilised?”

The first question is addressed by suggesting a greedy linkage-based search

method in Section 5.3.4.1, with the second addressed by evaluation of Linkage

incorporation methods in the following section.

For the purposes of exploring how Linkage could be utilised during the

exploitation phase of the Iterated Local Search algorithm, six Hill Climbing

algorithms were devised and tested, as described in Section 5.3.3.1. One

hundred experiments were repeated for each of the six Hill Climbing variations,

with a termination of 1000 iterations using a single point mutation.
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Figure 5.9: Figure 5.7 filtered to display only malign linkage

Each repeat experiment began by randomly generating a single solution;

all algorithms were seeded with this same solution. Each of the proposed

operators considers Linkage among the selected features in a solution, and

whether replacing a feature increases or decreases this.

5.3.3.1 Hill Climbing Algorithm with Linkage Integration

We created a range of Linkage-aware operators to incorporate into the ILS

algorithm. These were first used to create Hill Climbing algorithms in order to

determine which would be best suited for further, more intensive, exploration.

H1. Basic Hill Climbing Algorithm - A simple Hill Climbing algorithm

in which the mutation point and a replacement feature were both randomly

selected was required as a control.

H2. Selection of Mutation Point - Target Most Malign Feature Pair - All pairs of

selected features within the current solution are compared. One of the features
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in the pair that reflects the largest malign linkage score is selected at random

for deselection and replacement with another feature chosen at random.

H3. Selection of Mutation Point - Target Most Malign Feature - Both features of

the pair with the largest malign linkage score in the solution are compared

with the other selected features in the solution. The feature with the most

malign linkages is deselected and replaced with an unselected feature chosen

at random.

H4. Selection of Mutation Point - Spare the Most Benign Pair - The mutation

point is chosen at random, but the feature pair within the solution that have

the largest benign linkage score are excluded from possible mutation.

H5. Selection of Replacement - Good Mutation - A feature is chosen for deselec-

tion, and 20 features are chosen at random from the unselected features as

potential replacements. Each of these potential replacement features are paired

with the remaining solution features, and the one with the highest benign

linkage score is selected.

H6. Selection of Replacement - Best Mutation - As in the ‘Good Mutation’ con-

dition H5, but all unselected features are assessed as potential replacement

candidates.

H7. Selection of Mutation Point - Target Most Benign Feature - To ensure that the

linkage information was being used appropriately, a counter-intuitive method

which deselected the feature with the most benign linkage scores with other

selected features was also used.

5.3.4 Results and Discussion

Figure 5.10 shows boxplots for the error rates of the final solutions found by the

Hill Climbing algorithm, using the seven different mutation operators (with

and without linkage guidance - see Section 5.3.3.1). Counter-intuitively, using
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the linkage-guided mutation operators appears to hinder the performance of

the simple Hill Climbing algorithm in all conditions. Notably, operator H6

returns, by a large margin, the worst results. Two operators that produced

solutions competitive with those of the unguided algorithm (H1) were both

related to the target of the mutation operator: selecting the most benign (H7)

and most malign (H3) features from within the solution. This suggests that

feature subsets with high degrees of Linkage, albeit benign or malign, may be

harmful to the fitness of a solution. This could be explained by the additional

degrees of freedom introduced to the search via the calculation of Linkage.

Specifically, cross validation using random splits is preferable to using the

same folds, as it helps to avoid over-fitting. However, this introduces additional

variance into the fitness function via three separate CVE evaluations: when

each feature is evaluated individually, and then as a pair.

Figure 5.10: Preliminary testing of different methods of linkage guidance in Hill

Climbing algorithms

5.3.4.1 Greedy Linkage-based Feature Selection

We design two Linkage-aware algorithms to assess a greedy ranking-based ap-

proach, rather than incorporation into more costly wrapper-based algorithms.

These new algorithms take inspiration from the approaches used in Mutual

Information Feature Selection (MIFS) and Minimum Redundancy Maximum
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Algorithm 1 Greedy Linkage Feature Selection

Input: linkageRankedFeatures←

sort(summedColumns(generateLinkageMap(trainingData, labels)))

Output: Final solution is Sbest

1: Let maximumSubsetSize = 100

2: Sbest ← linkageRankedFeatures[1]

3: SbestErrorRate ← evaluteSolution(Sbest)

4: for x = 2→ maximumSubsetSize do

5: Scandidate ← linkageRankedFeatures[1..x]

6: ScandidateErrorRate ← evaluteSolution(Scandidate)

7: if (ScandidateErrorRate < SbestErrorRate) then

8: Sbest ← Scandidate

9: SbestErrorRate ← ScandidateErrorRate

10: end if

11: end for

Relevance (mRMR). As discussed in [133], Mutual Information can be used

as a metric to measure the relevance of each feature, and the highest ranking

of which can be selected as a solution subset. In our first algorithm, hereby

referred to as Greedy Linkage Feature Selection (GLFS), we replace the MI

based measure with that of Linkage Information (Section 5.3.4.1). The Linkage

Score of each feature is calculated and ranked, after which, the top n features

can be selected, or appended to a solution until a threshold fitness has been

achieved. This algorithm is presented as pseudo-code in Algorithm 1.

The second of our greedy Linkage-based algorithms is inspired by mRMR

(described in Section 6.1.3), which seeks to iteratively take into account the

relevance of features already selected, before appending another. To achieve

this we designed Maximum Linkage Feature Selection (MLFS), see Algorithm

2, where the feature with the highest Linkage Information is initially selected.

Further features are selected based on their linkage with features already in

the solution, as described by the following pseudo-code:
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Algorithm 2 Maximum Linkage Feature Selection

Input: linkageMap← generateLinkageMap(trainingData, labels)

Output: Final solution is Sbest

1: Let n = numberOfFeatures

2: Let maximumSubsetSize = 100

3: % Select Initial Feature

4: SbestLinkage ← 0

5: for i = 1→ n do

6: ScandidateLinkage ← sum(linkageMap[:, i])

7: if (ScandidateLinkage < SbestLinkage) then

8: SmaxLinkageFeatures ← i

9: SbestLinkage ← ScandidateLinkage

10: end if

11: end for

12: Sbest ← 0

13: SbestErrorRate ← evaluteSolution(SmaxLinkageFeatures)

14: % Select Additional Features

15: for x = 2→ maximumSubsetSize do

16: SbestLinkage ← 0

17: for i = 1→ n do

18: ScandidateLinkage ← sum(linkageMap[Sbest, i])

19: if (ScandidateLinkage > SbestLinkage) then

20: SbestCandidate ← i

21: SbestLinkage ← ScandidateLinkage

22: end if

23: end for

24: SmaxLinkageFeatures ← [SmaxLinkageFeaturesi]

25: ScandidateErrorRate ← evaluteSolution(SmaxLinkageFeatures)

26: if (ScandidateErrorRate < SbestErrorRate) then

27: Sbest ← SmaxLinkageFeatures

28: SbestErrorRate ← ScandidateErrorRate

29: end if

30: end for
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To ensure the integrity of the results, we select our solutions and their

parameters based on metrics obtained exclusively from the training data. For

this reason, we calculate the CVE rate for each size of solution of up to 100

features; subsequently, the solution with the smallest observed error rate is

used to determine the size of the selected subset.

Table 5.1: Comparison of Cross Validation Error Rates between Greedy Linkage al-

gorithms and Linkage-guided Hill Climbing algorithms

Algorithm H1 H2 H3 H4 H5 H6 H7 GLFS MLFS

CVE 0.1401 0.2012 0.1517 0.2484 0.2209 0.3105 0.1532 0.4206 0.3014

When compared to the seven Hill Climbing variations, the Greedy Linkage-

based algorithms produced solutions with substantially greater error rates

(GLFS: 0.4206 and MLFS: 0.3014), and are not further investigated in this

chapter. However, they have been included as a baseline for comparison in

Chapter 6.

5.3.4.2 Iterated Local Search with Linkage Integration

Iterated Local Search (ILS) is a little explored algorithm in BCI and, to our

best knowledge, has not been tested on feature selection for EEG. ILS has been

selected as it is less convoluted than other EA methods, lacking the need for

a population or cross-over, which should help emphasise the effects of the

guided mutation operator. In essence, it is a nested Hill Climbing algorithm:

In a traditional Hill Climber, a small mutation, replacing a selected feature

with an unselected one, is performed on the initial solution to create a new

potential solution. This new solution is scored via a fitness function and then

accepted if it is deemed to be ‘fitter’ than the initial solution. This process is

repeated to find increasingly optimal solutions, but can often become trapped

in local optima. In an ILS, a ‘kick’ is performed by mutating a large portion of

the solution (3 of the 6 features in this case). A Hill Climbing algorithm is then

performed on this new, heavily mutated solution, and the resulting solution

from this is then compared to the original, ‘pre-kicked’ feature set.
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Iterated Local Search was selected for modification to explore the exploit-

ation of linkage information in a more sophisticated algorithm. ILS has a

two tiered iterative structure, from which we chose to provide guidance to

the ‘kick’ function. For each selected feature in the solution, we calculate its

Mutual Linkage (ML); the mean linkage score between that feature and the

other selected features in the solution. The three features with the highest

ML were retained in the solution, and the remaining three were removed and

replaced with randomly selected features.

