Kenneth J. Turner, Stephan Reiff-Marganiec, Lynne Blair, Jianxiong Pang, Tom Gray, Peter Perry and
Joe Ireland. Policy Support for Call Control, Computer Standards and Interfaces 28(6):635-649, June 2006

Policy Support for Call Control

Kenneth J. Turney, Stephan Reiff-Margani€¢ Lynne Blair?,
Jianxiong Pang, Tom Gray’, Peter Perryand Joe Ireland

& Computing Science and Mathematics, University of StirlBiiling FK9 4LA, UK
b Computer Science, University of Leicester, Leicester LIEH,JUK
¢ Mitel Networks, 350 Legget Drive, Kanata, Ontario K2K 2Wé&n@da
d MKC Networks, 555 Legget Drive, Kanata, Ontario K2K 2X3, &de

Abstract

The need for policies to control calls is justified by the diag face of communications.
It is argued that call control requires distinctive capiéibs in a policy system. A spe-
cialised policy language called®EL (ACCENT Project Policy Environment/Language)
has therefore been developed for this purpose. Howeveriiwy panguage is cleanly sep-
arated into a core plus specialisations for various apjicalomains. The paper describes
both the foundation and the call control ontologies. Sarppliey examples are provided
to illustrate use for call control. The paper also presemespolicy system architecture in
which the policy language is interpreted. The componentthefpolicy system are de-
scribed, particularly the policy server and the policy wikza

Keywords: Call Control, Internet Telephony, Policy, Policy Conflict

1 Introduction

1.1 The Need for Policies

Communications has become increasingly pervasive andsing. Calls may be received at
work or at home, on fixed-line or mobile telephones. Anyong el at any time about any
subject. Calls may be placed using conventional or Inteieglephony. Voice may be supple-
mented by video, data or other media. Calls may be suppostezbiwentional telephones,

Email addresses: kjt@cs.stir.ac.uk (Kenneth J. Turner), srml3@le.ac.ukefd®an Reiff-

Marganiec), Ib@comp.lancs.ac.uk (Lynne Blair), j.pang&sx.ac.uk (Jianxiong Pang),
digroup codec@direcway.com (Tom Gray), petperry@mitel.com (Peter Perry), jire-
land@mkcnetworks.com (Joe Ireland).

Preprint submitted to Elsevier Preprint 21 August 2006

cellphones, softphones, PDAs, voicemail, message tnaagints, and web browsers. As a
consequence of this bewildering variety, there is an urgeatl for flexible control of calls.

Traditionally, call control has been supported by netwakviees normally called features.
For example Call Forward Busy Line allows the user to divaltsovhen busy, or Call Waiting
allows the user to suspend callers. However call featuees aomewhat dated approach, and
suffer from several disadvantages.

Features stem from a network-centric era in which call @dntras performed entirely by
network operators. This was beneficial in that features wiefened by and under the con-
trol of a single network operator. However, services areeasingly being deployed on the
edge of networks. These may be provided by third parties floerousers (e.g. Parlay/OSA,
www.parlay.org, or may be defined by end-users and their organisations.

Internet-based calling presents a striking differencenfomnventional telephony. The Internet
philosophy is very much to have a simple and efficient coravol¢, with complex facilities
provided in the hosts and terminals. In contrast, conveatitelephony emphasises the central
role of the network in providing services to simple term@malhus in Internet telephony, the
approach has been to support advanced call processingendpeints. SIP (Session Initiation
Protocol [18]) is a good example. SIP services are typiciiyloyed in enterprise proxy servers
using SIP CGI (Common Gateway Interface [10]). SIP user @g@mnd-user interfaces) may
allow users to define call preferences with CPL (Call Praocgdsanguage [9]).

Features tend to be low-level, inflexible, implementatosiented and imperative. Some pa-
rameterisation is possible (e.g. the choice of forwardimgnber) but is very limited. The use of
policies is attractive for call control. Policies tend toligh-level, flexible, goal-oriented and
declarative. Policy support has arisen in areas such ashdistd systems, access control and
QoS. This paper reports a new kind of application for podicell handling. Policies promise
to be the replacement for features in Next Generation Ndtsyavhich are likely to be based
on Internet standards and to support services at the edge attwork.

The paper presents work by thee8eNT project (Advanced Call Control Enhancing Network
Technologies). The aim of this project was to develop posiapport for call control in an
Internet setting. ACENT was mainly focused on demonstrating policy support for S€s
sion Initiation Protocol [18]). However policy support fet.323 (a popular form of Internet
telephony [8]) has also been undertaken in parallel workTGE present paper is fully com-
plementary to [6], in that it explains the general foundafiar policy support.

1.2 Related Work

CPL (Call Processing Language [9]) allows users to define thew wish calls to be handled.
However CPL is limited in a number of ways that make it unsa@dor general call control:

e CPL is limited in its network bindings (currently H.323 andPy
e CPL gives very limited control over calls, specifically justll setup. There is also a need

for mid-call control (e.g. when a new party is added to a iy call tear-down control (i.e.
when a call is disconnected).

CPL supports only limited call control, e.g. through checkghe caller or the current time.
CPL does not support a range of preferences (positive ottimegwith different strengths).
CPL has limited integration with presence and availabgifgtems.

CPL offers no mechanisms for detecting and resolving cdafimong call preferences.

