
Gavin A. Campbell and Kenneth J. Turner. Ontologies to support
Call Control Policies. In N. Meghanathan, D. Collange and Y. Takasaki, editors,
Proc. 3rd. Advanced International Conference on Telecommunications,
pp. 5.1-5.6, IEEE Press, May 2007.

Abstract�The topic of policy-based management is introduced. 

Its specific application by the ACCENT project to call control is 

then discussed. The APPEL policy language supports regular 

policies as well as resolution policies that deal with conflict 

handling. The core APPEL language can be specialised, e.g. for call 

control. Ontologies are introduced as a means of capturing 

domain-specific knowledge � here, about calls. It is seen how this 

has allowed the ACCENT policy system to be generalised for use in 

a variety of domains. This is supported by a stack of interrelated 

ontologies: for generic policy aspects, for a policy definition 

wizard, and for call control. The approach has been integrated 

with the ACCENT system, allowing its extension for policy-based 

management in new domains. 

 

Index Terms�Call Control, Internet Telephony, Ontology, 

OWL, Policy. 

I. INTRODUCTION 

This paper explores the use of new techniques in advanced 

telecommunications. Policies are used to personalise control of 

(Internet) telephony, while ontologies are used to define a 

solid foundation for the application domain. 

Traditional telephony services, such as call diversion, are 

centralised and limited in their effectiveness. Their invocation 

cannot take account of individual preference or the dynamic 

context of the call. Policies have emerged as a promising 

method of promoting and managing decentralised services in 

networks to give end-users more control. Using policies, a user 

may customise a service and define high-level goals for actions 

a system should take depending on the circumstances in which 

an event occurs. A policy defines how to modify the behaviour 

of a system, depending on whether defined conditions (e.g. 

time or user context) are detected. 

This paper reports a specialisation of the policy-based 

management system developed by the ACCENT project 

(Advanced Call Control Enhancing Network Technologies 

[1]). Although ACCENT focused on Internet call processing, it 

developed a general approach for policy-based management of 

any kind of service. The ACCENT system supports creation, 

editing, deployment and execution of policies expressed in a 

policy description language called APPEL (ACCENT Project 

Policy Environment/Language [8]). The paper focuses on how 

APPEL was modelled using a framework of ontologies which 

separately encapsulate generic aspects of the policy language 

and specialised aspects dealing with call control. 

Using ontologies to describe the policy language and its 

specialisation for call control goes beyond simple syntax, as it 

allows a deeper knowledge of the application domain to be 

expressed. The motivation for defining  the APPEL language in 

this way was to enable greater flexibility in support of the core 

language structure and those of its specialisations. 

Section II provides background on policy-based systems 

and languages, together with an overview of the ACCENT 

policy system. An introduction to ontologies and the Owl 

ontology language is also given. Section III describes the 

ontology framework developed for describing call control. 

Support for policy conflict handling is discussed in section IV, 

where the approach is extended for resolution policies. Section 

V evaluates the approach and highlights future work. 

II. CONTEXT AND BACKGROUND 

A. Policy Languages 

Policy-based management techniques have historically been 

employed for purposes such as access control, quality of 

service, and security. However, policy-based systems have 

found much wider application. The work by ACCENT on 

management of (Internet) call control is a novel application of 

policies. A policy is defined by users in some high-level 

language that specifies the syntax and semantics of the policy 

constructs. Many policy languages have been developed. 

However, this paper focuses on the ACCENT approach because 

of the distinct advantages it offers, including its design for 

users not programmers, extensibility of the core language, and 

proven suitability for the unique requirements of call control. 

The place of the ACCENT work in the general context of policy 

systems is discussed in [11]. 

B. The ACCENT Policy System 

The ACCENT policy-based management system [11] allows 

users to specify high-level policies for how they wish calls to 

be handled. The major components of the ACCENT system 

have the three-layer structure as shown in Figure 1. 