Two variations of this method were tested:

I1 - Benign-preservation - The ML was computed using only benign linkage

scores between features.

I2 - Malign-preservation - The ML was computed using only malign linkage

scores between features.

5.3.5 ILS with Linkage

When considering the preliminary testing phase in which linkage was used

to exploit Hill Climbing algorithms, it appears that selection of the mutation

targets in a solution may be beneficial (H3 and H7), and that interfering

with the selection of their replacements is detrimental (H5 and H6). This

led to the selection of a modified ‘kick’ phase, in which only the targets for

mutation were manipulated. The results of these tests are displayed in Figure

5.11. Performance of the guided and unguided ILSs were not found to be

statistically significantly different (analysis performed by a two-tailed t-test, p

>0.05).
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Figure 5.11: Comparison of error rates obtained by Iterated Local Search, and Iterated

Local Search with guidance via positive and negative linkage

5.4 analysis

To further explore the reasons as to why Linkage exploitation did not prove

effective in the previous experiments, further analysis was performed on

the most optimal solutions found over the course of this Chapter. For each

solution, 3 scores were calculated; the Cross Validation Error (CVE) from the

training set, the predictive accuracy from the testing set and what we term

the ‘Intra-solution Linkage’ score. This ‘Intra-solution Linkage’ score quantifies the

strength of the linkages between features within a solution by summing the

Mutual Linkage scores for each selected feature, as described in section 5.3.4.2.

It is a measure of how much Linkage is present between the selected features

in a solution.

Table 5.2 shows the Pearson’s correlation coefficients between the solutions’

predictive accuracy on the test set, and the measurements derived from the

training set; intra-solution linkage and cross-validation error. The solutions are

divided into 2 groups; low quality solutions (15-50% error rates on the test set

- drawn from all stages of the runs) and high quality solutions (<15 % error
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Table 5.2: Table comparing the correlation of solution fitness (CVE Rate) and predictive

accuracy on unseen data. In the later stages of the search algorithm (<15%

CVE), changes in CVE become less correlated with predictive accuracy. This

is contrasted by an increase in correlation between predictive accuracy and

Intra-Solution Linkage Scores.

Score Derived from Training Set

Cross Validation Error Rates Intra-Solution Linkage Score

Poor Solutions Good Solutions Poor Solutions Good Solutions
(>15% CVE) (<15% CVE) (>15% CVE) (<15% CVE)

Correlation
with Predictive

Accuracy on
Testing Data

0.7543 0.2411 -0.2263 -0.4296

rates on the test set - solutions found in the final stages of the runs). For the

low quality solutions, the correlation between CVE and predictive accuracy is

0.7543. This drops to 0.2411 in the higher quality solutions, which we suspect

is due to over-fitting of the test data. The correlation between the intra-solution

linkage score and predictive accuracy scores for low quality solutions is low

(-0.2263). However, unlike CVE, the correlation magnitude increases in the

higher quality solutions (-0.4296). This infers that intra-solution linkage scores

may be a better indicator of the generality of solutions than CVE in higher

quality solutions (later stages of search algorithms).

In summary, ‘good’ solutions (that is, with a low error rate on the validation

data) have no, or, weak linkage between their selected features. Overfitted

solutions (this is, those with low error rate on the training data but high

error rate on the validation data), tend to have stronger linkage between their

selected features.

5.5 conclusion

The integration of Linkage information in the evolutionary algorithms de-

scribed in this Chapter provided no significant improvement in the results, or

performance of the algorithm as intended by Research Questions RQ1 & RQ2.
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When we consider the computational load required to calculate the linkage

scores in advance, we would not recommend this form of implementation

in real world systems. This is not to say that linkage should be dismissed

as a form of guidance in BCI: While this Chapter failed to find a successful

application, it was based on only one dataset. It should be noted that further

analysis on solutions found by the evolutionary algorithms shows that the

correlation between the training set’s cross validation error rate, and prediction

accuracy, declines in the higher scoring solutions. While this is something

that we fully expect as over-fitting occurs, more interestingly, the negative

correlation between the solutions predictive accuracy on the test set and the

linkage scores within these solutions (derived from the training set) actually

increases. This makes sense: we might expect that the classifier would be

able to gain more information from features that are not linked (or correlated

with each other) than those that are. This suggests that it may be possible

to mitigate some of the effects of over-fitting by developing a multi-objective

fitness function that gives increasing weight to the solutions that minimise

linkage, while concurrently continuing to minimise cross validation error rates.
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C H A P T E R 6 - M U T U A L I N F O R M AT I O N

Filter based feature selection methods rank variables according to a criterion,

independently of the classifier. Examples of these criteria include the Pear-

son correlation coefficient [176], Fisher score [31], and measures based in

Information Theory [10]. The advantages of such techniques are typically

less computationally expensive, simpler to implement, and resulting feature

subsets are more generalisable as they are not tied to a specific classifier [8].

That being said, they lack the ability to exploit specific characteristics of the

machine learning algorithms intended for use, and therefore rarely obtain the

highest classification accuracies.

This chapter describes the Minimum Redundancy Maximum Relevance Iterated

Local Search (MRMR-ILS) algorithm, one of the contributions of this thesis.

MRMR-ILS is intended to incorporate mutual information into the operators

of ILS, with the goal of finding feature subsets for the creation of models

that yield higher predictive accuracies on unseen data. This Chapter has

the following structure: a description of Mutual Information is given 6.1. The

newly proposed technique MRMR-ILS is described in 6.2 and the methodology

used for its testing detailed in 6.3. Results and Discussions are presented in

6.4, followed by Conclusions in 6.5.

6.1 mutual information

One of the most prominent and well established measures of a feature’s relev-

ance originates from Information Theory, and is known as Mutual Information.

The following concept definitions explain the mutual information aspects of

the algorithm presented by this chapter.

99
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6.1.1 Entropy

Entropy is an integral concept within Information Theory, defining the uncer-

tainty of a variable. A well-known measurement of this is Shannon’s entropy

[159], which measures the number of bits required to represent a variable;

H(X) = −
∑
x

p(x) logp(x) . (6.1)

Entropy is calculated by the summation of all the probability distributions, p(x),

of values x ∈ X, multiplied by the natural log of those probability distributions.

This can be most easily understood when considering a common 6 sided dice.

A dice (X) has six sides (|X|), where each side (x) is unique. This results in a

probability distribution for each of the sides as 1/6. Using the above equation

(6.1), we can see that it results in -6(1/6.log.1/6) = 2.585. That is, we need 2.585

bits to represent all possible values observable from a single dice.

6.1.2 Mutual Information

Mutual Information is the unique information shared between two variables.

Using entropy, it is possible to quantify the conveyable information from a

variable; however, what is often of interest, is how much variables ‘overlap’

in the information that they convey. This is especially useful when we want

to consider how effective one variable is at predicting another; higher shared

information suggests that they are measuring a similar source of information.

I(X : Y) = H(X) −H(X|Y) = H(X) +H(Y) −H(X, Y) . (6.2)

To do this, we consider how much information is conveyed by each variable

as individuals, in comparison with how much information is conveyed when

they are paired. That is, the joint entropy of X and Y, H(X,Y), subtracted from

the summed entropies of X, H(X) and Y, H(Y). This can also be seen as the

amount of uncertainty that can be removed from a variable, when another one

is known.

Mutual Information Feature Selection (MIFS) is a technique which selects the

top k features after being ranked according to their mutual information with

the class label.
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H(X) H(Y)

H(Y|X)H(X|Y) I(X;Y)

H(X,Y)

Figure 6.1: Mutual Information between variables X and Y (I(X;Y)), seen as the over

lap of the entropies of X (H(X)) and Y (H(Y)).

6.1.3 Minimal Redundancy Maximum Relevance

Mutual Information can capture even non-linear interactions between variables,

but it is limited due to it being a univariate approach. This is a source of

weakness in applications such as feature selection, as we frequently find

multivariate interactions between variables and their labels. To solve this, Peng

et al. introduced the mRMR approach [133]. This algorithm seeks to address

two conditions; maximisation of selected features Relevance, and minimisation

of their Redundancy:

Relevance is defined as:

max D(S, c), D =
1

|S|

∑
xi∈S

I(xi; c) . (6.3)

where I(xi; c) is the mutual information between each selected feature (xi) in

the subset (S) and the class (c).

Redundancy is defined as:

min R(S), R =
1

|S|2

∑
xi,xj∈S

I(xi; xj) . (6.4)

where I(xi; xj) is the mutual information between each pair of selected features

within the selected subset (S).

So that mRMR can be defined as:

max Φ(D,R), Φ = D− R . (6.5)
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mRMR seeks to maximise the distance between the Relevance (D) and

Redundancy (R). Figure 6.2 illustrates this as overlapping entropies of features

X and Y with class C [133].

H(X) H(Y)

H(Y|X,C)

H(C|X,Y)

H(X|Y,C)
I(X;Y|C)

I(Y;C|X)

I(X;Y;C)

I(X;C|Y)

H(C)

H(X,Y)

Figure 6.2: Minimum Redundancy Maximum Relevance (mRMR) attempts to maxim-

ise the Mutual Information between a variable and its class label (I(X;C)),

while minimising the Redundant information (I(X; Y;C)); or, in other

words, information that has already been provided by another variable. If

seeking to select feature X, mRMR will seek to maximise I(X;C|Y).

