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Abstract 
 

Condition monitoring systems are increasingly 

installed in wind turbine generators with the goal 

of providing component-specific information to 

the wind farm operator and hence increase 

equipment availability through maintenance and 

operating actions based on this information. In 

some cases, however, the economic benefits of 

such systems are unclear. A quantitative measure 

of these benefits may therefore be of value to 

utilities and O&M groups involved in planning 

and operating wind farm installations. The 

development of a probabilistic model based on 

discrete-time Markov Chain solved via Monte 

Carlo methods to meet these requirements is 

illustrated. Potential value is demonstrated 

through case study simulations. 

 

1    Introduction 
 

Wind power is currently regarded by many 

policy makers and utilities as the renewable 

energy source most suited to delivering desired 

targets on carbon emission reductions and 

diversity of supply. For this reason major utilities 

are driving forward with planning and 

construction of wind farms, with over 10GW 

wind capacity currently in the UK planning 

system alone [1]. Additionally, recent UK policy 

documents have re-iterated government support 

for the wind industry in the form of the 

renewables obligation until at least 2027 [2]. If 

these trends continue, future utilities will have 

generation portfolios comprising a substantial 

proportion of wind power. 

 

This recent rapid construction of wind farm 

capacity has also resulted in widespread 

installation of condition monitoring (CM) 

systems for wind turbine generators (WTGs). 

These systems provide information to the wind 

farm operator, with the goal of improving 

operational efficiency via more informed 

decision-making. As the number of operational 

wind farms increases, more focus will be placed 

on effective and efficient use of these systems, 

which has not been a priority to date. Wind farm 

operators are keen to manage their plant as 

economically as possible: therefore they will 

select a maintenance policy which reflects this. 

Any prospective maintenance policy based on 

condition information must have clear financial 

benefits: else the initial outlay for the CM system 

and associated costs cannot be justified.  

 

This paper argues that via modelling a WTG and 

its sub-components in a Markov Chain solved 

via Monte Carlo simulation (MCS), it is possible 

to evaluate the impact of a CM system on the 

performance of an onshore wind turbine over its 

operational lifetime. This impact is based on how 

the condition information is used: for example it 

may be used to manage and optimise 

maintenance. By comparing various output 

metrics with those obtained via other 

maintenance policies (i.e. scheduled), the value 

of such a system may be quantitatively 

evaluated. The set of models being developed for 

this purpose are presented in this paper, and will 

begin to address the following questions related 

to WTG CM: 

 

• What is the value of WTG CM? 

 

• Are WTG CM systems currently cost-

effective for onshore conditions? 

 

• What are the necessary conditions for cost-

effective WTG CM? 

 

These questions are interesting for several 

reasons: perhaps the most insightful is that few 

wind farm operators would be able to give a 

definitive answer. This paper aims to move 

towards these answers based on a combination of 

mathematical models which aim to capture the 

nuances and subtleties of this problem. A variety 

of data sources are used and operational 

experience from industry is taken advantage of.   



2 Overview of WTG CM Systems 
and their Modelling 

 

Most modern WTGs are now manufactured with 

some form of integrated CM system: such 

systems are commonly based on vibration 

monitoring of the WTG drive-train [3] as well as 

temperature of bearings, machine windings etc. 

Additionally, several emerging systems are 

commercially available based on technologies 

such as lubrication oil particulate content and 

optical strain measurements [4], [5].  

 

Figure 1 illustrates four WTG sub-components 

and a sub-set of monitoring options. The quality 

of information provided by each of these 

measurements, as well as the data interpretation, 

determines the accuracy of the overall ‘system 

picture’, as inferred by the CM system. 

  

 
Figure 1: Selection of WTG Monitoring Options 

 

[6] and [7] provide particularly insightful 

reviews of the state of the art in WTG CM 

systems. Several other systems have been 

developed, such as the blade monitoring system 

presented in [8], and the holistic set of intelligent 

models developed in [9]: however temperature 

and vibration are the main tools used in 

commercially available systems. 