Figure 1. ACCENT Policy System Architecture 

Ontologies to support Call Control Policies 

Gemma A. Campbell and Kenneth J. Turner 

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK 

Email gca | kjt @cs.stir.ac.uk 

Policy 

Store 

Context 

System

Communications 

Network Server

User 

Interface User 

Interface 

Layer 

Policy 

System 

Layer 

Communications 

System 

Layer 

Policy 

Wizard

Policy 

Server
Policy 

Database 



At the lowest level is the Communications System Layer 

that connects the system to its external environment. Policy 

enforcement is handled by the Policy System Layer that 

incorporates the Policy Server and Policy Stores. At the top 

level is the User Interface Layer, where users create policies 

and contextual information is obtained. Users define and edit 

policies via the Policy Wizard [10]. This supports a familiar 

web-based interface, which allows policies to be managed 

irrespective of the user�s location. For a detailed explanation 

of the ACCENT system architecture refer to [9]. 

The system supports rule-based policies in event-condition-

action (ECA) form. A policy rule broadly consists of three 

main elements: 

ÿ a combination of triggers: events that potentially cause a 

policy to be executed 

ÿ a combination of conditions: predicates over context 

variables that determine whether a policy may execute 

ÿ a combination of actions: outputs dictated by a policy. 

A policy is eligible for execution if its triggers occur 

simultaneously and its conditions apply. Additional conditions 

may be imposed, such as the period during which the policy 

applies, or the profile to which the policy belongs. When the 

policy system is informed of an event, the applicable policies 

are retrieved, and applied if eligible. Multiple policies can be 

triggered, which may lead to conflict if their actions clash. The 

policy server automatically detects and resolves such conflicts. 

A comprehensive policy description language called APPEL 

[8] was designed to facilitate the creation of policies within the 

ACCENT system. APPEL comprises a core language schema and 

its specialisations for different application domains. For 

example, there are specialisations for call control and for 

conflict resolution. APPEL defines the overall structure of a 

policy document, including regular policies, resolution 

policies, and policy variables. A policy consists of one or more 

policy rules. Each of these contains an optional trigger, an 

optional condition, and a compulsory action. APPEL specifies 

how compound triggers, conditions and actions can be defined. 

Other core facilities of the language include a range of 

operators for conditions. 

To give a feel for the approach, the following are simple 

examples of the kinds of policies that can be expressed. APPEL 

is capable of describing much more complex or subtle policies. 

ÿ Calls to department staff must never be diverted to Mary. 

ÿ Ken is available for calls about policy languages. 

ÿ When Evan arrives, alert Ken by email to call him. 

ÿ Calls for Gemma should be sent to voicemail if she is 

busy. However, calls from Bob must continue to ring. 

ÿ Calls from French speakers should be answered by 

Solange or Michel.  

ÿ International calls must not be forwarded. 

C. Handling Policy Conflicts 

Policy conflict resembles the well-known feature interaction 

problem in traditional telephony. Conflicts in a policy-based 

environment are caused by the simultaneous execution of 

policies with contradictory actions. The ACCENT approach is 

described in [12]. Run-time conflict detection and resolution is 

carried out during policy execution. Conflict handling is 

defined by resolution policies that are distinct from regular 

policies. This gives considerable flexibility in that conflict 

handling is not hard-coded into the policy system � it is 

defined externally, and can be domain-specific. 

Resolution policies express when and how the system 

should respond to conflicts. Their effect is to filter a set of 

proposed policy actions, selecting those that are compatible 

and in accordance with the stated conflict handling rules. As 

an example, the caller may wish to use video while the callee 

does not. Their respective policies propose �add video� and 

�avoid video� actions that are obviously contradictory. This 

will be determined as a conflict and resolved, e.g. the caller (as 

the bill payer) may be given priority. 

Resolution policies are specified as an extension of the 

core APPEL language, and therefore use the same syntax as 

policies themselves. However, resolution policies use a 

different vocabulary because they govern different things. 

When (domain-specific) actions are proposed by regular 

policies, these become the triggers of resolution policies. 

Resolution policies can dictate generic outcomes (selecting 

among the proposed actions) or specific outcomes (dictating 

domain-specific actions, e.g. for call control). 

D. Ontologies 

An ontology is the set of terms used to describe and represent 

an area of knowledge, together with the logical relationships 

among these. It provides a common vocabulary to share 

information in a domain, including the key terms, their 

semantic interconnections, and some rules of inference. 

Ontologies confer the ability to share a common understanding 

of how information is structured in a particular domain. 

