
A Generic Approach to the Evolution of
Interaction in Ubiquitous and Context-Aware

Systems

Tony McBryan and Phil Gray

Department of Computing Science, University of Glasgow, Glasgow, G12 8QQ

Abstract. This paper presents a model-based approach to the prob-
lem of evolutionary adaptation of ubiquitous and context aware systems
where it is difficult or impossible to predict in advance the resources avail-
able, the criteria for judging the success of the change and the degree
to which human judgement must be involved in evaluation process. The
model is introduced via a simple example based around the adaptation of
web content to different output device configurations. The relationship of
the model to software architectures is illustrated via an example imple-
mentation in a homecare software framework. We argue that the model
offers greater flexibility and control than other current approaches.

1 Introduction

The work presented in this paper concerns the adaptation of interactive systems
where it is difficult or impossible to predict in advance (i) the resources available,
(ii) the criteria for judging the success of the change and (iii) the degree to which
human judgment must be involved in the evaluation process.

This is particularly of relevance in ubiquitous and context aware systems
which must respond to a wide range of factors. Additional difficulties are expe-
rienced when new devices or evaluation techniques are added and it is necessary
to evolve the system using these new techniques. These challenges have been
recognised by Dourish[1] and MacLean[2] who argue that continual adaptation
of interactive systems should be regarded as the norm rather than the exception.

Work in this area is aimed at addressing evolving systems such as ubiquitous
systems within a home environment. The need for constant reconfiguration of
devices within a home environment has been discussed by O’Brien and Rodden[3,
4] who recognise that items within the home as well as the home itself are subject
to continuous redesign. This evolution within the home environment has a knock-
on effect on interactive systems operating in that space - requiring them to be
capable of evolving to deal with the new or changing requirements.

The work presented here is a model-based approach to the dynamic configu-
ration of interactive systems, based on the concept of generic and specialisable
evaluation functions. These evaluation functions are responsible for analysing
the options available for evolution to determine the optimal choice. Evaluation



functions can support varying modes of use and can be combined to allow novel
support for configuration of interactive systems.

It is claimed that such an approach allows for systems that support a superset
of currently available techniques used for the configuration of interactive systems.
Additionally, the approach provides greater flexibility than is currently possible,
such as the capability to change mode of use or criteria for configuration choice
at runtime, which is unavailable or difficult to implement in currently existing
approaches.

The adaptation of an interaction can be seen as a sequence of opportunities
to change or evolve the interaction from its current state into a better state, in
terms of some relevant criteria (e.g. user preference, efficiency).

This idea allows for flexibility in two key areas - the choice of evaluation
method and the mode of use. The evaluation functions used for ranking the
choice of possibilities can be replaced or combined to allow the user and/or
system to prioritise the attributes of interactions they care about the most. The
mode of use of multiple parts of the system can be customised to allow for
different levels of manual or automatic control over the choice of interaction.

In the next section, we will illustrate this process with a simple example
before discussion a generalised version in Section 3. We then consider the impli-
cations of our approach for the software architecture of systems that it. Finally
we discuss related work and conclude with some observations on the current
status and planned development of our work.

2 Example

For the purposes of this example we will consider a subset of the Arch model[5].
The Arch model provides a top down functional view of the components involved
in an interaction in terms of 5 functional elements; the functional core, the
functional core adaptor, the dialogue controller, abstract user interaction and
concrete user interaction.

The functional core represents the domain dependant information involved
in the interaction which communicates with the dialogue controller representing
the task oriented goal of the interaction using the functional core adaptor which
is provided to facilitate mediation between these two components. The Arch
model includes notions of abstract and concrete user interaction components;
the abstract components represent toolkit-independent interaction techniques
which are implemented by or use a concrete component which actually performs
the interaction.

To maintain simplicity in this example we will consider only the mapping
between the dialogue controller, abstract user interaction components and con-
crete user interaction components although the methods described here can be
extended to include the entire Arch model. We specifically deal with the choice
of abstract and concrete user interaction elements as shown in Figure 1.