 

Given that the CM system is monitoring the 

status of a set of components, capturing the 

deterioration process of those components is 

vital. When this process is adequately 

represented, condition monitoring can be simply 

modelled as knowledge of the current state. A 

myriad of research related to this area of 

‘deterioration modelling’ and maintenance 

modelling exists in literature, with many 

interesting applications, providing useful insight 

for this work. References [10] and [11] approach 

the problem as a discrete event simulation: the 

Markov Chain deterioration model represents 

key components in the nuclear safety sector. 

Both sets of authors identify an optimal 

deterioration threshold limit (in terms of 

availability and profit) at which condition-based 

maintenance should be conducted: however 

while Baratta [11] uses sensitivity studies, 

Marseguerra [10] uses a genetic algorithm to 

achieve the optimisation. Endrenyi and 

associates have published a number of influential 

contributions on deterioration modelling and the 

effects of maintenance including [12] and [13]. 

Sayas and Billinton [14], [15] have both 

developed wind turbine models for use in 

reliability studies: although these understandably 

neglect intermediate states. Markov models have 

been applied successfully by a number of authors 

in asset management applications, with notable 

contributions in the fields of oil-filled circuit 

breakers [16], water infrastructure [17], and road 

networks [18], [19].  

 

Continuous- time models with analytical solution 

are favoured by most authors: however this can 

be problematic when representing more complex 

systems and processes. In this sense, discrete-

time models solved via simulation provide a 

degree of insight and flexibility which is 

essential to capture the nuances of operational 

activities. Therefore, a discrete-time simulation-

solved model is adopted in these studies. 

 

3 WTG Asset Management 
Modelling 
  

In order to represent the various facets of the 

complex problem of quantifying the effects of 

CM on WTGs, a multi-level modelling approach 

is being adopted, as shown in figure 2. 

 

 
Figure 2: Multi-level WTG Representation 

 

The three levels enable a diverse range of 

processes to be effectively modelled such as 

physical deterioration and faults, wind farm yield 

modelling and weather effects, and high-level 

asset management decisions: these individual 

aspects are now discussed. 



3.1 WTG Sub-Component Models 
 
The sub-component representation of a physical 

system has been implemented in several different 

ways in literature, as shown in Figure 3.    

 
Figure 3: Sub-Component Models 

 

Moving from left to right, the two-state 

representation such as that used in older 

reliability studies is unsuitable for this 

application as it does not consider intermediate 

states and thus the CM aspect cannot be 

captured. The single component approach 

(centre) would require parallel simulation to 

solve: this should be avoided as far as possible 

due to the chance of introducing undetected 

simulation correlations causing bias in the result 

[20]. Thus the multi-component, intermediate 

state model (right) is adopted for these studies.  

 

The next stage is to decide which components 

should be considered in the analysis, and how 

the component states map to the measured 

condition variables provided by the CM system. 

Both of these issues are very important, having a 

significant impact on the model accuracy. Once 

these issues are addressed, the state-space of the 

Markov model is effectively defined. 

 

3.2 Modelled Components 
 

Two main sources of information were used to 

determine which of the WTG sub-components 

should be included in the modelling: published 

sub-component reliability data; and wind farm 

operational experience. 

 

3.2.1 WTG Sub-Component Reliability 
Data 

 

Reliability data for wind turbine sub-components 

is readily available. This is primarily due to the 

significant (and growing) number of wind farms 

of various age, type and location in existence 

across the world. This information represents a 

useful starting point for modelling of the wind 

turbine sub-components, ultimately for use in the 

condition monitoring evaluation study. A 

summary plot of three studies containing WTG 

sub-component reliability data are shown in 

figure 4: these have been taken from various 

published sources (Top-left, clockwise: [21], 

[22] and [23]). 

 

 

 
Figure 4: A Selection of Wind Turbine 

Reliability Studies 

 

The data plotted in figure 4 is predominantly 

characteristic of the experiences of Danish and 

German utilities. A sizable chunk of failures are 

electronic related, corresponding to small 

downtime and relatively convenient replacement. 

Indeed, it is important to note that these results 

reflect only relative failure frequency: not 

duration of downtime, or cost of components. 

Hence, it is been recognised that other factors 

beyond the failure rate should be considered.  