Ontologies also enable separation of domain knowledge from 

common operational knowledge in a system. A more in-depth 

review of ontologies can be found in [5]. 

A variety of specialised languages are used to define 

ontologies. OWL (Web Ontology Language [7]) is an XML-

based language that was standardised by the World Wide Web 

Consortium in 2004. Due to its standards status, OWL gains 

through widely available software support, as well as 

compatibility with other techniques that can be integrated with 

it. In addition, OWL provides a larger function range than any 

other ontology language to date. For these reasons, OWL was 

used to define the ontologies described in this paper. 

Using OWL, an ontology is created by defining various 

classes, properties and individuals. A class represents a 

particular term or concept in the domain, while a property is a 

named relationship between two classes. An individual is an 

instance or member of a class, usually representing real data 

content within an ontology. Properties are defined for classes 

in the form of restrictions. These specify the nature of a 

relationship between two classes. OWL also supports 

inheritance within class and property structures. The OWL 

Reference [6] describes the full range of language facilities. 

OWL supports the sharing and reuse of ontologies through 

an import mechanism. Using this, definitions of classes, 

properties and individuals within an imported ontology are 

made available to the importing ontology. The ontological 

basis for APPEL exploits this, using multiple documents for 

different aspects of the core language and its specialisation for 



call control. The use of ontologies is discussed in section III 

for call control policies, and in section IV for call conflict 

resolution policies.  

E. Implementation of Ontology Support 

An implementation of the approach has been created using 

Java as the programming language, Protégé as the OWL editor 

(http://protege.stanford.edu), Jena as the ontology parser 

(http://jena.sourceforge.net) and Pellet as the ontology 

reasoning engine (http://pellet.owldl.com). The work has been 

integrated into the ACCENT system. A major advantage has 

been generalisation of policy handling, notably in the wizard, 

allowing use of the same approach in a variety of applications. 

The POPPET system (Policy Ontology Parser Program � 

Extensible Translation) has been designed to support ontology 

integration. POPPET runs as a stand-alone server. When 

invoked, it parses an ontology document at a given URL and 

reasons about its contents using the Pellet engine. A model of 

the ontology is constructed and stored for queries. A 

connecting application may then interrogate this stored 

ontology model using a variety of generic methods. 

Communication with the ACCENT policy wizard is achieved 

using Java RMI (Remote Method Invocation). The interaction 

between ACCENT and POPPET appears in Figure 2.  

 

POPPET 

Server 

Pellet 

Reasoner 

POPPET 

Policy 

Wizard 

Policy 

Server 

 ACCENT

RMI 

ACCENT 

User Interface 

OWL 

Ontology 

Figure 2. Ontology Integration using POPPET 

Although implemented principally for use with ACCENT,

POPPET is sufficiently generic that it may be used by other 

external applications that support RMI. 

III. POLICY LANGUAGE FRAMEWORK FOR CALL CONTROL 

Using OWL, a framework of ontologies was designed to 

describe the APPEL policy language � both the core language 

and its specialisations. The framework defines the language 

abstractly for generic policies and their use with the policy 

wizard. It also defines the specific extensions for call control. 

A. Ontology Framework for Policies 

Two common ontologies were developed using OWL. The 

first, named genpol (generic policies), defines the core 

constructs of APPEL. The second, named wizpol (wizard 

policies), extends this to capture specific facilities of the policy 

wizard. Crucially, genpol defines the concepts which describe 

policies in general. It is used as a starting point to specialise 

the policy language for any application domain. As OWL 

supports the sharing and reuse of ontologies by means of 

ontology importation, all definitions of classes, properties and 

individuals within an ontology may be used by the importer. 

The wizpol ontology imports genpol, extending it to provide 

additional user interface facilities not directly related to APPEL.

Extending ontologies in this way results in the �ontology stack� 

or layered model shown in Figure 3. On top of this, any 

domain-specific ontology may be defined and integrated with 

the ACCENT policy system. 

 

domain-specific.owl 

wizpol.owl 

genpol.owl 
 

Figure 3. Policy Ontology Stack 

The ontology framework describes the core language in an 

easily extensible manner, as well as reflecting the user 

interface support offered by the wizard. It defines only the 

structure of policy-related knowledge and not actual policies. 