Call centres and CTI (Computer Telephony Integration) supibexible call handling; see [4]
for a survey of the approaches. Call centres rely on mectmenssich as CLI (Calling Line
Identification) and ACD (Automatic Call Distribution) to wte callers to appropriate agents.
Call centres are designed for large businesses, unlikedhleneported here which is intended
for individual end users. Call centres essentially deahwituting within one organisation,
whereas call policies handle calls on a global basis. Calires also do not support the kinds
of capabilities discussed in this paper. Policy-based supgd calls is thus complementary to
the techniques used in call centres.

Policies have been used in many kinds of management tasid¢fines policies as informa-
tion that can be used to modify the behaviour of a system.i$laisery general and open-ended
definition. In the context of this paper, policies are intetpd as the goals for how calls should
be handled. Policies lend themselves well to networkediegtpmns, where the very distri-
bution demands careful management. Despite this, calllimgnslystems have attracted little
policy support. [1] uses fuzzy policies as a means of resgl¥eature interactions. From the
most recent conference dieature Interactions in Telecommunications and Softwgetesns

it is evident that many researchers see policies as imgartémture call handling.

Policy language developments in industry have largely $eduon network management and
QoS. For example, Cisco have developed policy support fatrabof security and QoS in
routers. Lucent and Bell Labs have developed PDL (PolicycBeson Language) for network
management. The IETF standard for COPS (Common Open Paicycs) is intended as a
protocol for managing QoS. None of this work is of direct valece to call control.

[13] discusses the kind of policies that are needed in caitrob Initially, ACCENT evaluated
some existing policy languages to determine their suitglfdr this application. For example,
a detailed evaluation [13] was made of Ponder [3]. It was dbtirat Ponder was only partly
suitable for call control. Nonetheless, Ponder has beemeinfial on ACCENT.

A policy language was therefore defined foc@eNT to overcome limitations of existing lan-
guages. A policy language should ideally have a form tha&adity parsed by many tools. XML
is widely employed for structured information, but is usgdnly a few policy languages.

The focus of ALCENT on call control is distinctive. It places different demaraisa policy
system, and of course it requires specialised support imaramications setting. The language
developed by ACENT for call control falls into the general category termed EC2vént-
Condition-Action). However the events, conditions andand that arise in call control are
completely different from, say, those required in networknagement.

Ideally a policy language should be capable of speciatindtir various application domains.
This is true of only some existing languages. Although a legg for call control has been
developed for £CENT, the core of the language is separate and can be adaptethéouses.
Even when used for call control, theCBRENT language has to be largely independent of the
underlying communications system.

In systems management, a useful distinction can be ofter tnetiveen the subject of a policy
(that performs an action) and the target of a policy (thatciec upon). A number of policy
languages reflect this. In call control, the nature of sulged target becomes unclear. It can
be argued that the subject is the caller, the call or the mitwehile the target is the callee,
the call or the network. This is one reason why Ponder wasdaarbe less appropriate for
call control. In many application domains, the entitiesoined in policies are fairly static and
predictable. This does not apply to call control, where assr (jpreviously unknown) may call
any other user. As a result, call control introduces a muchendgnamic set of policies. In
addition, policies may be introduced by the underlying reeks as well as the call parties.

Most policy languages require specialised technical eig@eibeing designed for programmers
or technicians. In contrast, policies for call control mistaccessible to the ordinary telephone
subscriber. This presents a major challenge, because tioy [Emguage and the supporting
policy system must be usable by non-technical people. Camuation is global, so policy
support must also be truly international — specifically, tiiogual.

Call control is more likely to lead to policy conflict becaussy many users with unpredictable
policies may wish to communicate. Although conflict hanglis mainly part of the policy

infrastructure, the design of the policy language shousisasonflict resolution. Furthermore,
the guidance given for conflict handling needs to be in a fdrat érdinary end users can give.

Many policy languages support modal or deontic aspects asatbligation, permission (or
authorisation) and interdiction (or refrain). Ponder ha$igation, authorisation and refrain
policies. Obligation and interdiction apply to the subjedhile permission applies to the target.
Since the notions of subject and target do not map so reaaitglt control, these modalities
need some rethinking. Furthermore, obligations placednohusers have limited value since
they cannot be enforced.

For the above reasons, it was concluded that no existingypsyistem would adequately serve
for call control. The ALCENT project therefore developed its own policy language anccypol
support, inspired by the unique needs of call control. H®wekie language has been cleanly
separated into a core and its specialisation for some apiglicdomain (here, call control). This
allows the policy system to be largely re-used in other odstdn this respect, the @CENT
policy language resembles some others such as Ponder.

Distributed definition of policies can lead to incompatiiils among them. Policy conflict re-
sembles the extensively studied feature interaction problt is argued in [14] that some tech-
niques from feature interaction can be adapted for deteetnol resolution of policy conflicts.
Nonetheless, conflict handling remains a challenging tékk.approach taken byGCENT is
described in [2].

1.3 Structure of the Paper

Section 2 presents the concepts of the core policy langUddgse are generic, and are intended
to be useful in any application domain. Section 3 then sfisemthe policy language for use
in call control. The specific ontology required for this domig summarised, and is illustrated
with examples of call control policies. Section 4 explains bverall policy system architec-
ture with specific reference to call control. The various poments of the policy system are
introduced, in particular the policy server and the policyaxd

2 Conceptsof The Core Policy Language

The policy language developed bycAENT is called APPEL (ACCENT Project Policy Envi-
ronment/Language, a word play on the French for ‘call’). &ira of this section is to explain
the philosophy of the core language. [13] discusses théngraf the language. PPEL s fully
defined in [17].

2.1 Approach

APPEL is intended as a general language for expressing policiesviariety of application
domains. A clear separation is therefore made between tiedarmguage and its specialisation
for concrete applications. This section describes the mrguage, while section 3 explains
how it is specialised for call control.

