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Abstract

It is shown how the classical n-body problem in mechanics can be generalised and formalised in LOTOS. A
number of variants are produced by instantiation of the specification framework. These include Newton’s cradle,
gas motion, the ‘game of life’, an orrery, a space game, an air traffic simulation and a sailing race. It is shown
how these are derived from the generic framework using a configuration tool. The resulting LOTOS specifications
are simulated automatically to graphically animate the system behaviour.
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1 Introduction

The n-body problem is a classical one in mechanics. It considers the motion of a number of masses under
gravitational attraction. For two bodies there is an analytical solution. For three or more bodies there is no
analytical solution and methods of approximation or simulation must be used. In this paper, the problem is
interpreted broadly as the interactions in space over time of a number of interacting elements. The problem is
then modelled in LOTOS (Language Of Temporal Ordering Specification [5]) and simulated to obtain the dynamic
behaviour as a graphical animation. The reader should briefly preview figure 2 to get a feel for the problem variants
to be discussed.

This kind of application takes LOTOS well outside its original domain of protocol specification and analysis.
The motivations for exploring the n-body problem in LOTOS are:

• The problem offers a significant challenge for LOTOS, stretching its ‘envelope’ and evaluating its applicability
in a completely new area.
• As will be seen, LOTOS can be used to provide a generic formulation. This allows a surprising number of

variations on the basic problem to be captured by the same specification framework.
• A number of the variants to be described have standard approaches, e.g. Lagrangian mechanics for the n-

body problem or Maxwell-Boltzmann theory for gas motion. However these are treated as separate theories
in physics. LOTOS supports a common approach to all the variations.
• As a specification language, LOTOS has formal notions such as equivalence, model-checking and proof.

The problem and its variants in physics also have formal models such as Newton’s equations of motion or
statistical mechanics. However the LOTOS approach is very different, and offers different kinds of analyses.
For example, the air traffic model given later might be shown (in principle) to avoid aircraft collisions.
It should be said, however, that this is an aspiration of the approach; so far, only simulations have been
undertaken.
• The n-body problem and its variants offer an entertaining change from the sometimes dry topics studied

by formal methods. The author confesses that a significant motivation was simply having fun with the
approach!

LOTOS has been used successfully in a number of non-protocol areas. These include aviation [3], computer-
integrated manufacturing [8], embedded systems [1], graphics standards [9], hardware [6], medical devices [11],
neural networks [4], and visualisation [12]. (Many more references could be given.) As far as the author knows,
the n-body problem is quite different from any previous application of LOTOS. The only similar work is [13] that
can generate graphical animations (the dining philosophers eating).
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Section 2 presents the problem framework, showing how the original n-body problem can be interpreted in a
more general way. A number of variants are illustrated. The LOTOS specification framework to encompass these is
then explained. Tool support for simulation is discussed in section 3. Section 4 gives some insight into the variants
of the general problem. This is illustrated in sections 5 and 6 for the n-body and Brownian motion problems.

2 The Problem in General

2.1 Problem Framework

The system under study consists of a number of interacting elements. In deference to the original problem, the
term ‘body’ is used although its interpretation is quite wide. The bodies interact in a problem-dependent way. For
example:
• In the n-body problem, interaction is by mutual gravitational attraction. The bodies are considered to

‘communicate’ their position via the medium of the ether. Although a physicist would find this an odd
interpretation, it is nonetheless legitimate.
• In a two-dimensional cellular automaton (Conway’s ‘game of life’), neighbouring cells interact by exchan-

ging information on their occupancy. Again this can be considered a form of communication.
• In the air traffic model, aircraft interact by communicating their position. This is a more conventional means

of communication using radar.
From a LOTOS viewpoint, the system is therefore modelled as a collection of communicating processes (one

per body). The ‘ether’ that permits communication is a common gate. This permits broadcast communication, i.e.
information made available by one body (say, its position) becomes known to all other bodies. For a number of
the problem variants this is exactly what is needed. For some variants, only information from neighbouring bodies
is relevant. The bodies therefore act on information from only nearby bodies. For example:
• For Newton’s cradle, only the immediate neighbours of a ball are relevant.
• In the game of life, the destiny of each cell depends only its eight immediate neighbours (orthogonally and

diagonally).
• In the sailing race, the rules for resolving conflict apply only when bodies (yachts, buoys) are within two

boat-lengths of each other.
The system is considered to be closed, i.e. to be free from external influences. In LOTOS terms, all commu-

nication between bodies is therefore internal (i.e. the Ether gate is hidden). In most applications, the bodies act
deterministically according to their attributes and the states of other bodies. Some applications, however, permit
non-deterministic behaviour:
• In Brownian motion, the particles are subject to collisions with gas molecules. The latter are not modelled,

only their effect in causing the particles to move randomly.
• In the space game, space-ships randomly change their heading and launch missiles.
• In the sailing race, the wind randomly changes direction and strength.
For most of the problem variants, the number of bodies is fixed in advance. However, for generality the LOTOS

formulation permits bodies to become inactive or to be (re-)activated as the system evolves. This is relevant to the
space game, for example, since the space-ships may fire missiles (thus creating new bodies).

Bodies have attributes. For consistency each body has a fixed set of attributes, although bodies use these
variously in different problem variants. Figure 1 summarises the use of the following attributes in various
applications:

Identity: An identity is simply a body identifier – an integer from 0 upwards.