The ontologies therefore contain no individuals or instances of 

ontology classes. Specific data values (e.g. trigger and action 

parameter arguments, condition values) are defined by the 

actual policies. 

The ontologies genpol and wizpol are designed to be 

generic and reusable for any domain. Due to the transitive 

nature of OWL imports, a domain-specific ontology need only 

import wizpol � genpol is implicitly imported as well. The call 

control ontology extends the class hierarchy of wizpol to 

define additional subclasses and properties, together with 

applicable constraints. In particular, this includes the definition 

of domain-specific triggers, condition parameters, and actions 

� for call processing in the application described here. 

To give a clearer understanding of the main components 

defined by the policy language, each ontology within the 

framework is described in the following subsections. 

B. Generic Policy Language Representation 

The generic policy language ontology, genpol, defines the core 

elements of the APPEL policy description language [8]. This 

ontology specifies a skeleton structure of classes and 

properties; this can be imported and extended within a domain-

specific ontology. Contained within genpol is a definition of 

key language terms and how they relate to one another. This 

includes the concept of a policy document and its various 

constituent parts such as policy rules, events, conditions, 

actions, additional attributes, variables and operators. The 

relationships between these concepts describe named 

associations, inheritance properties and cardinality restrictions. 

In outline, genpol defines the following main concepts and 

their relationships for call control policies: 

ÿ A PolicyDocument is the highest conceptual level of 

APPEL. It is defined to have zero or more Policy instances. 

ÿ A Policy is defined to have at least one PolicyRule, and 

must have RequiredAttribute instances. It may also have 

any number of OptionalAttribute instances. 



ÿ A PolicyRule may have zero or more TriggerEvent or 

Condition associations, but must have at least one Action.

ÿ A TriggerEvent may be linked with a TriggerArgument 

using the hasTriggerArgument property restriction. 

ÿ A Condition must be associated with a Condition 

Parameter, ConditionOperator and ConditionValue.

These are defined using the properties 

hasConditionParameter, hasConditionOperator and 

hasConditionValue, combined with a set of associated 

cardinality restrictions. 

ÿ An Action may be linked with an ActionArgument using 

the hasActionArgument property restriction. 

ÿ There are two types of operators in a policy: a 

ConditionOperator used within a Condition, and a 

CombinationOperator used to integrate two policy rules. 

At the lowest level, genpol defines the minimum classes and 

properties required to create a domain-oriented specialisation 

of the policy language. In addition, automated ontology 

support is provided to the policy system. An in-depth 

description of genpol is presented in [4].  

The policy system has many useful facilities related to 

policy definition, but which are not strictly part of the policy 

language. These additional constructs are modelled in the 

wizpol ontology as described in the next subsection. 

C. Policy Wizard Representation 

The ACCENT policy wizard supports a user-friendly means of 

creating and editing policies. Such a facility is key in 

supporting policy definition by non-technical users like 

ordinary subscribers. It is therefore an important aspect that 

must be captured by the ontology framework. The policy 

wizard incorporates a number of facilities that control and 

manipulate domain data prior to its display. Such facilities are 

not part of the policy language itself, but are useful in any 

domain-specific ontology intended for use with the policy 

system. This additional, wizard-related knowledge is defined 

in wizpol as a direct extension of genpol, thus specialising the 

core APPEL language for use with the policy wizard. 

Examples of wizard-specific facilities include the 

categorisation of triggers, conditions, actions and operators. In 

addition, these are grouped by user level to match the subset of 

language functionality to the skill or authorisation level of a 

user. For example, administrative users see the whole of the 

language, while beginning users see a limited but useful 

subset. In outline, the extensions supported by wizpol include: 

ÿ Subclasses within each class hierarchy for the genpol 

classes TriggerEvent, ConditionParameter and Action.

Four subclasses represent different user levels: admin,

expert, intermediate, and novice. Another signifies 

internal policy system use. 

ÿ Subclasses NamedTriggerEvent, NamedCondParam and 

NamedAction for the genpol classes TriggerEvent,

ConditionParameter and Action respectively, to support 

reasoning about the ontologies. 

ÿ Properties to associate categories with domain 

specialisations of triggers, conditions and actions, 

including hasUserLevel and hasInternalUse.