 

3.2.2 Operational Experience 
 

Dialogue with a UK utility engaged in wind farm 

O&M yields interesting contrast with published 

results as outlined in the previous section. 

Although it is not possible to quantify the 

various relative WTG failures without access to 

the data, it is clear through this dialogue that the 

most significant operational failures are 

associated with the gearbox and generator 

components. The reasons for this high 

significance can be summarized: 

 

• High capital cost and long lead-time for 

replacement  

• Difficulty in repairing in-situ 

• Large physical size and weight 

• Position in nacelle at top of tower 

• Lengthy resultant downtime, compounded 

by adverse weather conditions 



The final point can be reinforced when it is 

understood that typical downtime for a gearbox 

replacement is of the order of 700 hours. A 

recent report detailing operational activities at 

the Scroby Sands offshore wind farm [24] 

appears to back up the conclusions above, with 

gearbox bearing problems the most prevalent. 

  

For the studies conducted in this paper, a 4–

component model comprising generator, 

gearbox, blades and power electronics system 

was chosen (see figure 1). The gearbox and 

generator were included for the reasons outlined 

above.  Blades were also included as there are 

emerging methods of monitoring these, and 

although logistical problems of transporting such 

awkward components are not explicitly 

modelled, it is expected this will be a factor in 

later iterations of this model. Finally, in order to 

accurately re-create the overall wind turbine 

failure rate, the power electronics was included 

even though monitoring capability is not 

modelled. 

 

3.2.3 Mapping of CM Information to 
Markov States 

 

The crux of condition monitoring effectiveness 

lies in the ability of the CM system to reliably 

diagnose the status of the components and hence 

the overall system.  There are of course many 

methods of achieving this, some more simple 

than others. This ability to diagnose and 

categorise (whether achieved via human expert 

or automated systems [25]) is the basis of any 

CM system and its subsequent mathematical 

representation. Indeed, the practicalities of 

quantifying condition as a mathematical index 

have been investigated elsewhere: a particularly 

comprehensive and succinct summary is 

provided in [26]. For this work, a simple 

example of the possible mapping between the 

monitored system variables and Markov state 

space is sufficient to illustrate the concept. 

 

 
Figure 5: CM System Categorisation 

Figure 5 shows a set of wind turbine gearbox 

lubrication oil temperature traces, along with 

possible state categorisation. Since deterioration 

is essentially random, Monte Carlo methods can 

be used to represent this process adequately. It 

can be seen then, how the physical state of the 

WTG component corresponds to its modelled 

state in the Markov chain. 

 

Recall that the components to be modelled are 

those shown in figure 1: the states of those 

components may be categorised in the manner 

shown in figure 5, using the various CM 

methods available. Finally the state-space must 

be defined based on this information, and the 

transition probabilities between states deduced. 

 

3.3 Markov Chain State Space 
 

In the state space diagram, each box represents 

the condition of the overall wind turbine, i.e. the 

status of the 4 modelled components. Figure 6 

shows a sub-set of the state space and a key 

indicating the identity of the components. 

 

 
Figure 6: Sub-Set of WTG State-Space 

 

The total possible state space is 52 states: 

however this was reduced to 28 via simplifying 

assumptions, the most influential being: 

 

• The probability of simultaneous failure 

events is considered insignificant 

 

• Components must transit to derated state 

before outright failure (except electronics) 

 

Validity of these assumptions increases as the 

time resolution of the model approaches 

continuous time i.e. small discrete time periods. 



3.4 Transition Probabilities 
 

Ideally the transition probability matrix (TPM) 

which governs the behaviour of the system over 

the discrete time periods would be defined by 

taking a long-run turbine history and calculating 

transitions based on this history alone. The main 

issue is that such data sets may not exist in 

reality, and may not capture a wide range of 

turbine faults: therefore other approaches must 

be considered.  

 

The sub-component failure probabilities (see 

3.2.1) are known quantities over large 

populations of turbines, and therefore the model 

should reproduce these faithfully (if sampled 

sufficiently to reach steady-state values). The 

transition probabilities can be at least partially 

deduced by using sensitivity studies to observe 

the effect on these output metrics. Additionally, 

the probabilities can be influenced by comparing 

the model condition trajectory to that of a 

monitored turbine in operation. For example, it is 

possible to deduce the probability of failure in 

the next time period if it is known that the 

current state is a de-rated state: in this sense the 

turbine condition data is providing a direct input 

into shaping the behaviour of the model. 