Unlike many policy languages, #EL is designed for end users rather than technicians or
administrators. This has had a profound influence on theukzagg, For example, the style of
APPELIs closer to natural language than to programming. The kesdfiat policies can more
readily be formulated and understood by ordinary users.di$advantage is that the language
must then dress up subtle concepts that could be too compiend users. As will be seen in
section 4.6, the policy wizard has an key role in presentirgi#y in a comprehensible way.

APPEL is defined by an XML schema; policies are XML documents thatf@on to this
schema. Policies are given meaning by being interpretedpaliay server. The policy sys-
tem architecture is discussed in section 4.

2.2 Generic Policies

It can be convenient to define generic policies that are thetamntiated as required. For ex-
ample, a policy might forward incoming calls to some addmeken the callee is busy. Such
a policy can have the forwarding address as a formal parank&anal parameters may be
used in a policy wherever values are required. The actuakgadbf formal parameters may be

defined separately as variables in a policy document. Itns@aient, however, to instantiate a
policy separately from its definition by using the policy atd (see section 4.6).

It is also very useful to define template policies that regoinly a few parts to be completed.
This makes it easy for novice users to adapt ready-madeigmliather than having to define
policies from scratch. Template policies are distributethhe policy wizard. The approach
maintains the separation between the core language antficp@plication domains. It also
facilitates the support of policies for vertical marketer Example in call control, the policies
that are useful for a sales organisation differ from those Would benefit a medical clinic.
A major problem for communications providers is that theyehto offer a large package of
features, even if only a small subset is employed in padromarkets. The template approach
could also encourage systems integrators to deliver conuaions systems with policies tai-
lored for specific customers.

2.3 Domains

Policies have owners and apply to domains. These are oftegathe, i.e. when a person defines
individual policies. However it is possible for someong(@n administrator) to define policies
that apply to others (e.g. in the same organisation). Thesovgralways a person, identified by
an email-like address (e.g. alice@stir.ac.uk). The dormawhich a policy applies may be an
individual, a symbolic name for a group of individuals, orst f both. Individuals may belong
to several domains.

Groups are also identified by email-like addresses, e.gr.@stik denotes anyone in the Uni-
versity of Stirling. When retrieving the policies that appb someone, higher-level domain
policies are also taken into account. For example alice@stuk is subject to her own poli-
cies, as well as those of @cs.stir.ac.uk (Computing Sci8tideng) and @stir.ac.uk (Stirling).
Policies may exist at any level of this hierarchy, in prineimcluding ‘@’ meaning everyone.

2.4 Modality

APPEL adopts an everyday approach to defining policy modality enftrm of a preference.
The strength of feeling associated with a policy can be deéfimeist, should andprefer, plus
the negative forms of these. Omitting the preference mdaatghe user is neutral about how
strongly the policy should apply. Preferences imply a redabrdering for conflicting poli-
cies. Some approaches require an explicit numerical wéighe used. However in a practical
situation it is unclear how this weight can be determinedtdad APEL relies on natural lan-
guage terms to imply a relative ordering. Even though pesfegs then have a precise technical
meaning, it is easier for end users to formulate such pali¢refact, policy modalities do not
directly affect the execution of a policy. As discussed ictem 4.4, they are used to guide the
resolution of conflict among policies.

2.5 Rules

A policy document defines a number of policy rules. The exeoubf a rule depends on a

number of factors: whether it is enabled at the current tiwiesther its trigger has occurred,
whether its conditions are satisfied, and whether conflgltgion permits it to occur. To be

enabled, a policy must be explicitly activated. Policiesyraéso be associated with named
profiles that the user may select (e.g. ‘in the office’, ‘at ledmTo be enabled, a policy must
also belong to the current user profile (if defined). Finallpolicy may be enabled only within

a certain time-frame.

Policy rules may be grouped. In particular, policies maydmpgosed from pairs of rules using
the following combinators:

Guarded choice: This is used to select rules based on generic informatiom asithe current
date or the type of event. The context severely limits theditamn because no applicable
trigger has yet been selected.

Unguarded choice: This is used when alternative rules might apply, and the dees not
mind which is selected. If only one of the two policy rules jgphcable, this will be chosen.
Conflict resolution can influence the choice by determinivag bne rule should not apply. If
both rules are applicable, the outcome is non-determin(syistem-defined).

Sequential composition: This is used when there are alternative rules that shoulddxtin
a given order: the first applicable rule is executed.

Parallel composition: This is used when the order of execution is unimportant. Thesmmay
be executed in parallel, sequentially, or in some systefimel order.

2.6 Rule Bodies

A rule body contains an optional trigger, an optional caodit and an action. The core lan-
guage defines the structure but not the details of thesesrrdthy are defined only in specific
application domains. This allows the core language to bamisted for different purposes.

Omitting a trigger means that a rule can be executed withoekalicit event; it acts as a goal.
To be exact, such a rule is implicitly triggered dependingtercondition. The absence of a
trigger severely restricts a following condition to gen@néormation such as the current time
or the type of event. Omitting a condition means that a rudvigys executed when its trigger
occurs. If both the trigger and the condition are omitted,dhtion is immediately executed. If
arule is not applicable, it has no effect.

Triggers are caused by external events notified to the pslisfem. For example, in call con-
trol the triggers include the arrival of an incoming call ather party hanging up. A trigger
may have parameters, such as the address of someone wheesegeres to be checked. A trig-
ger establishes information that is supplied by the exteystem. A call control system, for
example, defines the caller and callee addresses when sreeiell attempt. This information
may be used by the conditions and actions of a rule.