Kind: The kind of a body identifies it as a mass, a gas molecule, an automaton cell, etc.

Rating: This is a catch-all numerical attribute used for additional information. For example, it gives the mass of
a planet or the speed rating of a yacht.

Size: This is used when drawing bodies, but is also relevant to the behaviour of some variants (e.g. the sailing
model). It defines the diameter of a planet, for example, or the length of a yacht.

Position, Velocity: These are vectors of arbitrary length, although only one, two and three dimensions apply to
the applications studied here.
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Problem Kind Rating Size Position Velocity Heading Path

N-Body Mass mass diameter (x,y) (x,y) - -
Pendulum Weight susp. length diameter θ ω - -
Newton’s Cradle Ball susp. length diameter θ ω - -
Brownian Motion Particle - diameter (x,y) (x,y) - -
Gas Motion Molecule mass diameter (x,y) (x,y) - -
Game of Life Cell occupancy width (x,y) - - -
Space Game Missile mass diameter (x,y) (x,y) - -

Spaceship mass length (x,y) (x,y) (x,y) -
Star mass length (x,y) - - -

Orrery Earth, etc. mass diameter (x,y) (x,y) - -
Air Traffic Aircraft max. speed length (x,y,z) (x,y,z) - waypoints

Waypoint - diameter (x,y,z) - - -
Sailing Race Mark - diameter (x,y) - - -

Yacht handicap length (x,y) (x,y) (x,y) marks
Wind max. speed arrow length (x,y) (x,y) - -

Figure 1: Particular Examples of the N-Body Problem

Heading, Path: These also use vectors. Heading may differ from velocity since, for example, a space-ship or a
yacht may point in a different direction to that in which it is currently travelling. Bodies in some problem
variants aim to follow a certain path as a list of vectors. A yacht sails a race as a succession of buoys (called
‘marks’) to be rounded, and an aircraft follows a flight plan that is a list of waypoints to be passed.

Figure 2 suggests how bodies are represented graphically in the different problem variants considered in this
paper. The graphical depiction is, of course, outside the LOTOS behaviour simulation. However, it is derived
directly from the simulation behaviour. Each step in the system evolution produces a new system state. This is
provided to a drawing program that creates the graphical display based on the attributes of each body.

The appearance of a body is not determined directly by the LOTOS specification, although various attributes
affect the drawing. For example the size, position and heading of a yacht determine how its hull is drawn. The
position of the sail is determined by the yacht’s heading and the point from which the wind is blowing. In the air
traffic application, the position and flight level of an aircraft are derived from the simulation. In a number of the
problem variants, the body identifier can be used by the drawing program to label the body, e.g. the name of a
planet or the call-sign of an aircraft.

2.2 Specification Framework

The approach performs a kind of discrete event simulation. System behaviour advances in steps, during each of
which the state of all bodies is made known. All bodies update then their state, based on their own state and that
of other relevant bodies. The next step in system evolution then begins.

The LOTOS specification contains a Step process that synchronises the behaviour of all bodies. An Ether
event is broadcast to all bodies, requesting them to update their state and broadcast this to other bodies. Since all
processes synchronise at the Ether gate, all events are shared. The processes thus proceed in lock-step. Each body
process contains a list of states for other bodies as well as its own state; LOTOS does not support the notion of a
global state.

The LOTOS specification framework contains most of what is needed to simulate a variant of the n-body
problem. Certain ‘holes’ are left in the specification for completion by a particular application:

any bodies: contains parallel instances of body processes, with initial values for their attributes.

any control: is used in a few applications (e.g. the space game or the game of life) that require overall control of
bodies. It defines a process rather than a type so that non-deterministic behaviour can be described. It may
create new bodies in parallel with existing ones (e.g. missiles in the space game, or new cells in the ‘game
of life’).

any params: gives any specification parameters or constants.
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any update: defines how to update the state of a body using information about the states of other bodies. This
is the heart of the specification, and the part that varies most among problem variants. All the applications
define a StateNext function:

StateNext : State, States > States

that updates the state for a body using its own state and that of other relevant (e.g. nearby) bodies.

The outline specification framework is as follows. The equations defining types have been omitted for brevity,
as have the closing keywords for declarations. The specification uses booleans and strings from the library.
Convenient conditional operations are defined for the booleans. Although natural numbers are available from the
library, their Succ notation is inconvenient. They are therefore implemented by the external C type int. Some
common constants and operations are introduced for the naturals; None is used for an undefined natural. Real
numbers are implemented by the external C type double. This is particularly necessary since a specification of real
numbers would be extremely complex in LOTOS. Some common constants 1 and operations are introduced for the
reals. Since LOTOS does not have a built-in syntax for numbers, they are given as modified identifiers (e.g. 3 14,
M1 2, 5E3 for 3.14, -1.2, 5× 103).

The implementation of naturals and reals is given as a parallel description using GLAD (General Language for
Annotating Data) that is part of the TOPO toolset [7]. There is a comparable approach for using external types in
CADP (Cæsar/Aldébaran Development Package [2]).