6.2 proposed method - mrmr-ils

We now replicate the existing Iterated Local Search (ILS) algorithm (as defined

in Chapter 5), followed by detailing our contribution, the MRMR-ILS.
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6.2.1 Iterated Local Search

Iterated Local Search is an iterative search-based algorithm that has demon-

strated interesting results across a variety of domains [108], but with almost

no application to BCI domain. The ILS used in this Chapter consists of a

layered search: (i) a local search, in the form of a Hill Climbing algorithm;

and (ii) a diversification mechanism, in the form of a strong mutation, known

as a perturbation. A solution is either randomly generated or provided to

the algorithm. A Hill Climbing algorithm is then used to search the local

space; a candidate solution is created by performing a single point mutation

on the current solution. This is achieved by randomly choosing one of the

selected features in the current solution, and replacing it with an unselected

feature. This is then evaluated by performing 10-fold cross-validation using

the training set, which obtains the average prediction error rates on each of

the folds.

6.2.2 Minimal Redundancy Maximal Relevance-Iterated Local Search

In the MRMR-ILS algorithm proposed in this work, the stochastic perturbation

stage of the ILS (as seen in Algorithms 3 and 4) is replaced by an information-

measure based selection process (as seen in Algorithm 5). Instead of randomly

selecting features for replacement, features are selected for retention based on

the information they share with each other, and the label. The mRMR score for

each feature is calculated, and those that score most highly (that is, those that

have the highest relevance with the label), and have the lowest information

overlap with other features within the selected solution, are retained. The

remaining features are replaced with unselected features chosen at random.

6.3 methodology

The experimental methodology is presented in the following order; classi-

fication algorithms used, fitness function, search algorithm parameters, and

benchmark methods for comparison.
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Algorithm 3 Iterated Local Search

Input: Initial solution is Sinput ← generateInitialSolution()

Output: Final solution is Sbest

1: Let outerLoopLimit = 100

2: Let innerLoopLimit = 1000

3: Sbest ← Sinput

4: SbestErrorRate ← evaluteSolution(Sbest)

5: for x = 1→ outerLoopLimit do

6: Sbest*← perturbateSolution(Sbest)

7: SbestErrorRate∗ ← evaluteSolution(Sbest∗)

8: for x = 1→ innerLoopLimit do

9: S ′best ← mutateSolution(Sbest*)

10: S ′bestErrorRate ← evaluteSolution(Sbest∗)

11: if (S ′bestErrorRate < SbestErrorRate*) then

12: Sbest*← S ′best

13: SbestErrorRate*← S ′bestErrorRate

14: end if

15: end for

16: if (SbestErrorRate∗ < SbestErrorRate) then

17: Sbest ← Sbest∗

18: SbestErrorRate ← SbestErrorRate∗

19: end if

20: end for

6.3.1 Classifiers

The key aim of BCI paradigms is to produce an effective model to classify some

aspect of neural recordings. The creation of such a model relies heavily on the

selection of machine learning algorithm used. In this Chapter, we evaluate two

such algorithms:

- K-Nearest-Neighbours (KNN): while commonly used in other fields, KNN has

been largely neglected within the BCI literature due to its known sensitivity to
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Algorithm 4 Iterated Local Search - perturbateSolution

Input: Initial solution is Sinitial

Output: Final solution is Sperturbated

1: mutation_points← randomIndicies(size_of_perturbation)

2: new_features← randomIndicies(size_of_perturbation)

3: Sperturbated ← Sinitial)

4: Sperturbated(mutation_points)← new_feature)

Algorithm 5 MRMR Iterated Local Search - perturbateSolution

Input: Initial solution is Sinitial

Output: Final solution is Sperturbated

1: Sperturbated(1)← selectHighestRelevanceFeature(Sinitial)

2: for x = 2→ size_of_perturbation do

3: feature_scores← emptyArray()

4: for y = x→ size(Sinitial) do

5: feature_relevance← getRelevance(Sinitial(y))

6: feature_redundancy← getRedundancy(Sinitial(y), Sperturbated)

7: feature_scores(y)← feature_relevance− feature_redundancy)

8: end for

9: Sperturbated(x)← Sinital(minimum(feature_scores))

10: end for

11: new_features← randomIndicies(size_of_perturbation)

12: Sperturbated ← Sperturbated +new_features

the ‘Curse of Dimensionality’ [104]. KNN was selected for use in this work for

exploration, and to support our deliberate selection of small feature subsets.

- Support Vector Machines (SVM): commonly used in BCI literature, and often

obtain the best accuracies. This is thought to be due to their ability to operate

with feature sets of a higher dimensionality, and their resistance to overfitting

[142].
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6.3.2 Fitness Function

The fitness of a proposed feature subset was evaluated using k-fold cross-

validation on the training data. k = 10 was selected due to preliminary ex-

perimentation revealing a noisy fitness function originating mainly from the

randomly chosen splits in cross-validation. While 10-fold cross-validation

creates an expensive fitness function, it is required in such datasets where

we find high-dimensionality coupled with low number of samples and poor

signal-to-noise ratios [90].

6.3.3 Search Algorithm Parameters

Each algorithm was executed 25 times, with 100,000 evaluations of the classifier

set as the termination criteria. In each run, there were 100 perturbation ‘kicks’,

and local searches were limited to 1000 evaluation first-improvement Hill

Climbing.

6.3.4 Benchmark Methods

A selection of benchmark algorithms from the literature were used as compar-

isons for our algorithm: Mutual Information based filter methods, wrappers,

and a state-of-the-art embedded method.

6.3.4.1 Filters

Two Mutual Information filter methods were evaluated using a greedy forward-

search to select the feature subset size, as used in [94]. Mutual Information

Feature Selection (MIFS), relies on selecting features that increase the selected

subsets’ Mutual Information with the class label. mRMR seeks to maximise the

selected subsets’ Mutual Information with the class label (relevance), while

minimising the Mutual Information between features (redundancy).
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6.3.4.2 Wrappers

Two wrapper approaches were selected for comparison: Sequential Forward

Search (SFS) - a greedy algorithm that selects the next best feature as evalu-

ated by the classifier; and Iterated Local Search - a two layer search involving

perturbations and local searches.

SFS is a very popular technique, and is often used as an exploratory measure

in feature selection. ILS has been used in a wide variety of different search

areas, but has not been used in BCI literature prior to this thesis.

6.3.4.3 Embedded

Least Absolute Shrinkage and Selection Operator (LASSO) (or L1 regularisation)

performs feature selection by reducing the sum of the absolute values of

the model parameters below an upper bound. It does this by shrinking the

coefficients of the features, often to zero, effectively deselecting them. It can

provide two feature subsets: Sparse, and Mean Squared Error (MSE). This

method provides relatively poor cross-validation error rates on the training

set, but tends to be reasonably more generalisable.

6.4 results and discussion

Table 6.1 and 6.2 present results obtained using the KNN and SVM classifiers

respectively. The list of measures are: the number of features selected by each

algorithm (Selected f); the average final solutions’ fitnesses (cross-validation

error rate on training data; CVE, where lower is better); and their Accuracy

on the unseen, testing data. The datasets were labeled: D1 - Berlin BCI Com-

petition II Dataset III; D2 - Berlin BCI Competition II Dataset IV; D3 - Subject

A from the Riken dataset.

When using a KNN classifier, it is observed in Table 6.1 that the MRMR-ILS

finds solutions with the lowest cross-validation error rates on two datasets:

D1 (10.6%) and D2 (27.23%). On dataset D3, it achieved the second lowest

(14.92%), only just behind the SFS (13.85%). In all three cases, the MRMR ILS

outperformed the unguided ILS. These cross validation error rates reflect the
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Table 6.1: Results of each feature selection algorithm while using the KNN Classifier.

Number of selected features, CVE rates, and accuracy is shown for Datasets

D1, D2 and D3. Values in bold denote the highest performing algorithm for

each measure.

Dataset Algorithm Selected f CVE Accuracy

D1 GLFS 96 0.3194 0.6786

MLFS 60 0.3114 0.6

MIFS 20 0.4105 0.6000

MRMR 43 0.3295 0.7286

LASSO (Sparse) 8 0.2186 0.7143

LASSO (MSE) 29 0.1993 0.7143

SFS 14 0.1357 0.7357

ILS 6 0.1114±0.0082 0.7926±0.0366

MRMR ILS 6 0.106±0.0073 0.792±0.027

D2 GLFS 100 0.433 0.56

MLFS 82 0.4376 0.56

MIFS 10 0.4839 0.5600

MRMR 34 0.4754 0.5200

LASSO (Sparse) 11 0.4269 0.5500

LASSO (MSE) 13 0.4222 0.5500

SFS 15 0.2816 0.6200

ILS 6 0.2738±0.0148 0.6148±0.0474

MRMR ILS 6 0.2723±0.0087 0.6412±0.037

D3 GLFS 17 0.3858 0.4403

MLFS 18 0.4089 0.4925

MIFS 6 0.5172 0.6194

MRMR 30 0.4772 0.5224

LASSO (Sparse) 4 0.2408 0.6045

LASSO (MSE) 15 0.2615 0.5672

SFS 14 0.1385 0.5896

ILS 4 0.1539±0.0107 0.5997±0.0258

MRMR ILS 4 0.1492±0.0104 0.6085±0.0198
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algorithms’ performance on unseen data by achieving the highest accuracy on

datasets D2 (64.12%) and D3 (60.85%), with the second highest accuracy on

dataset D1 (79.2%).