ÿ Extensions to the list of operators defined within genpol 

according to the user level. For example, certain rule 

combination operators are relatively complex and are 

defined to be of use at admin or expert level only. 

Collectively, genpol and wizpol form a base from which 

domain specialisations of the policy language can be defined. 

D. Call Control Policy Language Specialisation 

The call control ontology specialises the generic and wizard 

aspects of APPEL. In particular, the call control ontology 

defines the specific triggers, condition parameters and actions 

associated with call processing. The ontology for call control 

is described in detail by [3]. Figure 4 shows how genpol and 

wizpol classes are extended for call control. 

In relation to specific extensions for trigger, condition 

parameter and action classes, the call control ontology also 

defines trigger and action arguments, status variables, and unit 

types (e.g. for cost or bandwidth). Whereas arguments and 

status variables are explicit language elements, unit types are 

intended for wizard display purposes. By incorporating unit 

type classes into the ontology, it is possible to describe how a 

value can be interpreted for the user. For example, a condition 

value such as bandwidth is measured using KbpsUnitType.

Additionally, each trigger, condition and action is assigned 

various properties previously identified in genpol and wizpol 

for categorisation: 

ÿ The property wizpol:hasUserLevel associates each 

trigger, condition parameter and action with one or 

more user levels from admin, expert, intermediate and 

novice.

ÿ The property wizpol:hasInternalUse defines certain 

triggers or actions as internal to the policy system. The 

LogEvent and SendMessage actions are examples. 

ÿ The properties genpol:hasPermissibleParameter and 

genpol:hasPermissibleAction are associated with each 

trigger to define which condition parameters and 

actions can be used in conjunction with the trigger in 

question within a policy rule. This ensures consistency 

of a trigger with its condition and action. For example, 

only a call trigger may have conditions on the caller 

and actions involving forwarding. 

The effect of property restrictions on classes is that the 

categorisation of certain triggers, conditions and actions can be 

automatically inferred. As an example, the policy wizard can 

query the ontology to determine various triggers subsets: those 

available to expert users, those with a parameter argument, or 

those for use in conjunction with the RejectCall action. The 

ability to interrogate an ontology in this way offers more 

detailed knowledge than using a structural markup language 

like XML Schema to model the policy language. 

Although the call control ontology is primarily intended to 

extend policy language constructs, unlimited additional 

knowledge can be included to describe aspects of call 

processing indirectly related to the policy language or wizard. 

Consequently, the ontology includes a variety of additional 

classes and properties to describe general telephony 

terminology. This includes the high-level concepts of Call,

CallAttribute (e.g. topic, cost, type, priority), CallType (e.g. 



international, emergency, conference, standard), 

CallInitiatorAddress and CallDestinationAddress. Such details 

also provide further insight into the call control domain when 

processed by non-policy system applications.  
 

Generic Ontology Class Call Control Ontology Class

genpol:TriggerEvent 

wizpol:NamedTriggerEvent 

AddressAbsent, 

AddressAvailable, 

AddressPresent, 

AddressUnavailable, 

BandwidthRequest, Connect, 

ConnectIncomingCall, 

ConnectOutgoingCall, 

Disconnect, 

DisconnectIncomingCall, 

DisconnectOutgoingCall, 

ExternalGeneralEvent, 

NoAnswer, 

NoAnswerIncoming, 

NoAnswerOutgoing, 

Register, RegisterIncoming, 

RegisterOutgoing, 

StatusAway, StatusBusy, 

StatusFree, StatusHere 

genpol:ConditionParameter 

wizpol:NamedCondParam 

 

ActiveContent, Bandwidth, 

CallContent, CallCost, 

CallerCapability, 

CallerCapabilitySet, Callee, 

Caller, CallerDevice, 

CallerLocation, 

CallMedium,CallPriority, 

CallQuality, CallerRole, 

CallTopic, CallType, Date, 

Day, DestinationAddress, 

NetworkType, 

SignallingAddress, 

SourceAddress, Time, 

TrafficLoad 

genpol:Action 

wizpol:NamedAction 

 

AddCaller, AddMedium, 

AddParty, 

ConfirmBandwidth, 

ConnectTo, ForkTo, 

ForwardTo, LogEvent, 

NoteAbsent, NoteAvailable, 

NoteAvailability, 

NotePresence, NotePresent, 

NoteUnavailable, 

PlayAudioClip, 

RejectBandwidth, RejectCall, 

RemoveMedium, 

RemoveParty, SendMessage 

Figure 4. Trigger, Condition Parameter and Action Classes 

IV. POLICY CONFLICT DETECTION AND RESOLUTION 

Section II.B gave an overview of policy conflict in general. 