Specification AnyBody : NoExit (* overall specification *)
Library Boolean, String Endlib (* boolean, string *)
Type BoolOps Is Path, States (* boolean operations *)

Opns (* operations for booleans *)
If : Bool, Kind, Kind > Kind (* conditional for kind *)
If : Bool, Nat, Nat > Nat (* conditional for natural *)
If : Bool, State, State > State (* conditional for state *)
If : Bool, States, States > States (* conditional for states *)
If : Bool, Path, Path > Path (* conditional for path *)

Type Nat Is Boolean (* natural number – external *)
Sorts Nat (* sort name for natural *)
Opns (* operations for natural *)

0, 1, 2, 3, None : > Nat (* 0, 1, 2, 3, undefined *)
Succ : Nat > Nat (* successor *)

+ , − , * , ˆ : Nat, Nat > Nat (* add/sub/mul/exp *)
Lt , Le , Eq , Ne , Ge , Gt : Nat, Nat > Bool (* </<=/==/!=/>=/> *)

Type Real Is Boolean (* real number – external *)
Sorts Real (* sort name for real *)
Opns (* operations for real *)

M1, 0, 0 5, 1, 2, Random : > Real (* -1.0/0.0/0.5/1.0/2.0/0.0..1.0 *)
+ , − , * , / , ˆ : Real, Real > Real (* add/sub/mul/div/exp *)

Sin, Cos : Real > Real (* sin/cos *)
Square, Cube, Sqrt : Real > Real (* square/cube/square root *)
Abs : Real > Real (* absolute *)

Lt , Le , Eq , Ne , Ge , Gt : Real, Real > Bool (* </<=/==/!=/>=/> *)

Animation is presented using one of three drawing modes: Label (body shape plus label), Shape (body shape
only) and Trail (trace of a body’s position). The kind of a body is simply an enumerated type that covers all the
problem variants. Adding a new kind of body requires a simple extension to the Kind type, plus adding new code
to the C support library for drawing the body.

Type Mode Is Nat (* drawing mode *)
Opns (* operations for mode *)

Label, Shape, Trail : > Nat (* drawing modes *)
Type Kind Is Nat (* kind of bodies *)

Sorts Kind (* sort name for kind *)

1The definition of Random is somewhat naughty since it has the signature of a constant but is implemented by a random function.
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Opns (* operations for kind *)
Aircraft, Ball, Cell, Earth, Mark, Mars, Mass, Mercury, Missile, Molecule,

Moon, Particle, Ship, Star, Sun, Venus, Waypoint, Weight, Wind, Yacht, None : > Kind
Ord : Kind > Nat (* ordinal number for kind *)
Eq , Ne : Kind, Kind > Bool (* (in)equality of kind *)

A number of variants on lists are required. These are instantiations of the library string type. The ‘+’ operation
for element concatenation is highly overloaded in the library and is renamed ‘&’. Basic lists are extended with
some convenient operations.

Type List Is String RenamedBy (* string as list *)
OpnNames & For + (* element prefix/append *)

Type ListOps Is Nat, List (* list operations *)
Opns (* operations for lists *)

IsIn : Element, String > Bool (* element is in string? *)
NotIn : Element, String > Bool (* element is not in string? *)
1st, 2nd, 3rd : String > Element (* first/second/third values *)
Nth : Nat, String > Element (* nth string element (0, ...) *)
Tail : String > String (* all but first value *)

Nearly all the problem variants require vectors, so these are created as lists of reals with obvious operations.
A path is a list of vectors.

Type Vec Is ListOps (* vector as number list *)
ActualizedBy Real, Boolean Using (* use actual types *)
SortNames (* actual sort names *)

Real For Element (* real as element type *)
Vec For String (* vector sort name *)
Bool For FBool (* use actual booleans *)

OpnNames (* actual operation names *)
Vec For String (* element to vector *)

Type VecOps Is Nat, Vec (* vector operations *)
Opns (* operations for vectors *)

+ , − , * , / : Vec, Vec > Vec (* vector-vector add/sub/mul/div *)
+ , − , * , / : Real, Vec > Vec (* scalar-vector add/sub/mul/div *)

Mag, SumSquares : Vec > Real (* magnitude/sum of squares *)
Type Path Is ListOps (* path as vector list *)

ActualizedBy Vec, Boolean Using (* use actual types *)
SortNames (* actual sort names *)

Vec For Element (* vector as element type *)
Path For String (* path sort name *)
Bool For FBool (* use actual booleans *)

OpnNames (* actual operation names *)
Path For String (* element to path *)

A state is simply a record-like structure containing the attributes given earlier. A list of states and an operation
to update a state are then defined. NoState is introduced as the undefined state. The reference to any params
includes any specification parameters (such as masses or diameters) that are generated for the problem variant.
The reference to any update includes the problem-defined update procedure.

Type State Is Nat, Kind, Real, Vec, Path (* body state *)
Sorts State (* sort name for state *)
Opns (* operations for state *)

State : Nat, Kind, Real, Real, Vec, Vec, Vec, Path > State(* id/kind/rate/size/pos/vel/head/path *)
Id : State > Nat (* identifier *)
Kind : State > Kind (* kind *)
Rate : State > Real (* rating *)
Size : State > Real (* size *)
Pos, Vel, Head : State > Vec (* position/velocity/heading *)
Path : State > Path (* path *)
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NoState : > State (* undefined state *)
Eq , Ne : State, State > Bool (* (in)equality for states *)

Type States Is ListOps (* states as state list *)
ActualizedBy State, Boolean Using (* use actual types *)
SortNames (* actual sort names *)

State For Element (* state as element type *)
States For String (* state list sort name *)
Bool For FBool (* use actual booleans *)

OpnNames (* actual operation names *)
States For String (* element to state list *)

Type StatesOps Is BoolOps, VecOps (* state list operations *)
Opns (* operations for state list *)

StateUpdate : State, States > States (* modify state for body *)
any params (* parameters/constants *)
any update (* update procedure *)

The overall specification behaviour is that of the Bodies process synchronised with the Step control process.
All bodies broadcast their state via the Ether gate. Each body may also communicate individually with step control
via the Control gate. This is used to assign each body a unique identifier when it starts up.