In Table 6.2, the SVM classifer produces results with a similar pattern as

using the KNN, with the MRMR-ILS achieving the lowest cross-validation

error rates in dataset D1 and D3 (8.843% and 7.72% respectively), and behind

the ILS by just 0.17% on dataset D2. Classification accuracies on unseen

datasets in this case are slightly more nuanced; the MRMR-ILS achieved the

highest accuracy on dataset D2 (69.48%). and in dataset D1 it achieved the

second highest accuracy of 82.69%, just behind the ILS (84.23%). Dataset D3

presented slightly more unusual results, specifically in regards to the Greedy

Linkage algorithms introduced in Section 5.3.4.1. These see generally poor

performance across all datasets, except for D3 when using a SVM. In this case,

the GLFS and MLFS outperformed the ILS variants.

In order to assess if there was a significant difference between the per-

formance of the ILS and MRMR-ILS algoritms, a One-Way MANCOVA was

performed. There was no statistically significant difference between the ILS

and MRMR ILS on the combined dependent variables (cross validation error

rate and accuracy on unseen data) after controlling for Datasets (D1, D2, D3)

and Classifiers (KNN , SVM), F(2, 295) = 1.893, p = .152, Wilks’ λ = .987, partial

η2 = .013.

6.4.0.1 Post Hoc Analysis

To further analyse the resulting behaviours of the ILS and MRMR-ILS al-

gorithms, 2 additional avenues were explored; comparison of the features

most commonly selected by each algorithm, and the relation between the

expected model performance (cross validation error rate) and its performance

on unseen testing data.

A comparison of selected features was necessary to ensure that the final

features selected by each algorithm differ when an Information Measure is

included in the wrapper. For explanations of what each feature index on the x

axis represents in the graphs 6.3, 6.4, and 6.5, please see Appendix A.1,A.2, and

A.3. When comparing the features selected by the algorithms in experiments
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Table 6.2: Results of feature selection algorithm while using the SVM Classifier with se-

lected subset sizes (Selected f). Values in bold denote the highest performing

algorithm for each measure.

Dataset Algorithm Selected f CVE Accuracy

D1 GLFS 79 0.4206 0.6143

MLFS 100 0.3014 0.6643

MIFS 20 0.3740 0.6071

MRMR 43 0.2581 0.7929

LASSO (Sparse) 8 0.1493 0.7929

LASSO (MSE) 29 0.1757 0.7929

SFS 8 0.0857 0.8071

ILS 6 0.0846±0.0053 0.8423±0.0287

MRMR ILS 6 0.0843±0.0071 0.8269±0.0258

D2 GLFS 70 0.3992 0.57

MLFS 92 0.3705 0.59

MIFS 10 0.4153 0.5200

MRMR 34 0.3997 0.5800

LASSO (Sparse) 11 0.3095 0.6700

LASSO (MSE) 13 0.3168 0.6200

SFS 9 0.2532 0.6200

ILS 12 0.2422±0.0074 0.6836±0.0384

MRMR ILS 12 0.2439±0.0095 0.6948±0.0347

D3 GLFS 95 0.3009 0.6642

MLFS 98 0.2929 0.6493

MIFS 6 0.4077 0.5373

MRMR 30 0.2800 0.5672

LASSO (Sparse) 4 0.2377 0.6045

LASSO (MSE) 15 0.1508 0.6567

SFS 17 0.1000 0.5970

ILS 15 0.0735±0.0094 0.6197±0.043

MRMR ILS 15 0.0772±0.0093 0.6391±0.0287
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involving Dataset D1 (Berlin BCI Competition II dataset III), the KNN based

searches shared 5 of the top 10 most commonly selected features, while the

SVM based searches did so in 8.

For features selected from Dataset D2 (Berlin BCI Competition II dataset

IV), the KNN based searches selected the same features in 7 of the top 10

features, while the SVM based searches did so in 5. A notable difference in the

features selected by the SVM based algorithms is the preference for Channel

C5 (features 146 and 153), Cz (191) and C2 (200) in the beta band (8-30Hz),

whereas the MRMR ILS algorithm more commonly selected CP2 (281), CP4

(294) and O1 (313 and 317) of the alpha band (8-13Hz).

Features selected by KNN based algorithms in Dataset D3 (Riken) were

dominated by 4 features - epoch 2 and 3 of the higher frequencies within

the beta band, 20-26 Hz. Outside these 4 primary features, features 179 and

202 were commonly selected by both algorithms which are also from chan-

nels and frequencies neighbouring the 4 main features. The SVM based ILS

demonstrates somewhat less stability in its feature selection, with its 10 most

commonly selected features being selected a similar number of times. The

MRMR ILS on the other hand, has a strong preference for features 107 and

179 which correspond to a narrow frequency band of 23-26 Hz at seconds 2

and 3, closely followed by the same frequency at second 3 on channel CP4.

As we can see from the features selected by the ILS and MRMR ILS, certain

features are found by both algorithms. Where differences can be observed,

is what additional features are selected. In other words, what ’supporting

features are selected’. This is perhaps a logical outcome to the inclusion of the

multivariate measure of Information; taking the relationship between a feature

and a label into account will give preference to certain features. Including the

inter-dependencies within the solution, as in mRMR, will give preference to

features that compliment those with the highest shared information with the

label.

Figures 6.6a, 6.7a, 6.8a, 6.9a, 6.10a, and 6.11a show the average incumbent

solution fitness based on the cross-validation error rates over each iteration of

the ILS and MRMR-ILS algorithms. In a post-hoc analysis, we extracted these

incumbent solutions and re-evaluated their predictive accuracy on the testing
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Comparison of the most commonly
selected features from D1 using a KNN
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Comparison of the most commonly
selected features from D1 using a SVM
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Figure 6.3: Comparison of the most selected features of the ILS and MRMR-ILS

algorithms on dataset D1 - BCI Competition II dataset III

data, plotted in Figures 6.6b, 6.7b, 6.8b, 6.9b, 6.10b, and 6.11b. We can see that

the relationship between the MRMR-ILS fitness function, and the performance

on unseen data is much stronger than that observed in the ILS.

In order to find a real-world feature subset for BCI applications, it is im-

perative that the estimated accuracy provided by the fitness function in our

algorithms correlates as closely as possible to accuracy rates obtained from

new, unseen data. We further explore this in Table 6.3, in which the Pearson’s

correlation coefficient is calculated for the cross-validation error rates and

accuracies of the incumbent solutions. In five of the six test cases, there is a

substantially higher correlation between the predicted accuracy (CVE rate)

and the accuracy on the unseen data in the MRMR ILS than that of the ILS.

The most notable examples of this is the use of KNN in dataset D1, and the

use of SVM in dataset D3, where the correlations seen within the solutions of

the ILS have weak negative correlations (-0.1512 and -0.3787), which is heavily
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Comparison of the most commonly
selected features from D2 using a KNN
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Comparison of the most commonly
selected features from D2 using a SVM
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Figure 6.4: Comparison of the most selected features of the ILS and MRMR-ILS

algorithms on dataset D2 - BCI Competition II dataset IV

contrasted against the strong negative correlations in those of the MRMR ILS

(-0.9275 and -0.7203).
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Comparison of the most commonly
selected features from D3 using a KNN
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Comparison of the most commonly
selected features from D3 using a SVM
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Figure 6.5: Comparison of the most selected features of the ILS and MRMR-ILS

algorithms on dataset D3 - Riken

6.5 conclusion

In this chapter MRMR-ILS was proposed, a hybrid Filter-Wrapper method

involving Mutual Information for feature selection. Evaluations over three

datasets using KNN and SVM classifiers demonstrated that feature subsets

found by our method were typically of higher quality with lower error rates

on training sets and higher accuracy on testing data, than those found by the

compared traditional methods.

What is of additional interest is the quality of the solutions found during

the search process of the MRMR-ILS in comparison to those of the ILS. Re-

lying solely on the cross-validation error rates allowed feature subsets to be

discovered that were highly effective for creating models that represent the

training data. However, when these feature subsets were tested on unseen

data, the predictive accuracies did not reflect those acquired from the cross-
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Table 6.3: Correlations between Cross Validation Error Rates and Accuracy of Solution

during ILS and MRMR-ILS Search. Figures in bold denote the highest

performing algorithm for each measure.