Fig. 1. Arch model with Relevant Components Highlighted

2.1 Possibilities

The Arch model may have many possible instantiations which could be used and
these will be referred to as the possibilities for interaction. Here we consider all
possible instantiations which are syntactically correct - that is combinations of
components which are capable of interoperation, even if the choice of assembly
forming the possibility is suboptimal. We will discuss the process to generate
these possibilities later in Section 2.4.

A practical example of abstract and concrete UI’s can be obtained from
MacKay, Watters and Duffy[6]. MacKay et al. discovered that using three differ-
ent layouts for viewing webpage’s on a portable device resulted in very different
advantages in different contexts. The authors investigated three different layout
methodologies; (i) gateway - a zoomed out overview of the page, (ii) linear - a
document transformed to remove horizontal scrolling and (iii) direct - offering a
viewport onto the document as rendered on a desktop browser.

Fig. 2. Transformed Browser Windows from [6]

MacKay et al. found that linear layouts are advantageous when the user is
unfamiliar with the page or when processing power on the device displaying the
page is limited, but that gateway and direct layouts were preferred for familiar
sites where the user knew the content already. These three layout techniques



could be implemented as three particular Concrete User Interfaces that can be
used with the “display page” abstract user interface.

2.2 Evaluation Functions

It is then possible to apply different evaluation techniques in order to analyse the
set of possibilities in respect to a variety of different criteria. For the purposes
of this example we can use a simple ranking method where each evaluation
function returns an integer in the range 0-10 as a ranking where the integer
value 0 indicates an extremely poor result for this metric and the integer value
10 indicates an exceptional result. The evaluation functions used in that case
are shown in Figure 3. This is a very simple structure and would not be suitable
in many situations due to lack of precision and range and is intended only for
clarity within this example; we discuss more generalised ranking features within
Section 3.

Fig. 3. Example Evaluation Function Results

To ground this more fully we refer again to the three mobile browser layout
algorithms presented by MacKay et al. The evaluation functions used in that
circumstance might be “predicted navigation performance” (as predicted by pre-
vious experiments or GOMS analysis) or “user preference” to rank each layout
technique in terms of these measures.



2.3 Making a choice

Once evaluation functions have been applied to the set of possibilities we need
to be able to combine these results to obtain a final ranking of possibilities. This
final ranking allows us to choose the “best” interaction components to use; as
judged by the evaluation functions.

A simple approach for our rankings is to simply weight the results by an
individual factor for each evaluation function and take the minimum of each
weighted result as our final ranking as demonstrated in Figure 4. This particular
evaluation function combination technique has the property of finding the inter-
action which has the best worst-case performance and suppressing possibilities
which receive low ranking evaluations. This combination method is unlikely to
be used in a deployed architecture but it has the property of simplicity that is
important in this example.

Fig. 4. Example Ranking

To continue the example from MacKay et al. we might have a circumstance
that the “user preference” evaluation function has been highly weighted to in-
crease its significance compared the “navigational performance” evaluation func-
tion so that two of the three options (direct and gateway) are equally preferred
by the user and that greater navigational performance in the gateway example
causes it to be chosen as the concrete user interface to use.

2.4 Graphing Possibilities

Section 2.1 introduced the idea of sets of possibilities which we can evaluate to
determine suitability for use in an interaction. In this section we will elaborate
on a technique of obtaining this set of possibilities.



The principal concept in this stage of the interaction choice is the construc-
tion of a directed graph representing the dependencies, or their ability to inter-
operate, of the set of available components. This can be constructed by starting
with the dialogue controller as the root node and adding a new node for every
abstract or concrete user interaction component. The a directed edge is created
between the dialogue controller and every abstract interaction component that
it supports, we then repeat this by creating directed edges between the abstract
user interaction components and the implementing concrete components.

Fig. 5. Example Graph

In Figure 5 a tree, rooted at the dialogue controller, has been created where
edges represent compatibilities between components. It is then possible to gen-
erate a set of possibilities analytically by performing a traversal across the graph
starting from the dialogue controller; this can be performed using algorithms for
single source all-pairs traversals.