Behaviour (* overall behaviour *)
Hide Ether, Control In (* communication internal *)

Bodies [Ether, Control] (* bodies *)
|| (* synchronised with *)

Step [Ether, Control] (0 of Nat, 0 of Nat, 0 of Nat, 0 of Real) (* start and run simulation *)
Where (* subsidiary definitions *)

The bodies are initialised using the problem-defined any bodies. This instantiates the Body process for each
body in parallel. The parameters are the attributes for bodies given earlier. In the few problem variants that require
it, any bodies also includes any control for overall body control.

Process Bodies [Ether, Control] : NoExit : (* create bodies initially *)
any bodies

Initially a body claims a unique identifier by synchronising with the Step control process. Bodies are normally
initialised with no knowledge of other body states, but if a body is created dynamically during simulation then this
information is supplied to it. In such a case the body immediately enters its updating phase BodyUpdate, otherwise
it enters its waiting phase BodyWait.

In the waiting phase, a body is triggered by an Ether event to compute and broadcast its new state. The number
of active bodies is supplied in this event to all bodies, although this information is not used in most problem
variants. If a body becomes inactive during simulation (e.g. a cell in the ‘game of life’ dies), its kind is set to
None. It therefore has no state to update and remains in the waiting phase. Normally the body is active and enters
the update phase. While waiting a body may learn the state of other bodies, broadcast over the Ether gate. An
inactive body may be activated by broadcasting its new state, so there is a check for a matching identifier in the
new state. In the updating phase, the body may broadcast its own state and then go back to waiting. It may also
learn the state of another body while its state broadcast is pending.

Process Body [Ether, Control] (* set up body id, states *)
(kind : Kind, rate, size : Real, pos, vel, head : Vec, path : Path, states : States) : NoExit :
Control ? id : Nat; (* get unique body id *)
(

Let state : State = State (id, kind, rate, size, pos, vel, head, path) In (* set initial state *)
(

[states Ne <>] > (* other states known? *)
BodyUpdate [Ether] (state, states) (* start body with states *)

(* or *)
[states Eq <>] > (* other states unknown *)

BodyWait [Ether] (state, states) (* start body with states *)
)

)
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Process BodyWait [Ether] (state : State, states : States) : NoExit : (* body waiting phase *)
Ether ? active : Nat; (* get request for updates *)
(

[Kind (state) Ne None] > (* body active? *)
BodyUpdate [Ether] (StateNext (state, states), states) (* broadcast new state *)

(* or *)
[Kind (state) Eq None] > (* body inactive? *)

BodyWait [Ether] (state, states) (* do not broadcast state *)
)

(* or *)
Ether ? new state : State; (* learn body state *)
(

[Id (new state) Ne Id (state)] > (* for other body? *)
BodyWait [Ether] (state, StateUpdate (new state, states)) (* repeat with other’s new state *)

(* or *)
[Id (new state) Eq Id (state)] > (* for same body? *)

BodyWait [Ether] (new state, states) (* repeat with own new state *)
)

Process BodyUpdate [Ether] (state : State, states : States) : NoExit : (* body updating phase *)
Ether ! state; (* broadcast own new state *)
BodyWait [Ether] (state, states) (* wait for new updates request *)

(* or *)
Ether ? new state : State; (* learn other body state *)
BodyUpdate [Ether] (state, StateUpdate (new state, states)) (* repeat with own new state *)

The Step process is parameterised by the number of active bodies, the next new body identifier, the count
of simulation cycles, and the simulation time. Unless simulation has yet reached the cycle limit (defined as a
specification parameter), Step can allocate a body identifier on request at the Control gate. If there are one or
more one active bodies, Step can trigger them to update their states using an event at the Ether gate. The TOPO
annotation (*|C ... |*) is used to call code written in C. Here the function draw sync is called with process parameter
4 (time) to draw the state of all bodies on the graphical display. The Step process may also be informed of a new
body state by broadcast over the Ether gate. This special situation arises only if an inactive body is re-activated or
if a new body is created dynamically. The C annotation after this event passes the body state (event parameter 1)
to the draw state function. This simply records the body state for later drawing when draw sync is called.

The StepUpdate process accepts the broadcast of an updated body state, calling draw state to note this. If
the new body kind is None (because it has become inactive), the count of active bodies is decreased. Normally
number of active bodies remains the same, and StepUpdate increments the count of bodies it has seen. If more
body updates are expected, StepUpdate repeats its behaviour. When all updates have been received, behaviour
reverts to the main Step process.