Classifier Dataset Algorithm

ILS MRMR ILS

KNN D1 -0.1512 -0.9275

D2 -0.7131 -0.9116

D3 -0.9224 -0.9686

SVM D1 -0.9370 -0.9100

D2 -0.8348 -0.8619

D3 -0.3787 -0.7203
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Figure 6.6: Comparison between ILS and MRMR-ILS over each iteration of the al-

gorithms for the KNN classifier on dataset D1 - BCI Competition II dataset

III

[ 12th May 2019 at 10:26 ]



6.5 conclusion 116

0 10 20 30 40 50 60 70 80 90 100

Algorithm Run-Time

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

E
rr

or
 o

n 
T

ra
in

in
g 

D
at

a 
(%

)

Comparing SVM Cross-Validation Error Progress
on Training dataset - BBCI II Set III (6 Features)

ILS
MRMR ILS

(a) Cross-Validation Error Rates

0 10 20 30 40 50 60 70 80 90 100

Algorithm Run-Time

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

A
cc

ur
ac

y 
on

 T
es

tin
g 

D
at

a 
(%

)

Comparing SVM Accuracy Results
from Testing dataset - BBCI II Set III (6 Features)

ILS
MRMR ILS

(b) Accuracy on unseen data

Figure 6.7: Comparison between ILS and MRMR-ILS over each iteration of the al-

gorithms for the SVM classifier on dataset D1 - BCI Competition II dataset

III

0 10 20 30 40 50 60 70 80 90 100

Algorithm Run-Time

0.27

0.28

0.29

0.3

0.31

0.32

0.33

E
rr

or
 o

n 
T

ra
in

in
g 

D
at

a 
(%

)

Comparing KNN Cross-Validation Error Progress
 from Training dataset - BBCI II Set IV (6 features)

ILS
MRMR ILS

(a) Cross-Validation Error Rates

0 10 20 30 40 50 60 70 80 90 100

Algorithm Run-Time

0.59

0.6

0.61

0.62

0.63

0.64

0.65

A
cc

ur
ac

y 
on

 T
es

tin
g 

D
at

a 
(%

)

Comparing KNN Accuracy Results
from Testing dataset - BBCI II Set IV (6 features)

ILS
MRMR ILS

(b) Accuracy on unseen data

Figure 6.8: Comparison between ILS and MRMR-ILS over each iteration of the al-

gorithms for the KNN classifier on dataset D2 - BCI Competition II dataset
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Figure 6.9: Comparison between ILS and MRMR-ILS over each iteration of the al-

gorithms for the SVM classifier on dataset D2 - BCI Competition II dataset
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Figure 6.10: Comparison between ILS and MRMR-ILS over each iteration of the al-

gorithms for the KNN classifier on dataset D3 - RIKEN Subject A
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Figure 6.11: Comparison between ILS and MRMR-ILS over each iteration of the al-

gorithms for the SVM classifier on D3 - RIKEN Subject A

validation error rates. This is likely due to over-fitting; creating models that are

highly fitted to the training data leads to poor generalisation on new datasets.

The end result is a classifier which may not be fit for purpose.

When MRMR was incorporated into the algorithm, the search was partially

constrained to areas of the search space rich in mutual information. This

resulted in models that generalised to unseen data with predictive accuracies

that were much more consistent with the CVE from the training data. Further

experimentation should seek to compare the MRMR-ILS with other Mutual

Information based hybrid methods from the wider feature selection literature,

and investigate the relationship between Mutual Information, cross-validation

error rates, and predictive accuracy on unseen data.
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C H A P T E R 7 - I N S TA N C E T R A N S F E R

Previous chapters confirm the varying performance of feature selection on

different datasets within Brain Computer Interfaces (BCI). It has previously

been shown that models can be weakened by low numbers of training samples,

and that appropriate feature selection can improve this.

In this Chapter we introduce a new proof-of-concept method for optimising

the performance of BCI while minimising the quantity of required training

data. This Chapter also proposes that instances from one participant may be

used in the modelling of another. This is achieved by using an evolutionary

approach to rearrange the distribution of training instances, prior to the

construction of an Ensemble Learning Generic Information (ELGI) model. The

training data from a population can be optimised to emphasise generality of

the models derived from the data, prior to a re-combination with participant-

specific data via the ELGI approach, as well as the training of classifiers.

Evidence is given to support the adoption of this approach in the more

difficult BCI conditions: smaller training sets, and those sets suffering from

temporal drift.

7.1 transfer learning in bci

As described in Section 1, BCIs are difficult to calibrate due to recordings

having a low signal to noise ratio. This is further compounded by the non-

stationary nature of brain signals: neural patterns not only differ between

participants, but are also subject to temporal drift, where data obtained from

a single participant changes drastically over time [80]. Zero Training systems,

trained exclusively on participants from previous sessions, are an ideal goal but

this non-stationarity means highly accurate zero training systems may not be

possible. Consequently, we must instead focus on minimising the participant-

120
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specific training information required by optimising the applicability of data

available from alternative sources.

This Chapter proposes a novel method for the optimisation of the distribu-

tion of instances within a database of sets recorded from previous participants,

in a manner that ensures that they can be used to create an ensemble that

is maximally general to the population. This database is then used to seed

a previously established method, ELGI, that recombines instances obtained

from different participants with small quantities of participant-specific data,

to create a robust participant-specific ensemble. The aim is to create a BCI

that requires only a small amount of training data, and should retain accuracy

over time in a way that a traditional BCI does not. This is achieved by moving

instances between previously obtained datasets via a random mutation Hill

Climbing algorithm.

7.1.1 Ensembles

Ensembles have been used in a number of different BCI applications to increase

accuracy and reduce the amount of training data required for participants.

Most BCI ensembles use naive partitioning in which the instances are divided

by their associated labels, whether it be by source domain or by stimuli. This

proves useful for weighting classifiers within the ensembles; allowing informa-

tion regarding the appropriateness of each model and the test-domain to be

extracted [103]. It was demonstrated by Onishi et al. [128] that overlapping

these naive divisions can actually increase accuracy, suggesting that having the

same training data duplicated amongst the classifiers can benefit the overall

performance.

In 2015, Xu et al. [187] introduced the ELGI approach. Rather than using the

small amount of available training data to train a classifier, or for weighting

the models within a larger ensemble trained on the data of other participants,

ELGI combines the participant-dependent data with participant-independent

data to form a hybrid ensemble. This is achieved by splitting the datasets of

each existing participant within the database into target and non-target sets.

The removed missing instance class (target or non-target) is then replaced by
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a copy of the corresponding class from the participant-specific training data.

This results in an ensemble consisting of 2n− 1 classifiers, where n is the

number of participants within the database.

This chapter proposes a new technique in which the database containing the

previously recorded participants’ datasets are optimised to create an ensemble

that is maximally generalised for the population, prior to the combination

process of ELGI. The procedure is outlined fully in Section 7.3.

7.2 methodology

This section defines the BCI Paradigm used and also describes the datasets.

It then goes on to describe the offline filtering applied to the data and finally

defines the algorithms to be compared in the experiments.

7.2.1 Dataset

This chapter uses Dataset D4, detailed in Section 4.1. Hoffmann [76] provided a

dataset using the P300 paradigm, in which 8 participants were recorded. Each

participant (P), was recorded over 4 sessions (S), each with 6 runs (R), each

run consisting of 20 rounds (I), and each round consisting of 6 binary tasks

(t). This dataset is ideal for experimentation within this chapter as it includes

characteristics that allow us to investigate: Different participants; varying

levels of neural impairment; sub-divisions of training data; and, recordings

carried out over a series of time periods.

7.2.2 Classifier

A Bayesian Linear Discriminate Analysis (BLDA) classifier (as by Hoffmann [76])

was used. Each stimulus presentation was treated as a binary problem, and

the Bayesian probability of the prediction was recorded. Due to the paradigm

structure, every subdivision of 6 stimuli presentations has 1 target and 5

non-target. These groupings are deemed as a ‘round’. A prediction is made
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based on the highest probability within each round. In each run, 20 rounds

of all 6 stimuli are presented. This allows the Bayesian probabilities of each

round to be summed with previous predictions, increasing predictive accuracy

over the course of the run. This can be seen in Figure 7.1.

Figure 7.1: Diagram describing how the paradigm is divided into smaller sub-

problems within each run. Twenty rounds of all 6 stimuli are presented to

the participant and the Bayesian probability of a positive label assigned.

The probabilities of each label are summed over twenty rounds to make a

prediction for the run.

7.2.3 Conditions

The complex nature of BCI allows a number of different factors to be con-

sidered:

7.2.3.1 Quantity of Participant-Specific Data

As a primary aim in BCI is to minimise the required participant-specific

training data, the impact of training set size was explored. The datasets follow

a common hierarchical structure; each participant recording 4 sessions of 6

runs. All models were trained with data from the first session and 3 training

set sizes of 3, 4, and 5 runs were used.
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7.2.3.2 Time Between Testing Sessions

A major challenge in BCI, other than between-participant transference, is

between-session transference for single participants. As neural drift occurs

over time, highly fitted models tend to lose accuracy. All models were tested

on data acquired from 3 sessions, recorded over 2 days; session 2 on the same

day as the training data, and sessions 3 and 4 on a day no more than 2 weeks

later.