2.5 Overview

The previous sections presented the individual steps involved to generate a se-
quence of possibilities, evaluate the possibilities and derive a choice of interaction
components. These steps are shown in Figure 6 in order. This technique will now
be generalised in the following section.

3 Generalisation

This technique can be generalised in several ways to support multiple modes
of use (manual, automatic, semi-automatic) while at the same time allowing
runtime adaptation of the criteria for decision making of interaction choices.



Fig. 6. Overview

3.1 Representing Possibilities

The aim of possibilities within this model is to represent the options that are
available to be selected from within a system. Within an interactive system this
would be the choices of interaction components to use to communicate with
the user. Each possibility is a particular option for interaction and each of the
possibilities can be reasoned about by evaluation functions.

Possibilities can be derived in various modes of use. Within the previous ex-
ample possibilities were generated automatically from a graph of dependencies
but these possibilities could also have come from direct user data entry or anal-
ysis of historic usage trends. Direct user entry of possibilities, either at design
time or at runtime, could be used to restrict the selection of interaction com-
ponent to only those specifically allowed by the designer. Likewise, analysis of
previous usage of components could produce a set of highly used possibilities
which could be used in preference to, or in addition to, an automatic deduction
of possibilities from a graph.



3.2 Evaluation Functions

A set of evaluation functions can be used to represent different criteria that could
be applied to each option for evolution. The aim is that each evaluation function
is capable of ranking possibilities according to their own evaluation function that
determines suitability. Evaluation functions essentially sort a list of possibilities
according to their criteria for a good interaction component.

There would be a great selection of possible evaluation functions that could
be available for use when evaluating a possibility; these would include functions
that evaluated based on the intended user’s location, user preferences, required
computational resources, the user’s physical abilities to interact with different
interaction techniques and the discreetness of a particular interaction device.
A breakdown of possible factors that could influence the choice of interaction
component within a ubiquitous system is provided by Schmidt et al.[7] and each
of these are candidates for evaluation functions.

In addition to these analytical evaluations we can use machine learning or
recommendation techniques to analyse possibilities based on previous history
of interactions. That is the evaluation function may be usage based and would
compare the set of possibilities against previous history and rank possibilities
which had previously found to be good matches for the user with higher relative
ratings than those which had not.

It would also be possible to have evaluation functions which interact with
the user in order to perform their ranking. A simple example of this would be
functions which gather user preferences or simply ask the user directly at run-
time. Less intrusive methods of interacting with the user for evaluation functions
could include the user setting a “mood” switch throughout the day which may
allow for the selection of mood appropriate interaction components.

3.3 Making a Choice

To choose the interaction components to use, it is necessary to take the results
from the evaluation functions and decide which possibility is the best overall
choice. In the example we showed a simple numerical approach to determine
the best worst-case choice to use. Further numerical approaches are possible;
such as determining the choice with the maximum average evaluation result, the
maximum absolute value from any evaluation function or by relative rankings.

However, there are other possible approaches available. A more advanced
approach could treat the choice itself as yet another evaluation which takes the
results from a set of other evaluation functions. Such a model would result in a
tree structure where evaluation functions can be combined in interesting ways
to allow greater control over the selection of interaction components.

3.4 Graphing Possibilities

Representing dependences between components within a system is naturally ac-
complished by using a graph with directed edges representing the dependency.



An example of this dependency modelling was shown in our example where de-
pendences of the concrete user interaction component were shown by a connec-
tion to the abstract user interaction that it implements. In other implementations
of this approach the graph may represent data type compatibilities or other in-
formation required to determine if two components can be used together. Once
the graph has been created it is possible to then traverse the graph to create a
list of possibilities.

Creation of this graph can be accomplished entirely automatically through
the provision of service discovery systems which are aware of which components
are available in a system but other modes of use are available as well such as
direct user entry of a graph.