Process Step [Ether, Control] (* run simulation steps *)
(active, nextid, cycles : Nat, time : Real) : NoExit :
[cycles Le Limit] > (* cycles left? *)

(
Control ! nextid; (* give new body id *)
Step [Ether, Control] (active + 1, nextid + 1, cycles, time) (* repeat with new active, id *)

(* or *)
[nextid Gt 0] > (* at least one body? *)

Ether ! active (*| C draw sync ($4); |*); (* issue updates request and draw bodies *)
StepUpdate [Ether, Control] (* allow state updates *)

(0 Of Nat, active, nextid, cycles, time)
(* or *)

Ether ? state : State (*| C draw state ($!1); |*); (* note re-activated/new body state *)
(

Let active : Nat = (* increment if re-activated *)
If (active Lt nextid, active + 1, active) In
Step [Ether, Control] (active, nextid, cycles, time) (* repeat with new active *)
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)
)

(* or *)
[cycles Gt Limit] > (* cycle limit reached? *)

Stop (* finish simulation *)
Process StepUpdate [Ether, Control] (* allow state updates *)

(count, active, nextid, cycles : Nat, time : Real) : NoExit :
Ether ? state : State (*| C draw state ($!1); |*); (* note new body state *)
(

Let (* modify active and count *)
active : Nat = If (Kind (state) Ne None, active, active− 1),
count : Nat = If (Kind (state) Ne None, count + 1, count) In
(

[count Lt active] > (* more bodies for updating? *)
StepUpdate [Ether, Control] (count, active, nextid, cycles, time) (* repeat updates *)

(* or *)
[count Eq active] > (* all bodies updated? *)

Step [Ether, Control] (active, nextid, cycles + 1, time + Tick) (* repeat step *)
)

)
EndSpec (* AnyBody *)

3 Simulation Support

Figure 3 shows the overall flow of information among the tools. The LOTOS specification can be executed using
a standard simulator such as the LOLA (LOTOS Laboratory) simulator from TOPO, or alternatively the CADP
simulator. This can be done manually, either step-by-step or automatically according to some criterion such as
search depth. However the aim is to run the simulation automatically. The TOPO LOTOS-to-C compiler is therefore
used to generate fully executable code. The compiled LOTOS is supplemented by implementations of naturals
and reals, and also by an interface to the graphical display. The approach is essentially platform-independent.
However graphical display necessarily varies as it depends on the supporting system. In the author’s environment
(OPENSTEP), graphics are handled by a Display PostScript interpreter. Bodies are drawn using PostScript, which
is fairly widely supported. Normally each animation frame is sent to the screen, but the drawing functions can also
divert each frame to a file. This can be converted to an animated GIF (Graphics Interchange Format) file using the
public domain pstogif and whirlgif tools.

The specification framework in section 2.2 needs to be instantiated for the various problem variants. For
convenience, the framework is held as a single template that is filled in using a macro processor – m4 [10] in
this case. This allows one specification framework to be used for all the variants. Since the goal is graphical
simulation, it would be preferable to enter the initial configuration of bodies graphically. This is quite feasible, but
has not yet been done. The general features of m4 (such as define for a macro) may also be used in the problem
description. For example, the n-body macro library includes randint and randreal for random integers and reals.
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A small number of macros are pre-defined: body (body attributes), control (control procedure), param
(specification parameter), update (update procedure), and vec (vector value). Parameters for body may be
omitted, and default to sensible values. For example the velocity, heading and path parameters are not used for
cells in the ‘game of life’, and default to empty lists. The various macros accumulate information about the bodies
and their attributes. Finally, update inserts this information into the specification framework and generates the
complete LOTOS file.

The specification parameters are mainly used to control the simulation. Various parameters are pre-defined
and may be re-defined if necessary. These include Limit (number of simulation steps), Mode (drawing mode),
Pause (time between animation frames), Scale (drawing scale), and Tick (simulation time step). Other specification
parameters control only how bodies are drawn (e.g. the Diameter of a planetary body or particle). Parameters
controlling the specification may also be defined (e.g. the Impulse delivered to a particle in Brownian motion). The
parameters, plus other numerical constants, are accumulated in any params for inclusion in the final specification.

The LOTOS specification is essentially complete and can be used for other analyses such as verification and
validation. The only external support is for numbers. Although this ‘cheats’ slightly, numbers have well-known
theories that can be used for more formal analysis. The implementation of numbers makes use of a GLAD file
that describes how to implement data. Although GLAD annotations can be given directly as special comments in
the LOTOS specification, this tends to clutter up the specification. A separate GLAD file is therefore provided. As
an example, here is a fragment of how real numbers are implemented:

Specification (* Real *) => (* implementation of reals *)
(*| ldc #include "real.h" |*) (* header file for reals *)
(*| ldcinit Real = ud sort ("Real"); |*); (* initial code for reals *)

Sorts
Real => (* basic functions for reals *)

(*| extern |*) (*| draw Real Draw |*) (*| equal Real Check |*)
(*| free Real Free |*) (*| parse Real Parse |*);

Opns
Any : forall > Real => (* prefix for functions producing reals *)

(*| using Real |*);
1 : > Real => (* implementation of constant 1 *)

(*| constructor |*) (*| extern |*) (*| call Real Make (1.0) |*);
+ : Real, Real > Real => (* implementation of real addition *)
(*| extern |*) (*| name Add |*);

EndSpec (* Real *);

This requires the C header file real.h and initialises the sort code for reals. An external sort must be provided with
functions to draw (print) values of the sort, check for equality, free allocated space, and parse textual values of the
sort. To avoid clashes of overlead function names in the generated C, the using pragma can be used to define a
prefix for the C functions (here Real for any operation that yields a real). The constant 1 is implemented by calling
the function Real Make with 1.0 as argument. Real addition calls the function Real Add. These functions are
defined using standard C (with some additional macro definitions and standard libraries). For example, addition
of two real numbers (of type udatum – user datum) is carried out by:

udatum Real Add (udatum r1, udatum r2) { /* add reals r1 and r2 */
udatum r; /* result is r */
SETREAL (r); /* allocate space for r */
REAL (r) = REAL (r1) + REAL (r2); /* perform the addition */
FREEREAL (r1); FREEREAL (r2); /* free the space for r1 and r2 */
return r; /* return the result */
}