 

3.5 Turbine Yield Modelling 
 

The yield model consists of two parts: a power 

curve model and a wind model. The power curve 

used in these studies, shown in figure 7, is a 

2MW rated machine – although any curve could 

be used. It has characteristic cut in, rated and cut 

out wind speeds of 4, 14 and 25m/s respectively. 

 

 
Figure 7: 2MW Turbine Power Curve 

 

The wind speed is sampled at each simulation 

trial, from a probability-partitioned data set at 

intervals of roughly 0.5m/s, giving a capacity 

factor of 0.22. The sampling is based exclusively 

on the probability of the partitioned sample, with 

no correlation between the samples. This is an 

aspect of the model which is currently being 

reviewed: it is anticipated that a time-series 

model will be implemented in the near future. 

This will enable realistic auto-correlations to be 

captured, which is especially relevant at high 

model resolution (i.e. hours rather than weeks). 

 

3.5.1 Yield Revenue Calculation 
 

Turbine revenue is calculated from the volume of 

energy (MWh) generated, and is dependent on 

the following equation: 
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Where MPElec and MPROC the market price of 

electricity and ROCs is taken as £36/MWh and 

£40/MWh respectively. These costs are currently 

fixed in the model, although their variability 

could easily be modelled deterministically or 

probabilistically in future studies. Operations and 

maintenance costs, described in the next section, 

are subtracted from the revenue stream to 

calculate income from each turbine. 

 

3.6 Maintenance Models 
 

Two contrasting maintenance approaches were 

implemented in the model: Scheduled and 

risk/condition based maintenance.  

 

• Scheduled – Perform maintenance at set 

intervals (~Every 6 months) 

• Risk/Condition Based – Maintain according 

to condition rule policy 

 

It is noted that both approaches will inevitably 

involve some amount of reactive maintenance. 

Additionally, some maintenance and repair 

actions are subject to weather constraints (see 

table 1): these are typically set by the owner/ 

operator for health and safety reasons.  

 

 
Table 1: Maintenance Weather Constraints 



It is assumed that downtime for unplanned 

outages involving nacelle components is highly 

variable and uncontrolled, whereas planned 

maintenance actions are carried out with 

certainty if weather conditions are favourable: 

reflecting the benefit of a more pre-emptive 

approach to maintenance. The modelling of 

downtime is dependent only on the transition 

probabilities: alternative methods using 

‘downtime distributions’ derived from SCADA 

data will be investigated in future work. The 

Markov model has the flexibility to handle 

different behaviour both short-term (in-

maintenance, weather-constrained, operational) 

and long-term (modelling life-cycle stages). A 

TPM with suitably adjusted transition 

probabilities can be used for these situations.  

 

3.6.1 Maintenance Costs 
 

The baseline maintenance costs for a 2MW 

WTG were taken as £10K per year. If 6-monthly 

maintenance is adopted, this corresponds to £5K 

per maintenance action. Therefore the (planned) 

maintenance costs of a Risk/ CBM policy can be 

calculated as a yearly proportion, depending on 

the frequency of maintenance actions. Table 2 

illustrates the rules used to model these 

maintenance costs.  

 

 
Table 2: Planned Maintenance Costs 

 

In addition to scheduled maintenance costs, 

unplanned costs for replacement or repair of 

major WTG components should also be 

modelled, as they are significant. To capture this, 

every time the Markov model transits to a failure 

state, the failed component is identified and 

repair or replacement cost deducted from the 

WTG revenue stream (of course any potential 

yield revenue is also lost while in the down 

state). Replacement and repair costs for the key 

WTG components are shown in table 3.  

 

 
Table 3: Component Replacement & Repair Cost 

 

The repair costs are modelled deterministically, 

but this is another area of the model where 

increased detail could be accommodated. 

Likewise, the probability of repair or 

replacement of a failed component is equally 

likely: further study into the robustness and 

‘reparability’ of the components may lend more 

accuracy to these assumptions.  