There follows a description of how ontologies  support conflict 

handling within APPEL. It will be seen how this is modelled 

generically, and also specifically for call control policies. 

A. Generic Policy Conflict Resolution 

Conflicts among policies occur at run-time when 

simultaneously triggered policies propose conflicting actions. 

The process of detecting conflicts can be carried out statically 

(offline) or dynamically (online). Rather than hard-code policy 

conflict detection and resolution into the ACCENT system, 

APPEL deals with conflicts dynamically using resolution 

policies. This approach is far more complex and rigorous than 

any static, offline technique as it captures conflicts by 

analysing policies at run-time as they become eligible for 

execution. However, static handling of conflicts (such as at 

definition time within the policy wizard) is entirely feasible, 

although not currently implemented.  

Detecting and resolving conflicts are separate steps, though 

they are both defined by resolution policies. A resolution 

policy is similar in structure to but different in content from a 

regular control policy. This subsection outlines ontology 

modelling of generic resolution policies, while subsection B 

demonstrates how this is extended for call control. 

A resolution policy specifies what may trigger a conflict, 

any optional conditions, and resolving actions. The language 

for resolution policies follows the same structure as a regular 

policy, but with some small differences. Core resolution policy 

concepts are therefore defined within genpol (section III.B). In 

outline, a resolution policy is modelled as follows: 

ÿ A ResPolicy has zero or more PolicyRule instances. 

ÿ Each PolicyRule must have two or more TriggerEvent 

instances, zero or more Condition instances, and one or 

more Action instances. 

ÿ TriggerEvent instances in a resolution policy must be the 

Action instances of a regular policy, since conflict 

handling is triggered by the actions of regular policies. 

Resolution policy actions can be generic or specific in nature. 

Generic actions apply to any domain. They resolve a conflict 

by choosing one of the conflicting actions, e.g. that of the 

superior user or of the earlier-defined policy. The policy server 

has in-built support for generic resolution actions such as 

ApplySuperior or ApplyNewer.

To help with conflict detection, genpol specifies a top-level 

class called ActionEffect. Subclasses in domain-specific 

ontologies (e.g. for call control) categorise regular policy 

actions using the restriction hasActionEffect.

B. Modelling Call Control Resolution Policies 

The call control ontology specialises resolution policies 

through an extension of classes defined in genpol. In 

particular, it extends the list of resolution policy actions to 

include specific resolution actions for call control, e.g. 

ApplyCaller and ApplyCallee. In the event of conflict, these 

actions give priority to the policy associated with the caller or 

callee respectively. Specific resolution actions also include 

those of the application domain, e.g. forwarding or blocking 

for call control. 

As resolution policy triggers are a combination of call 

control actions, the ontology creates subclasses of the 



genpol:ActionEffect class to define specific categories for 

conflict handling. Each call control action is associated with 

one or more effect categories via the property restriction 

genpol:hasActionEffect. As an example, consider the actions 

and effects shown in Figure 5. 
 

Action Effect 

AddCaller PartyEffect, PrivacyEffect 

AddMedium MediumEffect, PrivacyEffect 

Figure 5. Sample Effects in Call Control 

Both the AddCaller and the AddMedium actions have a 

restriction linking them with PrivacyEffect. Therefore, it can 

be determined these actions may conflict as they share a 

common effect on the call environment. In separate work not 

reported here, this is used for automatic determination of 

conflict-prone policies. 

V. CONCLUSION 

The paper has outlined a novel approach to policy language 

definition using a framework of ontologies to model generic 

language constructs, as well as those specific to an application 

domain � call control. The approach has been used to support 

the ACCENT policy-based management system for handling 

call preferences. An ontology framework using OWL was 

designed to model APPEL, the policy description language used 

by the ACCENT system. The framework consists of two base 

ontologies, genpol and wizpol, together with a third ontology 

specific to call control. 