4 The Problem in Particular

Section 2 has presented the overall strategy for simulating the n-body problem and its variants. The following notes
explain how the specification framework is instantiated in each case. An informal rather than LOTOS explanation
is given. Sections 5 and 6 give details of the n-body and brownian motion applications.
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The N-Body Problem: There is only one kind of body, the mass. Masses are initialised with values for their
mass, diameter, position and velocity. To update the state of a mass m, its distance d to each other mass m i
is calculated. The gravitational force acting on the mass is then given byG mmi

d2
where G is the gravitational

constant. The force is a vector quantity directed towards the other mass. The force vectors for all masses
are summed and divided by the mass m. This gives the instantaneous acceleration due to gravitational
attraction as a vector quantity. The simulation time-step uses the acceleration to determine the new position
and velocity. The masses often move in surprisingly complex ways.

Orrery: An orrery is a simulation of the solar system. This is just the n-body problem with particular values
for the inner planets as bodies (and, in principle, for all planets, planetoids and planetesimals). The bodies
are initialised with the relevant mass, diameter, distance from the sun, and orbital velocity. The body kinds
generate the labels during drawing.

Space Game: The inspiration for this example is an early computer game. It is rather similar to the n-body
problem. There are two stars, considered fixed because of their comparatively high mass and separation.
There are two space-ships that, in the original game, are controlled by users. However since the LOTOS

model is closed, the effect of user control is simulated by strategic changes in the velocity and heading
of each space-ship. Each space-ship may also randomly launch a missile; this is given a fixed velocity
relative to the heading of the space-ship. The space-ships and the missiles are governed by the gravitational
attraction of the stars, as in the n-body problem. If a collides with another body, the simulation stops and
the remaining space-ship wins (unless it collides with the other space-ship).

Pendulum: There is only one kind of body, a weight, and only one of these. The vectors are one-dimensional as
there is only one degree of freedom. The pendulum weight is characterised by its off-vertical angle θ and its
angular velocity ω. The pendulum is initialised with a mass, length for the suspension, and initial angle; the
initial velocity is zero. For mass m and acceleration due to gravity g, the tangential force on the weight is
mgsinθ. This gives the instantaneous acceleration as a vector with magnitude gsinθ. The simulation uses
this to determine the new angular position and velocity. The pendulum weight therefore moves, and in fact
oscillates indefinitely since the system is assumed to be lossless.

Newton’s Cradle: This is a development of the pendulum. A number of balls are suspended by V-shaped threads
that allow them to swing in one plane. When the end ball collides with its neighbour, it stops but its
momentum is passed on. In the simulation, the velocity of the originally moving ball is passed to its
neighbour. This is then considered to collide with the next ball, and so on down the line. Finally, the
outermost ball is launched on its arc with this velocity. The specification correctly describes other situations
such as several balls on each side being in motion.

Brownian Motion: In this example there are multiple instances of one kind of body, the particle. These are
initialised with values for their diameter and position; velocities are initially zero. The weight of a particle
is disregarded since the effect of gravity is considered negligible. The state update process simply adds
a random amount to the velocity of the particle, simulating the effect of collision with a fluid molecule.
Particle motion is subject to viscous drag. Over time, each particle follows a random walk.

Gas Motion: This is similar to Brownian motion. There are gas molecules confined within a box. Drag is not
relevant. If a molecule collides with another or with the edge of the box, it bounces off elastically.

Game of Life: This example of a cellular automaton was defined by J. H. Conway. There is a single kind of body,
the cell. It is initialised with its width (solely for drawing purposes) and a fixed position on a two-dimensional
grid. Only occupied cells are modelled (since, the overall space is generally sparse). To update the state
of a cell, the occupancy of its orthogonal and diagonal neighbours is checked. An occupied cell with zero
or one neighbours is considered to die from loneliness; it becomes vacant. An occupied cell with two or
three neighbours remains occupied. An occupied cell with more than three neighbours is considered to die
from overcrowding. A vacant cell with three neighbours is born (becomes occupied); it remains vacant in
all other cases. From the initial configuration of occupied cells, cells are born or die in complex patterns.
The behaviour may reach a static state that does not evolve, may enter a repeated cycle, or may evolve
indefinitely.

Air Traffic: At the time of writing, this problem variant has been designed but not yet implemented. The two
kinds of body in this system are aircraft and waypoints (fixed points in three-space used to define the path of
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an aircraft). In practice the wind (e.g. the jetstream) is an important factor in flight, but this is ignored in the
model. An aircraft is initialised with its maximum speed, length (for drawing purposes only) and position;
its velocity is initially zero. An aircraft is given a list of waypoints as its flight plan – its point of origin, the
points along its path, and its destination. The waypoint identifier is used during drawing, while the aircraft
identifier is used to generate a fictitious call-sign on the PPI (Plan-Position Indicator – a radar display). The
x and y coordinates of the aircraft’s position determine its location on the display. The z coordinate dictates
how its flight level is displayed (the height in hundreds of feet shown next to the aircraft position).