Triggers may be combined usiagd andor, with the obvious meaning that both or either must
occur. This affects the condition and action that followigger, being governed by the union
or intersection respectively of what the triggers imply.

Conditions may be combined witind, or andnot with the expected meaning. A condition
consists of a parameter established by a trigger, a congpaoigerator and a value. The op-
erators are fixed in the language, but their interpretasgrarameter-specific. For example,
means ‘less than’ when used with numeric parameters andrdgeivhen used with time pa-
rameters. A condition value may be either a single literad ost of literals. A list is used for
membership or range checks, e.g. a date is one of the spegfises or is within a range.

Actions have an effect external to the policy system. In@atitrol, for example, the actions in-
clude forwarding or rejecting a call. An action may have paters, such the address to which
a call should be forwarded. Composite actions may be creasied the following combinators:

and: Both actions are executed, but in a system-defined ordeeguence or in parallel. Con-
flict resolution may lead to a specific order being selected.

andthen: Both actions are executed in the order given. This is a seongysion ofand, since
the first action must precede the second in any execution.

or: One or other action is executed, the choice being made byy#ters. Conflict resolution
may lead to a specific choice being made.

orelse: If there is a choice, the first action is taken. This expressaser preference, but it
is not guaranteed that this will be respected. Conflict rggmt may require that only the
second action be followed.

else: If there is an immediately prior condition, its value diesselection of the first or second
action. If there is no such condition (e.g. it was omittelijs tombinator behaves lilar.

3 Policiesfor Call Control

This section illustrates how BPEL is used in practice. The need for policies in call control is
explained in [12]. The specialisation ofP&REL for call control is fully defined in [17].

3.1 Policy Language Specialisation

The core language presented in section 2 defines a foundattofogy for policies. This can
then be specialised by adding the information required inreciete application domain. Ex-
plicitly, this means defining specific triggers, conditioarpmeters and actions. As a major
instance of APEL its specialisation for call control has been defined. Thistended to be a
broad domain of application that includes:

e conventional telephony, whether using the PSTN (Publia@wid Telephone Network), the
AIN/IN (Advanced/Intelligent Network [7]) or a mobile tgddone network
¢ Internet telephony, such as supported by H.323 [8] or SIBHi8g Initiation Protocol [18])

Element | Call Control

Trigger absentdddres$, availableéddres$, bandwidth request;connect,
tdisconnect, eventno_answerperiod), present@ddres$, jregister,
unavailabledddres$

Condition | active content, bandwidth, caltontent, calltype, callee, caller, capability,
capability. set, cost, date, destinaticaddress, device, location, medium,
network type, priority, quality, role, signallingaddress, sourcaddress,
time, topic, traffic load

Action add.caller(method, add mediummediun), add party@ddres},
confirm.bandwidth, connecto(addres$, fork_to(addres},

forward. to(addres$, log_event(messagg note availabilitytopic),

note presencdgcation), play. clip(audio), reject call(reason),

reject bandwidth{imit), remove mediummedium), remove party@ddress,
send message(ddresgnessage

Fig. 1. Triggers, Condition Parameters and Actions for Cailhtrol

e non-voice calls such as used by pagers, emalil, transaati@egsing or web services.

The specialisation of APEL for call control is detailed in [17]. It is not practicable give
a tutorial on the language here. Instead, the summary inefifjus provided as an overview;
triggers marked also exist in incoming and outgoing variants. The exampieseiction 3.2
give an insight into the approach.

3.2 Policy Examples

The following examples illustrate PEL in a call control setting. Further sample policies can
be found in [5,6,17]. A policy document defines policies amdiqy variables embedded in
XML ‘red tape’ that is omitted here. For brevity, the obviatlgsing XML tags are also omitted.
See section 4.6 for an example of how the policy wizard digptamplex policies.

3.2.1 Forward Incoming Calls

Incoming calls for Aliceshouldbe forwarded to Bob during the dates 24th December 2004
to 5th January 2005 inclusive. A policy includes its ownke tlomain it applies to, and its
identifier. A policy is normally enabled, but can be deadtda The date a policy is valid from

or to can also be specified. When a policy is edited, the datdiare of the change (in XML
format) are stored along with it. Triggers and actions mayeherguments, specified as XML
attributes likeargl.

<policy owneralice@stir.stir.ac.Ukappliesto="alice@stir.stir.ac.uk
id="Forward incoming callsenabled#true’
valid_from="2004-12-24T00:00:00valid_to="2005-01-05T23:59:00
changed#2004-08-12T11:33:00>
<preference>should

<policy_rule>
<trigger >connectincoming
<action argl¥'bob@stir.stir.ac.uk>forward to(argl)

3.2.2 Emergency Call Handling

Emergency calls must not be rejected. This policy applieth#ocs.stir.ac.uk domain. The
triggerconnectefers to both incoming and outgoing calls. The call type tmagiven explicitly
by the underlying communications system, or may be infefned the use of a special address
like 911 or 999. Because this is a general interdiction, #ason for rejecting a calafgl) is
irrelevant and is left empty. An interdiction can requirepeaific argument for an action, e.g.
that emergency calls must not be rejected for reason ‘busy’.

<policy ownerZadmin@cs.stir.ac.Ukappliesto="@cs.stir.ac.uk
id="Never reject emergency cdllenabled#true’ changed%2004-08-02T11:46:00>
<preference>must not
<policy_rule>
<trigger >connect
<condition>
<parameter >call_type
<operator >eq
<value>emergency
<action arglZ'”>reject call(argl)

3.2.3 Announcing Availability

Lecturers in Computing Science Stirling are now availablediscussions about Javargl).
This policy has no trigger or condition, so it is executed ietliately on definition.