The ontology framework describes the policy language in 

abstract terms. It has proven useful for two reasons. Firstly, 

modelling generic language aspects separately allows for easy 

extension of policy support for call handling, e.g. adding 

further triggers or actions without altering the core language. 

This saves time, promotes effective reuse, and gives greater 

scope for policy language revision. Secondly, the approach 

allows the policy system to be extended for new domains. The 

common ontologies (genpol and wizpol) may be readily used 

to create custom ontologies for new application areas. 

The ontology framework also permits specialisation of 

conflict handling. Generic aspects of resolution policies are 

given by genpol, while domain-specific knowledge of conflicts 

is defined in specialisations of this � for call control here. 

There are several ways the ontologies for call control may 

be used or extended, both within their intended field of policy-

based call management and in other telecommunications 

contexts. The call control ontology includes call processing 

knowledge not directly related to the policy language. This 

information could be used in the ACCENT system by 

components other than the policy wizard, such as the policy 

server or the context system. 

Due to the abstraction created by the ontology framework, 

generic aspects of the policy language and their specialisation 

can be developed independently. This enables greater scope 

for extension to both the policy wizard (within wizpol) and 

also to call control itself. 

In related work by the authors and their colleagues, the 

approach is being extended to policy-based control of wind 

farms (http://www.prosen.org.uk), and to policy-based control 

of home care delivery (http://www.match-project.org.uk). 

The call control ontology may also be used by other 

applications unconnected with the ACCENT system or even 

policies in general. OWL ontologies can be made available via 

a URL (http://www.cs.stir.ac.uk/schemas for the work reported 

here). As a result, the ontologies can be exploited by any 

application that can benefit from knowledge of call control. 

ACKNOWLEDGEMENTS 

Gemma Campbell was supported in this work by a studentship 

from the UK Engineering and Physical Sciences Research 

Council under grant C014804. The authors thank their 

colleagues on the PROSEN project for discussions that helped 

to shape the approach. Thanks are also due to the developers 

of the Protégé, Jena, Pellet and Racer Pro tools used in this 

work. 

REFERENCES 

[1] ACCENT Policy-Based System. ACCENT project description 

http://www.cs.stir.ac.uk/accent, Nov. 2006. 

[2] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. 

Campbell and K. Nahrstedt. A Middleware Infrastructure to 

Enable Active Spaces, IEEE Pervasive Computing, 1(4):74�83, 

Oct.�Dec 2002. 

[3] G. A. Campbell. Ontology for Call Control, Technical Report 

CSM-170, CompSci & Maths, University of Stirling, Jun. 2006. 

[4] G. A. Campbell. Ontology Stack for a Policy Wizard. Technical 

Report CSM-169, CompSci & Maths, University of Stirling, 

Jun. 2006. 

[5] N. F. Noy and D. L. McGuinness. Ontology Development 101: 

A Guide to Creating Your First Ontology, Technical Report 

KSL-01-05, Stanford Knowledge Systems Laboratory, Mar. 

2001. 

[6] World-Wide Web Consortium. OWL Web Ontology Language 

Reference, Feb. 2004. 

[7] World-Wide Web Consortium. Web Ontology Language 

Summary, Feb. 2004. 

[8] S. Reiff-Marganiec and K .J. Turner. APPEL: The ACCENT Project 

Policy Environment/Language, Technical Report CSM-161, 

CompSci & Maths, University of Stirling, Jun. 2005. 

[9] S. Reiff-Marganiec and K. J. Turner. The ACCENT Policy Server. 

Technical Report CSM-164, CompSci & Maths, University of 

Stirling, May 2005. 

[10] K. J. Turner. The ACCENT Policy Wizard, Technical Report 

CSM-166, CompSci & Maths, University of Stirling, May 2005. 

[11] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P. 

Perry and J. Ireland. Policy Support for Call Control, Computer 

Standards and Interfaces, 28(6):635�649, Jun. 2006. 

[12] K. J. Turner and L. Blair. Policies and Conflicts in Call Control, 

Computer Networks, 51(2):496�514, Feb. 2007. 