4 Implications for Architecture Design

In the examples within this paper we have discussed the model primarily in con-
text of the Arch model and an example of web layout algorithms. However, the
evaluation model does not rely on this particular architectural model or applica-
tion domain. The evaluation function based model presented here is particularly
suitable for implementation within a component based system; in which case it
could be represented as an “Interaction Manager” component which is capable
of assigning interaction components to tasks.

Fig. 7. Sample Architecture

Figure 7 shows a sample architecture implemented within the MATCH home-
care framework[8]. Within this sample architecture there are a number of phys-
ical devices which are each represented by an abstract UI component. These in-
teraction components are monitored by the service discovery component which



maintains a list of available devices within the system which allows for the re-
sources (in this case devices) to change at runtime. Task represents the action to
be undertaken. For example, a task might have the role of alerting a resident to
a dangerous change in house state. This will result in the task object requesting
from the interaction manager a mapping to one or more interaction objects by
which the alert can be communicated to the resident The interaction manager
then executes the model presented here using a set of evaluation functions. The
evaluation functions can in turn request information from 3rd party services, in
this case Policy and Ontology Description services. The ability to change eval-
uation functions at runtime allows for dynamic change of criteria for deciding
interactions and level of human judgement.

5 Related Work

Speakeasy[9] is an approach designed to allow devices and services to interact
with little prior knowledge of each other. Components use small fixed domain-
independent interfaces and mobile to realise this. Mobile code is the ability to
transmit executable code across the network in order to extend the function-
ality of a device. This approach is called the recombinant computing approach
by its authors. Within this approach it is the users responsibility to manually
perform any configuration tasks whenever they are required as well as choosing
the appropriate components for the current context.

SUPPLE[10] is an approach which includes the ability to adapt to device
characteristics by rendering a GUI display generated at run time within screen-
size constraints. SUPPLE uses a utility function which assigns “costs” to each
widget representing the “ease of use” and then composes a widgets to perform
the required tasks together within the given screen size constraints to create a
working display with the minimum cost. SUPPLE is, however, limited in that
it can only reason about the quality of a widget by comparing costs between
respective widgets. This means that each widget must have an assigned “cost”
which means that SUPPLE cannot take into account any changes in costs across
changing contexts.

Comets[11] (COntex of use Mouldable widgETs) is a system that provides
run-time adaptation of interaction at the widget level. Comet’s are introspective
components which publish quality of use guarantees for a set of contexts of use.
The Comet architecture supports adaptation by polymorphism (change the form
of a Comet), substitution (replace a Comet), recruiting (adding new Comets)
and discarding (removing Comets). These adaptations are triggered by policies;
at which point the current context of use will be derived and compared against
the quality of use guarantees published by available Comets and the Comets
updated appropriately. The disadvantage of this approach is that each Comet
must be able to identify its own quality of use statistics in each of the contexts
of use it is likely to appear in which will be impractical for large numbers of
contexts (or unions of contexts).



Crease et al.[12] presented a system where the configuration of output sources
was controlled by a simple “modality mapper” service. The modality mapper was
responsible for deciding which modalities to use based on the feedback type and
used a weighting system to decide which modality, and ultimately which concrete
output device, should be used.

The Cameleon[13] reference architecture is split into three levels of abstrac-
tion - the Interactive Systems Layer, the Distribution-Migration-Plasticity layer
(DMP) and the platform layer. In the context of this work we are most inter-
ested in the DMP layer which contains an “evolution engine component”. The
evolution engine component in the Cameleon architecture is notified of a change
in context by the situation identifier component and is responsible for respond-
ing to this. The evolution engine then identifies any UI components that must
be replaced or added and notifies the configurator component which enacts the
changes. It is therefore the responsibility of the evolution engine to handle the
configuration of the system. In the CamNote system built upon the Cameleon
architecture the evolution engine is implemented as a rule engine of the form “if
a new PDA arrives, move the control panel to the PDA”.