<policy id="Available for Javé owner#'admin@cs.stir.ac.Uk
appliesto="@lecturers.cs.stir.ac.lilenabled#true’ changed“2004-07-28T23:18:00>
<policy_rule>
<action argl¥'Javd >note availability(argl)

3.2.4 Using Capabilities

A policy can be governed by the capabilities of the calleleSéhmight be provided explicitly
by the caller, or might be extracted from a database. In thesong policy, Alice accommo-
dates deaf callers with textphones. A text operator is aatimally conferenced in to transcribe
Anne’s speech into text form.

<policy ownerZalice@stir.ac.uk appliesto="alice@stir.ac.uk
id="Deaf callef enabledtrue’ changed%2005-01-04T14:27:1'7>
<policy_rule>

<trigger >connectincoming

<condition>
<parameter >capability
<operator >eq
<value>textphone

10

<actions>
<action argl¥text operator@stir.ac.Uk>add party(argl)

3.2.5 Controlling Registration

Communications systems such as SIP and H.323 allow useegyistar their presence with

a server. Policies can be defined to manage such regissa#ienan example, a University

administrator might permit registration only by staff (amot students). The policy parameter
staffwould be instantiated as a list of authorised users (or th@irain); policy parameters are
prefixed by *:’.

<policy ownerZadmin@stir.ac.ukappliesto="@stir.ac.uk
id="'Staff registratiofi enabled#trué¢’ changed“2004-12-17T16:13:87>
<policy_rule>

<trigger >register

<condition>
<parameter >signalling address
<operator >in
<value>:staff

<action argl¥only staff may registér>rejectcall(argl)

3.2.6 Presence-Based Messaging

This example assumes a presence system, e.g. an activedyatigya that tracks where people
are. Suppose that Alice works in Building 7. When the presesicColin is reported, it is
checked if he is in this building. If so, an email message g 82him to propose dinner.

<policy ownerZalice@stir.ac.uk appliesto="alice@stir.ac.uk
id="Colin in Building 7/ enabled#tru¢’ changed*2004-07-29T21:15:29>
<policy_rule>

<trigger >present(colin@acme.com)

<condition>
<parameter >location
<operator >eq
<value>Building 7

<action argl¥mailto:colin@acme.cofharg2='Dinner at 8BPM?>sendmessage(argl,arg2)

4 Policy System Architecture

This section explains the overall policy system architexind its components. The origins of
the architecture are discussed in [14]. TheckNT approach to policy conflict is discussed in
[2,15]. The detailed implementation of the policy systerdaescribed in [16,19].

11

User Policy Context

Interface Wizard System
Layer

Poalicy
System Policy Policy Policy
L ayer Database Server Store

Communications
System <
Layer

Comms
Server

<>

Fig. 2. Policy System Architecture

4.1 Policy System Environment

The policy language acquires meaning in the context of a dos@ecific policy system. As an

illustration, figure 2 shows the architecture adopted fdrazmtrol. Arrows in the diagram are

shown double-headed where many instances of a system magragtthis end. For example,
a policy server may support many communications servelsirin one policy store may sup-
port many policy servers. All the arrows represent sockeneactions, so the system is truly
distributed. The separate logical systems may, howevegmnuwne physical system.

The policy system is conceptually divided into three lay@ise user interface layer provides
direct end user support. The policy system layer deals vatityphandling. The communica-
tions systems layer provides support for whatever kindsoofiraunications network are in-
volved. These layers are deliberately separated so as imisétheir interdependence. For
example, the policy system is largely independent of thestgicthg communications network.
It has been used with both H.323 and SIP Internet telephariywath four different types of
communications server.

4.2 Communications Server

A communications server is presumed to be an existing paiecfinderlying communications
network. For PSTN it would be a telephone exchange, for (AHINSSP (Service Switching
Point), for H.323 a gatekeeper, and for SIP a proxy servee. dlicy system assumes that
communications servers can provide information abouscéllis necessary to make a small

12

intrusion into each communications server in the form of gpse-written server module. So
far, four variants have been written: for an H.323 gatekeapiang GnuGK www.gnugk.orly

for any SIP proxy server that supports CGl, for the SIP ExpiRsuter (www.iptel.org/ sey,
and for the Mitel 7000 ICS (Integrated Communications Sehip://www.mkcnetworks.com/
products/ 7000ics.a3pThe server modules are relatively small (around 100Glofecode). If
the communications server is open-source, creating a ragsloéasonably straightforward. If
the communications server is proprietary (like the MiteD@Y) then of course access to the
server APl is required.

A server module needs to be informed of significant call eventh as user registration, call
setup, mid-call events (such as adding a third party or nediaheand call tear-down. The
server module temporarily suspends call processing. tt¢banects to the policy server, send-
ing trigger information such as the network type, the callad the callee. The specific infor-
mation depends on the kind of network. Older networks sudh@$STN can provide only
basic parameters. Newer approaches such as SIP can pravathernore information, such as
the topic of a call or how it was routed.

Trigger information is protocol-specific. The policy sertieerefore maintains a mapping from
protocol terms to policy terms. For example an INVITE in S$Rmiapped t@onnectn policy
terms, while a BYE in SIP is mapped disconnectThis allows policies and the policy system
to operate in a protocol-independent manner. This is es$eamce different policies should
not have to be written depending on how users are physicatigected.