The state update process is rather crude; a full air traffic simulation would be an immense amount of work. In
isolation an aircraft adjusts its velocity in increments, subject to a maximum speed. This maximum decides
the size of any changes in velocity. The adjustment is made to send the aircraft towards its next waypoint.
When the final waypoint is reached, the aircraft is removed from the simulation. The aircraft also checks its
position relative to other aircraft. There is no problem if they are separated by at least 1000 feet vertically,
one nautical mile to either side, and five nautical miles ahead. If two aircraft approach closer than this, the
upper one climbs. (Clearly this simple rule can lead to conflicts and collisions!)

Sailing Race: At the time of writing, this problem variant has been designed but not yet implemented. The sailing
race resembles the air traffic system but in two dimensions. There are moving yachts and fixed marks (the
buoys used to indicate a racing course). The wind is a further kind of ‘body’. Unlike the aircraft simulation,
yachts have a heading and are subject to the wind. Yachts are normally be initialised to begin near a start
line (in practice a line between the starting mark and some fixed position). A yacht completes a course by
crossing a finishing line (between the finishing mark and some fixed position).

A mark is drawn as a fixed body. A yacht is drawn according to its length, position and heading. The
position of its sail is determined automatically from its heading relative to the wind, varying from close to
the centre line of the yacht (when sailing upwind) to extending at right angles to the centre line (when sailing
with the wind behind). The wind is drawn according to its position (point of origin) and velocity (which
determines the length and direction of the arrow).

This simulation has the most complex state update rules. For a given heading, the speed of a yacht is
determined by the relative direction of the wind, the wind strength and the rating of the yacht. Yachts are
given a PYH (Portsmouth Yardstick Handicap) rating that is inversely proportional to their estimated speed.
The speed of a yacht varies in a complex way according to the angle to the wind. This is approximated by a
cardioid function (r = d(1 + cosθ) in polar coordinates). The speed is used to update the yacht’s position
during a simulation time-step.

In isolation, a yacht aims to complete the course subject to wind conditions. This is non-trivial because
yachts cannot sail much closer to the wind than about 45 degrees. When sailing upwind (the angle between
the bearing to the next mark and the wind origin is less than 90 degrees), yachts typically have to tack
(zig-zag through 90 degree turns) in order not to sail too close to the wind. Their strategy depends on the
relative bearings of the wind and the next mark. When a yacht reaches a mark, this is removed from its
path list so that the next mark determines the heading. In pseudo-code, the state update process does the
following:

if sailing upwind
then

if current tack is more favourable
then set heading to 45 degrees off the wind
else tack

else set heading to next mark

The notion of a favourable tack depends on the wind direction relative to the bearing of the next mark.
Basically a yacht aims to sail no further than 45 degrees off the course to an upwind mark.

When a yacht approaches another body, rules defined by ISAF (the International Sailing Federation) dictate
which yacht has priority. The full set of rules is complex, so only the most basic are specified. Proximity
is taken as being within two boat-lengths of another body (a yacht or a mark). A yacht is said to be on a
starboard tack if its sail is out to port (left), or on port tack if its sail is out to starboard (right). Yachts are
said to overlap if neither is astern (behind) the other. An inside yacht is one whose course leads closer a
mark. A downwind yacht is further away from where the wind originates.

In pseudo-code, the state update process does the following in the case of conflict:
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if one yacht is close to a mark
then

if the yacht is sailing upwind
then

if both yachts are on the same tack
then the inside yacht has priority
else the yacht on starboard tack has priority

else the inside yacht has priority
else

if both yachts are on the same tack
then

if the yachts overlap
then the downwind yacht has priority
else the yacht ahead has priority

else the yacht on starboard tack has priority

The yacht without priority must take avoiding action (e.g. turn away from the other yacht). Clearly there
are still possibilities for conflict and collision (which is why the full racing rules are so complex).

5 Sample Application: N-Body

The n-body application is used to illustrate the overall approach. The problem description gives various simulation
parameters:

param(Limit, 1500) # simulation step limit
param(Mode, Shape) # drawing mode
param(Scale, 0.4) # drawing scale

Body definitions are given as their kind (all Mass), mass (in units of 10 24 kilograms), diameter (in units of 106

metres), initial position and velocity (in units of 109 metres):

body(Mass, 14.0E17, 100.0, vec(100.0, 550.0), vec(0.0, 0.0))
body(Mass, 1.2E16, 30.0, vec(100.0, 950.0), vec(12.0, 0.0))
body(Mass, 2.1E16, 50.0, vec(350.0, 250.0), vec(−9.2,−9.2))
body(Mass, 4.5E16, 60.0, vec(600.0, 50.0), vec(−7.0,−7.0))

This problem variant computes the next state of a mass by adjusting its position and velocity according to the
gravitational acceleration. The new position p and velocity v depend on the mass of the other body m, the distance
to the other body d, the gravitational acceleration a, the gravitational constant G, and the time step ∆t. As a first
approximation, these are related by the formulae:

p′ = p+∆tv +
1

2
∆ta2

v′ = v +∆ta

a = G
m

|d|3
d

However this is inaccurate because the formulae hold only if the acceleration is constant during the time-step.
This is reasonable if the masses are distant, but as they approach each other (or if the time step is large) the
acceleration changes during the time-step. A better approximation is to allow for half the change in velocity when
calculating the new position:

p′ = p+∆tv +
1

2
∆ta+

1

2
∆ta2

The problem description gives these formulae in LOTOS terms as the update procedure: 2

update( (* update macro *)
Type Update Is StatesOps (* update procedure *)