7.2.4 Compared Algorithms

Three approaches were compared in our experiments, two taken from the

literature (SLII and ELGI) and the following proposed new method (eELGI):

standard learning individual information (slii) : a Bayesian

LDA model trained using participant-specific data exclusively. The binary task

with the highest probability in each round was selected as the target, and the

rest, assumed to be non-targets [187].

ensemble learning generic information (elgi) : the ELGI method

[188] creates an array of classifiers by utilising the participant-specific (data

recorded from the ‘current’ participant) and participant-independent datasets

(data recorded from ‘previous’ participants) in the following manner:

[C2N] =

N∑
i=1

[C(PTi + P
NT
k ),C(PNTi + PTk)]

The training data P from each participant Pi is split into two subgroups; tar-

get T and non-target NT. A copy of the target instances from the test-participant

k (PTk ) are then added to the non-target subgroup PNTi , and conversely, a copy

of the test-participant’s non-target instances PNTk are added to the target sub-

group PTi . Each of these new subgroups are used to train an ensemble of

classifiers C. Predictions Pr are made by each classifier in the ensemble based

on the unseen data from the test-participant Pxk, and these predictions are

collated. This is done using the Sum Rule voting method where the Bayesian
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Figure 7.2: ELGI approach displaying that two classifiers are trained for every parti-

cipant in the database Pi by a splitting and recombination of their target

PTi and non-target PNT
i instances with the corresponding instances from

the test-participant’s training data Pk. These classifiers are then used to

make predictions on the test-participants unseen data Pxk. Finally, these

predictions are collated via voting.

posterior probabilities are summed for each class. This is further depicted in

Figure 7.2.

evolved ensemble learning generic information (eelgi) : the

novel approach proposed in this Chapter, is described fully in Section 7.3. In

this, we assume that the natural grouping of instances by participant is not

optimal. Instead, an evolutionary algorithm transplants instances between

datasets taken from each participant, aiming to maximise the generalisability

of each set in reference to other previously recorded participants, prior to their

combination with participant-specific data via the ELGI.
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7.3 evolved elgi ensemble

We propose a new approach whereby the database containing the previous

participants’ datasets is optimised, with the goal of creating an ELGI ensemble

that better generalises to the population. This is achieved by a leave-one-out

technique in which a participant’s bin, the subset containing all data from

that participant, is selected at random and a portion of the instances obtained

from that participant are moved into the bin of another randomly selected

participant. Two models are then trained: one using the data from the bin

that was selected for transfer, and one from the bin that was selected as the

destination. These models make predictions on the data in the remaining

unselected bins. The resulting overall predictive accuracy is used as the fitness

function for a random mutation Hill Climbing algorithm. This seeks the

allocation of training data to bins that maximises the predictive accuracy

within the database.

The implementation is now described in more detail. The procedure is given

formally in Algorithm 6. The search is seeded with a solution consisting of 7

bins; each consisting of an individual’s data but excluding any information

from the new participant, as in the Zero Training Model. A 500 iteration Hill

Climbing algorithm was then applied with the following mutation operator

and fitness function.

mutation (move operator) The move operator selects a target bin, a,

and a destination bin, b, at random from the training set bins; a subset m with

10% of the target bin’s instances are moved into the destination bin. Subsets

Pea and Peb are created by removing subset m from Pa and appending it to Pb,

respectively.

fitness function To assess the fitness of the candidate solution, 2 clas-

sifiers Cea and Ceb were trained from the subsets Pea and Peb. These were

then used to make predictions on the remaining instances within all subsets

P, excluding the participant datasets selected for mutation (Pa and Pb). The

average round accuracy over all the non-selected bins was calculated for both
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Algorithm 6 Evolution of instances in eELGI

Input: Initial solution is P = P(Pi)

Output: Final solution is Modified P = P(Pi)
′

1: for x = 1→ 500 do

2: Choose a and b from 1 : N where N is the |P|

3: Create m ⊂ Pa
4: Pea ← Pa with m removed

5: Peb ← Pb appended with m

6: Train classifiers Ca and Cb with Pa and Pb

7: Train classifiers Cea and Ceb with Pea and Peb

8: fa = 0, fb = 0, fea = 0, feb = 0

9: for i = 1→ N do

10: if i 6= a && i 6= b then

11: fa = fa +Ca(Pi), fb = fb +Cb(Pi)

12: fea = fea +Cea(Pi), feb = feb +Ceb(Pi)

13: end if

14: end for

15: if fa < fea && fb < feb then

16: Pa = Pea,Pb = Peb

17: end if

18: end for

models affected by the mutation (fea and feb); a solution was deemed success-

ful if the fitnesses obtained were an increase over the fitness (fa and fb) of

both models created from the incumbent solution (Ca and Cb). The mutation

was rejected if it caused a decrease in accuracy within either model.

This evolved dataset was then used to seed the original ELGI from [187].

7.4 results

Figure 7.3 presents the performance of the SLII, ELGI and eELGI algorithms

averaged across all 8 participants. Rows 1, 2 and 3 show performance of models

with 3, 4 and 5 runs (see Section 7.2.3) of training data available, respectively.
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Figure 7.3: Algorithm performance by number of stimuli presentations, with differing

quantities of participant-specific training data available. Error bars show

the confidence intervals around the means. Horizontal jitter has been

added to improve discernibility.

Columns display performance over three different testing sessions. While the

confidence intervals of the different approaches vary due to differing sample

sizes, the SLII and ELGI are almost indiscernible. The mean line of the eELGI

is typically higher than that of the other algorithms, with its smaller confidence

interval often visibly higher. The instances in which notable improvements are

made are in the extremity conditions: low availability of participant specific

data (row 1) and the testing session farthest from the training session (column

3).

The Round Accuracy is presented in Figure 7.4 for the SLII, ELGI and eELGI

algorithms. It is displayed by participant with each point representing the

accuracy achieved with 3, 4 and 5 runs of training data provided for training.

Increases in the quantity of participant-specific training data increases the

predictive accuracy in each participant, except 6. Participant 5 is the outlier

in terms of variance; increases in participant-specific training data makes a

much more substantial change to this classifier’s accuracy than others. When
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Figure 7.4: Round Accuracy over all testing sets displayed for each quantity of

participant-specific training data, separated for each participant.

considering overall round accuracies across differing training set sizes, eELGI

performed better than the SLII and ELGI in 62.5% of cases, and obtained

the second best results in the remainder. In no cases was eELGI the worst

performer.

Figure 7.5 demonstrates each algorithm’s resilience to neural drift over time.

The round accuracy of the SLII, ELGI and eELGI over each of the testing

sessions is given. A decrease in predictive accuracy was observed between

session 2 and session 3 in 62.5% of the cases, and a decrease between session

3 and 4 in 58.3%. Overall, a decrease in predictive accuracy between session

2 and 4 was observed in 79.2% of the cases, as expected due to temporal

neural drift. For 5 of the 8 participants, the eELGI retained the highest round

accuracy after two weeks, while still maintaining relativity high accuracy in

the remaining three.

To analyse the differences between each algorithm’s effectiveness in mitigat-

ing the effects of neural drift over time, hierarchical linear models were used as

recommended by Locascio [102]. The results of these are given in Figures 7.6a

and 7.6b. In Figure 7.6a, lines show the expected average behaviour when

considering the variation across participants, with points representing the

residual deviation of each participant from the estimated common behaviour.
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Figure 7.5: Round Accuracy over all quantities of training data for each testing set,

separated for each participant.

Although no statistical significance can be claimed here, the trends suggest

that in all 3 testing sessions, the eELGI performed better than both the SLII

and ELGI. It should also be noted that there appears to be less variance within

and between testing sets for the eELGI. This suggests that the eELGI not only

performs better than the other algorithms, but is also less susceptible to neural

drift over time.

As seen in Figure 7.6b, the round accuracy of all 3 algorithms increases with

the amount of participant-specific data available. The SLII is most dependent

on the quantity of participant-specific data, with ELGI performing much

better when fewer training instances are available. However, this advantage is

lost as volume of training data increases. The eELGI line has a similar slope

to the ELGI (0.0402 and 0.0394, respectively) but with a higher y-intercept

(0.618 to 0.574), resulting in better overall performance than both the SLII and

ELGI in all 3 conditions. In fact, a post-hoc Tukey’s comparison of the model

estimates, averaging over algorithm-data interactions [78], showed that the

eELGI produced a statistically significant increase in round accuracy over the

SLII (p = 0.0387) while the ELGI did not (p = 0.1483). Therefore, with respect

to the ELGI, the effect of evolving the base dataset appears to increase the
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Figure 7.6: Fit of hierarchical linear models, with random effects for each participant,

estimating (a) the overall Round Accuracy per testing set and (b) the

change in Round Accuracy over training set size.

intercept, without having any adverse affects to the rate of improvement seen

when increasing participant-specific data.

7.5 discussion and conclusion

This chapter proposed the eELGI approach and demonstrated its effectiveness

in a case study. However, statistical significance can be difficult to determine

with such small datasets. This being said, even with small samples, we have

demonstrated that there is a visible advantage to optimisation of the participant

database for use in transfer learning techniques. We can see that an evolved

database has 3 primary advantages:

1. A higher classification accuracy, regardless of quantity of training data. As

seen in Figure 7.4, 62.5% of cases see eELGI performing better than ELGI and

SLII, with the remaining still close to the optimal. In Figure 7.6b we observe,

in the majority of cases, a marked improvement over the non-evolved ELGI.

2. A reduction in variance in performance across not only sessions, but parti-

cipants as well. When comparing sessions in Figure 7.6a, and training set size

in Figure 7.6b, the groupings of round accuracies are noticeably more dense.

Figure 7.3, is perhaps the most dramatic demonstration of this. By including
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all participants over all test sets, the error bars for both the SLII and ELGI are

substantial, while the eELGI provides a modest difference.

3. A means for protection against temporal drift. Figure 7.6b demonstrates that

the traditional BCI approach (SLII) is highly susceptible to the neural drift

seen over time. While ELGI alleviates that to a degree, eELGI provides a much

more linear, and slower degradation in predictive accuracy over the testing

sessions.