The policies that apply to a call dictate the actions to bégpered, such as forwarding a call or
logging it. A reverse mapping is performed from policy tetmprotocol terms, and the actions
are sent to the server module. This then instructs the conwations server how to proceed
with the call. The default action (if policies do not requameything specific) is to allow the call

to continue as normal.

4.3 Policy Database and Policy Store

The policy database contains static information needetidypolicy system. This includes the
protocol to policy terminology mapping, and registeredrsisd the policy system. A conven-
tional relational database (MySQwww.mysql.cois used as the policy database.

The policy store contains relatively dynamic informatiogeded by the policy system. This
includes user policies, policy variables, and contextrimfation. A tuple space server (IBM
TSpaceswww.alphaworks.ibm.com/tech/tspacesused as the policy store. Since policies
are defined using XML, TSpaces is a good choice for storingigslas it has explicit support
for storing and retrieving XML. Nonetheless, the policyvaruses the policy store through a
defined interface. TSpaces is just one implementation ef ¢hielational database or an XML
database could be used as alternatives. Systems use tby tolie via the policy server, so
they are isolated from its exact implementation.

13

4.4 Policy Server

The policy server is the heart of the system. When it recdigger information from a com-
munications server, it retrieves policies that apply to ¢h#er or the callee as appropriate.
These policies are then filtered for applicability, elinting those that do not apply.

Various agencies in a call may define policies that affectcdde For example if Alice makes
a business call to Bob on his cellphone, the call is subjetttéw individual policies, those of
their employers, and those of the service provider. In fagegal service providers might be
involved. Suppose that Alice is working off-site and stayat a hotel. When she makes a call
to Bob, she is also subject to the hotel’s policies.

The implementation of conflict detection and resolutionxplained in [2]. The key point is
that conflicts and their resolutions atefined not built into the policy server. Conflicts are de-
tected and handled by special resolution policies thatmegeEnormal policies. For resolution,
the triggers are actions that might conflict (e.g. adding r@miloving a call party). Condition
parameters are those that might arise in a normal policytfgegcaller or the time). Resolution
actions may either be absolute (e.g. add a specific partyglative (e.g. prefer the caller's
action). Policies that forward a call or fork it (i.e. try niple destinations) cause extra com-
plications. Conflict resolution must consider the sets dicpes for each route so that the best
resolution of conflicts can be achieved. This might resuibimwvarding or forking being denied.

Since the policy system has the ability to play media clipss ipossible to give the caller
more information when a call cannot be put through. For exanthe caller might be told:
‘Alice is at a meeting, please try later’. Using Text-To-8pk, it is possible to play arbitrary
announcements from a policy. However this risks comprangisin individual’s privacy, and
must therefore be defined per user or per organisation.

4.5 Context System

Context is an increasingly important aspect of call coj&6| Chapter 14]. This has a number
of aspects including the following:

Presence: This means that the user is in some sense accessible. It migdut physically
present (e.g. in the office), but these days is more likelygamogically present (e.g. logged
in). Presence information is used in buddy lists for ICQ €&k you’), and to alert cellphone
users that a friend is nearby. Presence might be boolearigbt mdicate a specific location.
Presence information can be derived from a number of souroegxample, an active badge
system can track where users are and report their locatiosefs electronic diary can also
provide information, e.g. that a user is currently on hagfidatravelling.

Availability: This means that the user is available for communicationolmventional tele-
phony, being off-hook means the user is unavailable. In nadranced forms of commu-
nication, it is possible to have a much more sophisticatguicgezh. For example, suppose
Ed is in his office and meeting a colleague. He considers Himsavailable for calls from

14

other colleagues. However, he wishes to be available fds @m important people such
as managers or customers. Availability might be booleamight indicate topics for which
the individual is available (e.g. discussions about ptdjeance or sales predictions).

Role: The role of the call parties plays a part in determining cafhpletion. The caller and
callee addresses can be combined with an organisationtohafer the role of the parties.
Thus, principal@stir.ac.uk calling alice@stir.ac.uk lirep a manager-subordinate role. In
some communications networks such as H.323 and SIP, thectudfja call can be given.
This can also provide a hint about the intended roles (e.@llabout ‘“Your annual incre-
ment’ is probably from a manager).

Capability: The capabilities of the call parties can also be importamt.example, a French-
speaking caller should be connected to a French speaker.

The context system is strictly outside the policy systemulklblown context system would
require techniques from artificial intelligence. Some atpare also more sociological than
computational. However the policy server supports anfaterfor a context system to provide
supplementary information about calls, e.g. call partgsabr capabilities. The policy server
can act on presence and availability information from a extrgystem.

The policy system records current user profiles, which &ffely define the user situation or
role. As a further demonstration of how context can link ttigies, a system has been devel-
oped for presence and availability based on a user’s digrgoMtments are extracted from a
Microsoft Outlook calendar. Assuming reasonable use ofddkt this allows the context sys-
tem to infer presence and availability. Policies can betamito use this kind of information;
see section 3.2.6 for an example.

4.6 Policy Wizard

The policy wizard is the primary interface between end uaadsthe policy system. It allows
non-technical users to define and edit policies. Presenedahility and profile can also be
defined with the wizard. Considerable effort has gone int&intathe policy wizard easy to
use. This is essential since the whole system is aimed atarydsubscribers.

The policy wizard presents the policy system in a non-tezdinway. This is vital, since ordi-
nary users must be able to take advantage of policies. Itées & challenge to define a policy
system that is sufficiently comprehensive, and yet can beé easily for simple tasks. Exten-
sive online help is provided, including the use of ‘tool tipden hovering over all aspects of a
policy. Hints on forms are also provided as to the format atisible values.