The approaches described above are all similar in that they have generic
structures for describing an interaction or combining widgets or components
together to create an interaction but do not have the same facilities for generic
methods of actually choosing which of these configurations to use. Many use
user specifiable or designer supplied rules and weighting schemes to make these
decisions but these approaches are not generic and do not allow the full range
of reasoning about change.

6 Conclusion

We have shown that there is a need for interactive systems which are capable of
evolving their interaction techniques subject to context and shown that there is
a significant lack of approaches to do this in a generic fashion - where current
state of the art techniques concentrate on a single technique. This topic has been
identified as an area of interactive systems research which has yet to be fully
explored.

To address this gap in the literature we have presented a model to support
evolution by assisting in the choice of interaction techniques, this model is ex-
pected to be capable of bridging many different types of evaluation technique to
direct selection of interactions, generally within interactive systems, but specifi-
cally within ubiquitous and homecare systems.

The primary contribution of this work is the notion that evaluation func-
tions can be used to model requirements or preferences within an interactive
system and a laying of foundations for further research into general approaches
for decision making in interactive systems.



7 Acknowledgements

This research has been carried out within the MATCH (Mobilising Advanced
Technologies for Care at Home) Project funded by Scottish Funding Council
(grant HR04016).

References

1. Dourish, P.: Developing a Reflective Model of Collaborative Systems. ACM Trans-
actions on Computer-Human Interaction 2(1) (1995) 40–63

2. MacLean, A., Carter, K., Lövstrand, L., Moran, T.: User-tailorable systems: press-
ing the issues with buttons. Proceedings of the SIGCHI conference on Human
factors in computing systems: Empowering people (1990) 175–182

3. O’Brien, J., Rodden, T.: Interactive systems in domestic environments. Pro-
ceedings of the conference on Designing interactive systems: processes, practices,
methods, and techniques (1997) 247–259

4. Rodden, T., Benford, S.: The evolution of buildings and implications for the design
of ubiquitous domestic environments. Proceedings of the conference on Human
factors in computing systems (2003) 9–16

5. Bass, L.: Metamodel for the Runtime Architecture of an Interactive System. The
UIMS Tool Developers Workshop. SIGCHI Bulletin 24(1) (1992)

6. MacKay, B., Watters, C., Duffy, J.: Web Page Transformation When Switching
Devices. In: Proceedings of Sixth International Conference on Human Computer
Interaction with Mobile Devices and Services (Mobile HCI’04), LNCS. Volume
3160., Glasgow (2004)

7. Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to context than location.
Computers & Graphics 23(6) (1999) 893–901

8. Gray, P., McBryan, T., Martin, C., Gil, N., Wolters, M., Mayo, N., Turner, K.,
Docherty, L., Wang, F., Kolberg, M.: A Scalable Home Care System Infrastructure
Supporting Domiciliary Care (2007)

9. Edwards, W.K., Newman, M.W., Sedivy, J., Smith, T., Izadi, S.: Challenge: Re-
combinant Computing and the Speakeasy Approach. In: MOBICOM’02 - The 8th
Annual International Conference on Mobile Computing. (2002) 279–286

10. Weld, D.S., Anderson, C., Domingos, P., Etzioni, O., Gajos, K., Lau, T., Wolf-
man, S.: Automatically personalizing user interfaces. IJCAI03, Acapulco, Mexico,
August (2003)

11. Calvary, G., Coutaz, J., Dâassi, O., Balme, L., Demeure, A.: Towards a new gen-
eration of widgets for supporting software plasticity: the ”comet”. Preproceedings
of EHCI/DSV-IS 4 (2004) 41–60

12. Crease, M., Brewster, S.A., Gray, P.: Caring, Sharing Widgets: A Toolkit of Sensi-
tive Widgets. Proceedings of BCS Human-Computer Interaction (HCI’2000) (2000)
257–270

13. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: CAMELEON-
RT: A Software Architecture Reference Model for Distributed, Migratable, and
Plastic User Interfaces. In: Second European Symposium on Ambient Intelligence,
Eindhoven (2004) 291–302