As this chapter focused on a small dataset, with an equal number of able

and disabled patients, further work should investigate the effects of optimising

different base datasets. For example, further work should contain substantially

more participants and, in more commonly observed situations, contain dis-

proportionately more able-bodied participants. In terms of algorithms, while

a simple Hill Climbing algorithm has provided some promising results, it

would be prudent to apply more complex heuristics to the problem. A poten-

tially promising direction would be utilisation of a genetic algorithm with an

encoding that would allow oversampling of the more prototypical instances.

[ 12th May 2019 at 10:26 ]



Part VIII

S U M M A RY A N D C O N C L U S I O N S

[ 12th May 2019 at 10:26 ]



8
C H A P T E R 8 - S U M M A RY A N D C O N C L U S I O N S

This chapter is arranged in the following manner: First we recap the motivation

for BCI and known problems are summarised. The contributions of this thesis

are then introduced, and explicitly stated. This is followed by how these

contributions addressed the problems highlighted, and summarises their

results. Finally, avenues for future work are discussed.

134
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Brain Computer Interfaces currently provide life-altering benefits to users,

but refinement will allow their application to a much wider variety of disabil-

ities, and increase their practicality. BCI most commonly use electroencephalo-

graphy for the detection of the neural signals used to communicate between

mind and machine. This modality of signal detection is highly problematic:

• Sources of information often overlap different channels - to detect the

activity of neurons outside the skull, large numbers must be active. An

electrode will not only detect the electrical activity of neurons directly

below it, but some from neighbouring populations. This reduces the

spatial information available.

• These channels are incredibly noisy - the information of interest is

generated within the brain, but electrodes will detect information from a

range of different sources e.g. cardiac rhythms and eye movement.

• Inconsistency of use - electrodes are applied to the scalp using a stand-

ardised method (International 10-20 system), but the exact location, and

the conductivity of the electrode will vary between users and systems.

This further adds to the non-stationarity of the data.

These problems further compound the inherent issues in neural recordings

for BCI applications:

• Non-stationarity between sessions - neural drift occurs when plasticity

causes alterations in the brain’s structure that results in patterns, that

were previously observed, no longer being present. This creates the need

for new training data to be recorded if a model is unable to generalise

sufficiently.

• Non-stationarity between participants - neural differences between in-

dividuals are sufficiently large that a model trained on an individual is a

very poor fit for future participants. Generalisable models require large

numbers of participants, and even then, benefit greatly from refinement

to the new user.
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• Small datasets - recording sessions involve slow, tedious and repetitive

tasks. This inevitably results in user frustration, altering the neural

patterns observed and limiting the quantity of training instances possible.

• Invalid instances - some dataset instances are invalid due to user inat-

tention to the tasks in the paradigm. If these outliers are used in the

training of the predictive model, a poor fit may occur.

Classification problems involving EEG data are difficult, but it is possible

to improve models through a range of different optimisation techniques.

Search based techniques have been demonstrated to be particularly effective

in selecting near-optimal subsets of features to better represent the neural

activity of interest to the application, in a process called Feature Selection. In

this thesis, we integrated Linkage and Mutual Information into the metaheuristic

Iterated Local Search. We discovered that guidance of perturbation operators

that use pair-wise linkage can restrict search. Perturbation operators that

take into account Mutual Information however, decrease the cross validation

error rate from training sets, and increases the predictive accuracy on unseen

data. These experiments also revealed the perils of over fitting solutions on

training data through the use of cross validation error rates. It was found that a

metric developed in this thesis, Intrasolution Linkage was a better indicator of a

solutions fitness in the latter iterations of search.

To further develop search within BCI, an algorithm was developed to op-

timise a multiple participant database to aid in Transfer Learning. Using data

from previous participants is an effective method of increasing the quantity of

training data available for new users. However, brain signals differ substan-

tially between different persons, and therefore not all data obtained is useful.

To ensure the best use of available data, we employed a search technique to

transplant instances between datasets in an ensemble. This was performed as

an adaption of an existing state-of-the-art Transfer Learning approach called

Ensemble Learning Generic Information (ELGI), which we termed Evolved Ensemble

Learning Generic Information (eELGI).
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8.1 contributions

The contributions of this thesis are explicitly stated as:

1. Application of Existing Techniques To a New Domain:

• Iterated Local Search - ILS has not been previously applied to

any problem within Brain Computer Interfaces. Here, it was com-

pared with Hill Climbing, Sequential Forward Search, Genetic Algorithm,

Memetic Algorithm, Mutual Information Feature Selection, minimum Re-

dundancy Maximum Relevance, and LASSO.

• Linkage Detection Algorithm - Like ILS, LDA has not previously

appeared within the Brain Computer Interface literature.

2. New variations of Iterated Local Search:

• MRMR-Iterated Local Search - a variation of ILS in which the

perturbation operator was guided by a Mutual Information measure

was introduced and evaluated.

• Linkage-Iterated Local Search - the Linkage Detection Algorithm

was used to guide the perturbation operator of ILS in two new

algorithms:

– Benign L-ILS - benign perturbations involved retaining features

which provided the most benign intrasolution linkage within the

solution.

– Malign L-ILS - malign perturbations involved discarding fea-

tures which provided the most malign intrasolution linkage within

the solution.

3. New Metrics:

• Intrasolution Linkage Measures - a method in which the Linkage

Detection Algorithm could be utilised to rank features within a solu-

tion was introduced. Its design was intended to take into account

the already selected features, and their relationship with the class

label.
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4. Created a New Technique for Transfer Learning:

• eELGI - Evolved Ensemble Learning Generic Information (eELGI) was

created by optimisation of the participant database, in which in-

stance transfer was performed using a Hill Climbing algorithm. The

performance of the eELGI was then compared against the exist-

ing state-of-the-art technique: Ensemble Learning Generic Information

(ELGI). A further contribution was the application and evaluation

of the ELGI approach to a dataset with fewer participants than

previously seen in the literature.

5. Classifier Comparisons - k-Nearest-Neighbours is uncommon in the BCI

literature. We have shown that it can be applied, successfully, to some

datasets. In some cases, it produces comparable performance to the

state-of-the-art Support Vector Machine.

6. Insight to Overfitting - further evidence was found to support that

overfitting is a common problem in feature selection. We have also found

that our new metric (Intrasolution Linkage) may be able to mitigate it.
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8.2 general conclusion

This thesis explored feature selection techniques to isolate sources of inform-

ation that best predict the neurological patterns that relate to BCI tasks. This

allowed noise to be discarded, helped compensate for inconsistencies between

user sessions, and reduced computational load. The efficacy of dimensional

reduction in BCI is evidenced in Chapters 5 and 6. In these, feature selection

algorithms were used to find feature subsets which achieved lower cross-

validation-error rates, and increased predictive accuracies on unseen data. We

compared a number of different search algorithms, including Iterated Local

Search, which had not been applied to BCI before.

The newly introduced algorithm MRMR-ILS was shown to perform better

than ILS with an unguided perturbation operator over almost all datasets

and classifiers. Furthermore, it also performed better than well established

Filter techniques such as MIFS and mRMR, and the state-of-the-art embedded

method, LASSO.

Chapters 5 and 6 identify the poor correlation between the training set’s

Cross Validation Error rate and the accuracies obtained on unseen data. It

was found in Chapter 5 that, while this correlation decreases as the search

progresses, the correlation between the accuracy on unseen data and the intra-

solution linkage score actually increases. This trend is further seen in Chapter

6, in which the solutions produced by wrapper algorithms that included

Mutual Information in their search produced higher CVE and accuracy correl-

ations. This suggests that wrapper algorithms in this field should incorporate

additional information measures to help mitigate the affect of over-fitting.

As previously stated in this Chapter, inconsistencies in the application of

equipment can lead to poor session-to-session transfer, but the most prominent

problem is non-stationarity between sessions. We can see that, in Chapter 7,

the predictive accuracy of a BCI deteriorates depending on the length of time

since the training data was acquired. A state-of-the-art approach known as

ELGI was applied to utilise data from a range of users to mitigate this neural

drift. Positive results were observed in that it substantially improved upon the

single-user BCI, SLII. A problem with using additional users in this manner
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is non-stationarity between participants. This is somewhat mitigated by the

recombination technique seen in ELGI, but we sought to further optimise

the existing database by transferring instances between datasets within an

ensemble by using a local search. We found that applying this technique

achieved three primary advantages:

1. Increased classification accuracy rates were found, even when the quant-

ity of user specific data is restricted to the smallest of datasets.

2. Increased stability of BCI performance, with similar performances ob-

served across time, and participants with varying neurological impair-

ments.

3. A reduction in performance degradation due to neural drift.

8.2.1 Potential Impacts of our Contributions

It is important to emphasise that optimisation in this field has real world

implications. From the results stated above, advances in deployed BCI would

include:

• A reduction in the training data required, causing less distress to new

users.

• Higher accuracy predictions, making deployment of BCIs more practical.

• Faster BCI response times, allowing faster communication with devices

like the P300 speller.

• Increased periods of practical use without retraining, giving more inde-

pendence to the individual and reducing financial costs.