The policy wizard uses natural language. Although thisyssd natural language, it is easy
to read; see figure 3 for an example. The focus of the policiesyss not, however, linguistics
so the approach is considered adequate. An important éatuhe policy wizard is that it is
multilingual. With communications being global, multijoal support is essential. Internally,
the policy wizard maps betweerPREL and the user’s natural language.

The policy wizard is web-based. Apart from familiarity,ghalso means that policies can be

15

defined and modified while someone is off-site. For examplesea might have specified that
calls be forwarded to a colleague during his absence. Auatirig a particular call, he can
remotely modify his policy to forward this call to his curtdocation. A web-based interface
would be problematic for the partially sighted or for thosetlbe move (with just a cellphone,
for example). Investigations have therefore been carrigdrmo a voice-based policy wizard
using VoiceXML [21]. This is also multilingual, and can bediinto the policy system.

A large selection of template policies is provided, patacly as a convenience for the less

expert user. Templates are simply selected from a list byen&wome templates define complete
policies; others require the user to fill in specific valuedsas a forwarding address. Templates
are in fact defined per locale. In principle templates arepahdent of the user’s language and
country. However the label of a template and its parametersemdered in that language. It is

also possible to vary templates by country to reflect locatmms.

A user of the policy wizard has a defined skill level: novicdgermediate, expert or adminis-
trator. Less experienced users will be registered at a Iteved. This automatically restricts
the range of capabilities that the user sees. For examplaegaperienced user should not be
exposed to guarded choice of policy rules or non-detertienehoice of policy actions. An
administrator has full capabilities, including definindipies for other users. An administrator
is also responsible for maintaining the details of regeslarsers.

Among these features, the most challenging is making theypeizard multilingual. Currently

it supports English, French and German, including natiwagbnts such as United States En-
glish and Canadian French. Preliminary investigation béotanguages suggests that the wiz-
ard can be adapted for many (but of course not all) languddpesmain problem is a language
whose sentence structure differs markedly English, sime@izard maps fragments of policies
to fragments of sentences.

Itis easy to incorporate a new language into the policy wiizaideed it needs no programming.
A single properties file is defined for mapping policy wizardut to that language. (A help

page in the language is also required.) Achieving this duitplhas been at the expense of
considerable complication in the coding. The problem ig tizural language is required in
many places: in web page text, in pop-up windows, in cliet-®r server-side code, and in
form fields. The policy wizard carefully coordinates whappans at the client (form input,

HTML, JavaScript) and what happens at the server (form [g<ng, Java, JSP).

In fact, the policy system is intentionally not fully indepmient of the user’s language. Some
parameters are free-form text expressed in natural larguaa example, a policy may be
made dependent on a call topic such as ‘manufacturing’ idigingr ‘fabrication’ in French.
The policy system cannot address language translatioagsstowever this is unlikely to be
a problem since most people communicating will use a comranguage. In a multilingual
situation, policies can be defined to deal with multiple laages.

A further challenge for the policy wizard is allowing the use edit the structure of complex
policies. Virtually all elements of a policy displayed ortbcreen are hyperlinks. For example,
clicking on a condition takes the user to a page where theitonaan be edited. The XML
schema defining APEL has recursive definitions of many elements. The policy wizaust

16

Edit Policy

Applicability (identifier, owner, ...):

label Announce busy
profile home
status enabled

Preference (must, prefer, ...):

prefer

Rules (combinations, triggers, conditions, actions):

when | am called s
and
when | am busy eee
ifthe hour is between 11:00,13:00 s
or
if the date is between 2004-09-15,2004-10-02 sss
do play the clip /home/Kjt/away way ess

ISa\re] l Cancel] lHeIp]

Fig. 3. Editing a Policy

therefore allow a tree structure to be edited, extended anttacted. Figure 3 shows a policy
in the process of being edited. Tlhee symbol appears wherever a policy element can be
extended. In figure 3, the user has hovered everafter a condition. The ‘append condition’
tool tip indicates that a further condition can be added &t ploint. Clicking oneee takes
the user to a page where the combination of conditions careleeted. Choosingnd, for
example, combines the existing condition with a new blankdéon. The new condition can
then be edited. A combination can be contracted to one ofétsdhes.

Once a policy has been finished, the policy wizard saves hemblicy server (which writes
it to the policy store under the user’s address and policgl)aBn existing policy can later be
retrieved and edited further. The policy wizard, of courgeates policies that conform to the
ApPPEL schema. More importantly, it also checks the static serogaofia policy. For example,
conditions and actions must match triggers. For expergspdticy server also provides direct
upload of policies. However they must then be created andatald in XML form.

17

5 Conclusion

The need for policies has been justified in view of the chamd@@ee of communications. In
particular, policies have the promise of replacing featureNext Generation Networks. The
APPEL policy language has been presented in its core aspects @sdspecialisation for call

control. APPEL has met the challenges noted in section 1.2:

e itis focused on call control

e the core language can also be specialised for other domatiading various forms of
communications systems

¢ it conforms to call control principles, avoiding concepislis as subject and target that cannot
be readily related to this domain

¢ the approach allows many unknown users to communicat@&gakio account policies from
their organisations and their service providers as well

¢ the policy language and the policy system are accessiblaltoary users, allowing them to
use their native language when defining policies

e a comprehensive strategy has been worked out for handliingymmnflicts, making use of
guidance that end users can readily give

e policy modalities can be defined in a straightforward way g esers

¢ the policy language uses XML as a widely accepted interchémgnat.

The ACCENT policy system architecture has been introduced. As the meaymponents, the
policy server and the policy wizard have been explained imesaepth. They allow non-
technical users to gain the benefits of policies. The polsyen also links to other emerging
systems providing contextual information.