Opns (* operations for updating *)

2In general, macro bodies should be given in single quotes to prevent their premature expansion and to protect exposed commas and
parentheses.
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Figure 4: Partial Screen Shots for N-Body Simulation

Accel : Vec, State, States > Vec (* add up accelerations for state *)
StateNext : State, States > State (* calculate next state *)

Eqns
ForAll

id : Natural, pos, acc : Vec, mass : Real,
st, st1, st2 : State, sts, sts1, sts2 : States
OfSort Vec

Accel (acc, st, <>) = acc; (* use gathered acceleration *)
Accel (acc, st1, st2 & sts) = (* add up acceleration *)

Accel (acc + ((BigG * Rate (st2) / Cube (Mag (Pos (st2) − Pos (st1)))) *
(Pos (st2) − Pos (st1))), st1, sts);

OfSort State
StateNext (st, sts) = (* next state for mass *)

State (
Id (st), Kind (st), Rate (st), Size (st), (* same id/kind/rate/size *)
Pos (st) + (Tick * (Vel (st) + (0 5 * Tick * Accel (<>, st, sts)))) +

(0 5 * Square (Tick) * Accel (<>, st, sts)),
Vel (st) + (Tick * Accel (<>, st, sts)),
Head (st), Path (st)); (* same heading/path *)

EndType (* Update *))

The problem description is given in the file nbody.any. It is translated and simulated by the command
anybody nbody. Figure 4 shows partial screen shots of the animation. The left-hand diagram shows the Label
drawing mode, the right-hand diagram shows the Trail drawing mode.

6 Sample Application: Brownian Motion

Brownian motion is used as another example of the overall approach. The problem description gives various
simulation and specification parameters:

define(Diameter, 8) # particle diameter
define(PosMax, 300) # largest initial position
param(Drag, 0.02) # drag coefficient for particle
param(Impulse, 2.) # maximum impulse from impact
param(Limit, 600) # simulation step limit
param(Mode, Shape) # drawing mode

The description uses m4 to instantiate a random number of particle bodies of kind Particle, the given particle
Diameter, and a random position. Macros are defined in m4 by giving their name and expansion. Macro parameters
are identified as $1, etc.

define(randpos, # calculate random position
randreal(−PosMax, +PosMax)) # within ± given maximum

define(particles, # define given number of particles
ifelse($1,0,, # finish if particle number 0

body(Particle, 0., Diameter., vec(randpos, randpos)) # otherwise instantiate particle body
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Figure 5: Partial Screen Shots for Brownian Motion Simulation

particles(decr($1)))) # repeat for decremented particle count
particles(randint(20,30)) # define random number of particles

This problem variant computes the next state of a particle by adding a random impulse to its velocity during
each time step. The new position p and velocity v depend on the drag factor f, the drag coefficient d (based on
the particle shape shape and the density of the medium), the random change in velocity∆v, and the time step∆t.
These are related by the formulae:

p′ = p+∆tv

v′ = fv +∆v

f = 1− d∆t|v|2

The problem description gives these formulae in LOTOS terms as the update procedure:

update( (* update macro *)
Type Update Is StatesOps (* update procedure *)

Opns (* operations for updating *)
StateNext : State, States > State (* calculate next state *)
DragFactor : State > Real (* calculate drag factor *)

Eqns (* equations for updating *)
ForAll st : State, sts : States (* global state, states variables *)

OfSort State (* operations that produce a state *)
StateNext (st, sts) = (* next state for particle *)

State (
Id (st), Kind (st), Rate (st), Size (st), (* same id/kind/rate/size *)
Pos (st) + (Tick * Vel (st)), (* new position *)
(DragFactor (st) * Vel (st)) + (* new velocity *)

(((2*Random− 1) * Impulse) & Vec ((2*Random− 1) * Impulse)),
Head (st), Path (st)) (* same heading/path *)

OfSort Real (* operations that produce a real *)
DragFactor (st) = 1 − (Drag * Square (Mag (Vel (st))) * Tick)

EndType (* Update *))

The problem description is given in the file brownian.any. It is translated and simulated by the command
anybody brownian. Figure 5 shows partial screen shots of the animation display. The left-hand diagram shows
the Shape drawing mode, the right-hand diagram shows the Trail drawing mode.

7 Conclusion

As has been seen, the n-body problem can be generalised to an interesting range of applications. Some of these
are obvious variations on the original problem, while others are more radical interpretations. Nonetheless it has
been possible to develop a specification and simulation framework in LOTOS that encompasses the full gamut of
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examples. The specification framework is instantiated with the particulars of the kinds of bodies, their initial setup,
and how interactions update their states. A pre-processor takes this information and creates a specific instance
of the n-body problem specification. Standard LOTOS tools (with the help of C annotations) then simulate the
behaviour of the system. Each simulation step is animated graphically by a drawing tool, either on-screen or in an
animated GIF file.

The n-body problem has certainly stretched LOTOS, and has shown its application in a non-traditional domain.
An obvious future development is to provide a graphical front-end for initial configuration of objects and subsequent
online display of their behaviour. A more challenging objective is to use the formal nature of the specifications
to establish properties of the systems. For example an air traffic collision avoidance strategy might be shown to
avoid conflicts, or planetary bodies might be shown to orbit without collision.
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