8.3 summary

In summary, this thesis has contributed a selection of new search techniques,

tested on a series of state-of-the-art benchmark BCI datasets. These algorithms

sought to, and achieved, their intended purposes of: reducing computational

demand in optimisation, reducing user-specific training data, increasing pre-

dictive accuracy of feature subsets, increasing the robustness of BCI systems
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in terms of user impairment, and mitigating the effects of neural drift. Further-

more, a surprising discovery was finding evidence to support the adoption of

new metrics for prevention of over fitting to training data.

The contribution of this thesis represents an advancement in BCI systems.

Ultimately, this offers potential application to a much wider variety of disabil-

ities, while also increasing their practicality — providing life altering benefits

to users.

8.4 future work

Experiments in this thesis have offered potential improvements over existing

techniques. However, there are still avenues in which they can be further

explored.

eELGI Variations

In our experiments, we chose to use local search to perform instance transfer

between different training datasets for an ensemble. The appropriateness

of an instance transplantation was assessed by using the altered dataset to

train a model, which was then evaluated by making predictions on data

obtained from a population of participants. This was chosen as it allows the

optimisation process to occur prior to the introduction of new users. However,

it may be prominent to attempt to evaluate the instance transfer on training

data provided by the new participant, customising the model to their neural

patterns, rather than that of the general population.

Additional work on this algorithm should include the incorporation of a

more advanced search technique such as a genetic algorithm, addition of

instance deletion and instance duplication operators, assessment of alternative

metrics to assess solution fitness such as Pearson’s Correlation Coefficient and

Mutual Information, and experimention using datasets containing increased

numbers of participants.

Improved Fitness Functions

An issue identified in this thesis is the reliability of the fitness function. As
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shown in Chapters 5 and 6, the correlation between predicted solution fitness

achieved from cross validation of training sets and the predictive accuracy on

unseen data quickly declines when error rates are minimal. With low correla-

tions, it calls into question whether the fitness function is valid in this phase

of the optimisation algorithm. Section 5 shows that the correlation between

the solutions predictive accuracy on unseen data, and the new measurements

introduced by this thesis are actually stronger than the traditional k-fold C.V

approach. Expanding on this, we would like to investigate the relationships

between these new measurements and the fitness of the solutions: Specifically,

is there a point in search in which the fitness function could be replaced

by these alternative metrics? Is it possible, using Genetic Programming, to

create a function which incorporates Linkage, Mutual Information, and Cross

Validation?

Artificial Data Ensembles

As wrapper methods select features by subdividing the available data, and

training the classifier on those subdivisions, we may find that those subsets

may contain a noisy and insufficient subset of instances to create a good model.

To overcome this, we have shown that increases in generality can be achieved

by taking data from other participants. We then demonstrate that this addi-

tional data can be optimised by instance transfer. This can be taken further:

future work should take into account the possibility of generating artificial

EEG data with the express purpose of training nodes within an ensemble.

It may prove possible to generate data for this purpose that achieves two

goals: Accentuation of the participants detectable patterns, and increasing the

generalisability of the resulting models.

Additional Datasets

Finally, future work should include evaluation of our algorithms suggested in

Chapters 5, 6, and 7 on additional datasets. It is evident from the literature

review that an algorithm’s performance is highly varied depending on not just

the problem, but the dataset itself. Our conclusions can only be made based
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on the limitations of the datasets explored.

Building upon Estimation of Distribution Algorithms

A prominent next step is development of our Linkage-aware heuristics through

comparison to similar techniques known as Estimation of Distribution Al-

gorithms (EDA). This family of algorithms seek to extend upon Genetic Al-

gorithms by replacing the population with a probabilistic sampling technique

[22]. Univariate EDAs, for example, the Compact Genetic Algorithm (cGA) [67],

propose a vector of probabilistic values, using it to create and evaluate solu-

tions. In response to the evaluated fitness, the probabilities are then updated.

A pitfall of this technique is that it does not allow for interactions between

variables, something multivariate EDAs have sought to address through linkage

learning.

A linkage-aware EDA known as extended compact Genetic Algorithm (ecGA)

explicitly evaluates the interaction between variables and its impact on the

resulting fitness of the solution, rather than the implicit linkage found in

simple GAs [65]. This is achieved by calculating the product of the marginal

distributions of a partition of the features. This differs from our approaches

in that we assign a ‘fitness’ to pairs of features, rather than a probability for

their selection. In our approach, a pair that have a higher linkage score will

be selected over a pair with a lower score. This over reliance on exploitation

of the classifiers error rate may suggest why our linkage-aware algorithms

failed to explore the space adequately. A future work could involve a probabil-

istic sampling based on our linkage score metric. We additionally note that,

although linkage has been shown to improve heuristic search [116], in some

cases of feature selection, it was found to make no significant impact [33]. This

suggests that we must also determine that linkage information is appropriate

for use in this field.
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A P P E N D I X

a.1 feature reference table for datasets d1

Channel: C3 Cz C4

Second: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Fr
eq

ue
nc

ie
s

(H
z)

8-13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

8-9 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

9-10 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

10-11 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

11-12 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

12-13 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

13-30 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

13-17 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

17-20 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

20-23 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

23-26 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297

26-30 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

Table A.1: Indices of Power Spectral Density features according to the frequency, channel, and time epoch for

Dataset D1: Berlin BCI Competition III dataset.
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a.2 feature reference table for datasets d2

Channel: F3 F1 Fz F2 F4 FC5 FC3 FC1 FCz FC2 FC4 FC6 C5 C3 C1 Cz C2 C4 C6 CP5 CP3 CP1 CPz CP2 CP4 CP6 O1 O2

Fr
eq

ue
nc

ie
s

(H
z)

8-13 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325

8-9 2 14 26 38 50 62 74 86 98 110 122 134 146 158 170 182 194 206 218 230 242 254 266 278 290 302 314 326

9-10 3 15 27 39 51 63 75 87 99 111 123 135 147 159 171 183 195 207 219 231 243 255 267 279 291 303 315 327

10-11 4 16 28 40 52 64 76 88 100 112 124 136 148 160 172 184 196 208 220 232 244 256 268 280 292 304 316 328

11-12 5 17 29 41 53 65 77 89 101 113 125 137 149 161 173 185 197 209 221 233 245 257 269 281 293 305 317 329

12-13 6 18 30 42 54 66 78 90 102 114 126 138 150 162 174 186 198 210 222 234 246 258 270 282 294 306 318 330

13-30 7 19 31 43 55 67 79 91 103 115 127 139 151 163 175 187 199 211 223 235 247 259 271 283 295 307 319 331

13-17 8 20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200 212 224 236 248 260 272 284 296 308 320 332

17-20 9 21 33 45 57 69 81 93 105 117 129 141 153 165 177 189 201 213 225 237 249 261 273 285 297 309 321 333

20-23 10 22 34 46 58 70 82 94 106 118 130 142 154 166 178 190 202 214 226 238 250 262 274 286 298 310 322 334

23-26 11 23 35 47 59 71 83 95 107 119 131 143 155 167 179 191 203 215 227 239 251 263 275 287 299 311 323 335

26-30 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288 300 312 324 336

Table A.2: Indices of Power Spectral Density features according to the frequency, channel, and time epoch for

Dataset D2: Berlin BCI Competition IV dataset.
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a.3 feature reference table for datasets d3

Epoch: 1 2 3

Channel: C3 Cz C4 CP3 CPZ CP4 C3 Cz C4 CP3 CPZ CP4 C3 Cz C4 CP3 CPZ CP4

Fr
eq

ue
nc

ie
s

(H
z)

8-13 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205

8-9 2 14 26 38 50 62 74 86 98 110 122 134 146 158 170 182 194 206

9-10 3 15 27 39 51 63 75 87 99 111 123 135 147 159 171 183 195 207

10-11 4 16 28 40 52 64 76 88 100 112 124 136 148 160 172 184 196 208

11-12 5 17 29 41 53 65 77 89 101 113 125 137 149 161 173 185 197 209

12-13 6 18 30 42 54 66 78 90 102 114 126 138 150 162 174 186 198 210

13-30 7 19 31 43 55 67 79 91 103 115 127 139 151 163 175 187 199 211

13-17 8 20 32 44 56 68 80 92 104 116 128 140 152 164 176 188 200 212

17-20 9 21 33 45 57 69 81 93 105 117 129 141 153 165 177 189 201 213

20-23 10 22 34 46 58 70 82 94 106 118 130 142 154 166 178 190 202 214

23-26 11 23 35 47 59 71 83 95 107 119 131 143 155 167 179 191 203 215

26-30 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216

Table A.3: Indices of Power Spectral Density features according to the frequency, channel, and time epoch for Dataset D3: Riken - Subject A.
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a.4 participant descriptions (dataset d4: p300 speller (hoffman))

Participant

1 2 3 4 5 6-9

Diagnosis
Cerebral Multiple Late-stage Traumatic brain Post-anoxic N/A

palsy sclerosis ALS spinal-cord injury encephalopathy

Age 56 51 47 33 43 27.7-32.3

Age at illness onset 0 37 39 27 37

Sex M M M F M M

Speech Mild disarthria Mild disarthria Severe disarthria Mild disarthria Severe hypophony

Limb control Weak Weak Very weak Weak Very weak

Respiration Normal Normal Weak Normal Normal

Voluntary
Normal Mild nystagmus Normal Normal

Balint’s

eye movement syndrome

Notes Only Female Excluded PhD Students

Table A.4: Table provides a description of the participants within dataset D4: P300

Speller (Hoffman)
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