The policy system is currently operational in a laborataitisg. So far it has been evaluated
by the researchers and by others not involved in the devedapriVider-scale industrial de-
ployment is expected soon. In operation, the policy systelargely invisible to users and so
does not place any technical demands on them. The policyavizs been carefully designed
for ordinary subscribers to benefit from the use of policiegact, it is easier to use the policy
wizard than the special dialling codes normally requiredfémctions like call forwarding or
call blocking. It is planned to conduct a study of usability €nd users, and an appraisal of
performance under a variety of conditions.

Acknowledgements

The ACCENT project was funded by EPSRC (the UK Engineering and PhySicances Re-
search Council, grant R31263) and by Mitel Networks (Cahadéile at the University of
Stirling, Stephan Reiff-Marganiec undertook the origidakign and implementation of the
policy language and policy server. Grégory Estienne kimalproved the support of French in
the policy wizard, while German was added by Mario Kolbergigdrsity of Stirling).

18

References

[1] M. Amer, A. Karmouch, T. Gray, and S. Mankovskii. Featurgeraction resolution using
fuzzy policies. In M. H. Calder and E. H. Magill, editorBroc. 6th. Feature Interactions in
Telecommunications and Software Systepages 94-112. 10S Press, Amsterdam, Netherlands,
May 2000.

[2] L. Blair and K. J. Turner. Handling policy conflicts in ¢adontrol. In S. Reiff-Marganiec and
M. D. Ryan, editorsProc. 8th. Feature Interactions in Telecommunications Software Systems
Lecture Notes in Computer Science. Springer, Berlin, Gagyiglar. 2005. In press.

[3] N. Damianou, N. Dulay, E. C. Lupu, and M. Sloman. PondefaAguage specifying security and
managements policies for distributed systems. Technégadrt, Imperial College, London, 2000.

[4] N. Gans, G. Koole, and A. Mandelbaum. Telephone call @sntTutorial, review, and research
prospectsManufacturing and Service Operations Managem#&rit9—-141, Sept. 2002.

[5] T. Huang. Policies for H.323 internet telephony. TedahiReport CSM-165, Department of
Computing Science and Mathematics, University of Stirlidél, May 2005.

[6] T. Huang and K. J. Turner. Policy support for H.323 calhténg. Computer Standards and
Interfaces Jan. 2005. In press.

[7] ITU. Intelligent Network — Q.120x Series Intelligent Networlkc&amendation Structurd TU-T
Q.1200 Series. International Telecommunications Uniameya, Switzerland, 2000.

[8] ITU. Packet-Based Multimedia Communication SystemsITU-T H.323. International
Telecommunications Union, Geneva, Switzerland, Nov. 2000

[9] J. Lennox and H. Schulzrinne, editor€all Processing Language Framework and Requirements
Internet Draft CPL-Framework-02. The Internet Society\éork, USA, Jan. 2000.

[10] J. Lennox, H. Schulzrinne, and J. Rosenberg, edit@emmon Gateway Interface for SIRFC
3050. The Internet Society, New York, USA, Jan. 2001.

[11] E. C. Lupu and M. Sloman. Conflicts in policy-based digtred systems managementEEE
Trans. on Software Engineering5(6):852—869, Nov. 1999.

[12] S. Reiff-Marganiec. Policies: Giving user control owalls. In M. D. Ryan, J.-J. C. Meyer, and
H.-D. Ehrich, editorsObjects, Agents and Featurasumber 2975 in Lecture Notes in Computer
Science, pages 189-208. Springer, Berlin, Germany, Max.200

[13] S. Reiff-Marganiec and K. J. Turner. Use of logic to dése enhanced communications services.
In D. A. Peled and M. Y. Vardi, editor$roc. Formal Techniques for Networked and Distributed
Systems (FORTE XVhumber 2529 in Lecture Notes in Computer Science, pages1430
Springer, Berlin, Germany, Nov. 2002.

[14] S. Reiff-Marganiec and K. J. Turner. A policy architeet for enhancing and controlling features.
In D. Amyot and L. Logrippo, editorsRroc. 7th. Feature Interactions in Telecommunications and
Software Systempages 239-246. 10S Press, Amsterdam, Netherlands, J08e 20

[15] S. Reiff-Marganiec and K. J. Turner. Feature intemctin policies. Computer Networks
45(5):569-584, Aug. 2004.

19

[16] S. Reiff-Marganiec and K. J. Turner. TheCcAENT policy server. Technical Report CSM-164,
Department of Computing Science and Mathematics, Uniyeo$iStirling, UK, May 2005.

[17] S. Reiff-Marganiec and K. J. Turner. PREL The ACCENT project policy environment/language.
Technical Report CSM-161, Department of Computing Sciearu# Mathematics, University of
Stirling, UK, May 2005.

[18] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johngoeterson, R. Sparks, M. Handley, and
E. Schooler, editorsSIP: Session Initiation ProtocoRFC 3261. The Internet Society, New York,
USA, June 2002.

[19] K. J. Turner. The ACENT policy wizard. Technical Report CSM-166, Department of @atmg
Science and Mathematics, University of Stirling, UK, May020

[20] K. J. Turner, E. H. Magill, and D. J. Marples, editorService Provision — Technologies for Next
Generation Communicationdohn Wiley and Sons, Chichester, UK, Mar. 2004.

[21] VoiceXML Forum. Voice eXtensible Markup LanguageVoiceXML Version 2.0. VoiceXML
Forum, Jan. 2003.

20