 

3.6.2 Scheduled Maintenance Regime 
 

The most widely practiced maintenance 

paradigm in any industry is scheduled 

maintenance, and maintenance of wind farms is 

no different. Despite the various monitoring 

options available, most owner/ operators tend to 

keep to methods they are familiar with in 

maintenance of their assets. It is assumed that 

maintenance actions are 100% successful, and 

have only a small impact on yield, being 

scheduled during periods of low wind. The 

actions are weather constrained (see table 1) and 

are assumed to be carried out every 6 months. 

 

3.6.3 Risk/Condition-Based 
Maintenance Regime 

 

As previously discussed, one of the chief 

advantages of the Markov approach is its ability 

to model condition monitoring knowledge 

capture. In reality, the WTG operator would 

observe (manually or through an automated 

system) the trajectory of various instrumented 

WTG components via measurements delivered 

by the CM system, as previously discussed. In 

the Markov model this can be replicated by 

allowing the maintenance actions to be informed 

by the current state of the system (Physical 

Markov condition model): see figure 8 for a 

simple illustration of this concept. 

 

 
Figure 8: Markov Model Captures CM Info. 

 

An implicit assumption in this approach is that 

the CM system can infer the current equipment 

condition with certainty. Therefore, the model as 

it stands does not address the issue of possible 

spurious CM diagnosis: for the analysis 

presented in this paper the assumption is held.  

 

The next challenge is the development and 

specification of a suitable condition-based 

decision model, coupling condition and 



maintenance. An operator of any plant or system 

desires some signal regarding the risk that their 

plant is subject to. Risk is defined as the product 

of probability and impact of an event or 

compound event. The Markov model is again 

particularly suited to the expression of such 

metrics. The risk in any system state can be 

expressed specifically as: 

 

∑ ×= )Im()Pr()( eventeventstateRisk
NN

 

Where Pr(event) is the probability of transition 

to a failure state and Im(event) is the impact of 

that particular component failure should it occur, 

which could comprise a number of economic 

terms, but is currently simply the component 

replacement cost. By using the equation above, 

all states with probability paths to failure can 

have an associated risk calculated for them, as 

displayed in figure 9. The reason only states 2-8 

are included is that these are the intermediate 

operational states where the CM knowledge can 

be taken advantage of. 
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Figure 9: Risk Associated with Each State 

 

Once calculated, the magnitude of risk for each 

state can be used as an indicator to determine 

how urgently repair work should be scheduled 

by the operator of the WTG. In this work the risk 

measure is used to set a maintenance time delay. 

The states are grouped into intervals depending 

on their risk values: at this point there is no 

formal framework for how these intervals are 

formed, although in previous model iterations 

these divisions were very clear due to large 

differences between risk values. 
 

Table 4 shows the wait time in days for each risk 

interval corresponding to the values in figure 9: 

the time values in table 4 were determined by 

conducting a simple sensitivity study. As with 

scheduled policies, when the wait time has 

elapsed, the maintenance will only be carried out 

if weather conditions are favourable. Using the 

equipment state and wait times, the 6-monthly 

scheduled maintenance policy can be replaced 

with a risk/ condition based policy. 

 

 
Table 4: Wait Times- Linking Condition 

Information to Maintenance Actions 

 

The maintenance policies have been presented, 

along with the representations of the wind 

turbine and associated modelling. Some general 

issues concerning the model flexibility and its 

probabilistic nature are now discussed. 

 

3.7 Model Flexibility 
 

One of the main reasons that a discrete-time 

Markov chain solved via simulation was used in 

these studies was the flexibility of that approach. 

This flexibility enables many aspects of this 

problem to be captured, detail which is essential 

to the adequate representation of the system. One 

aspect of particular interest is how time (or other 

variable!)-dependence can be achieved with a 

multi-stage model: how the failure behaviour of 

the system sub-components evolves in time, or 

as recently hypothesised, with respect to the on-

site weather conditions [27]. For the moment this 

is not considered, and the case studies presented 

are based on the models as described. 

 

3.8 Statistical Significance 
 

The program was developed to include a flexible 

approach to the number of trials to be run. 

Essentially the program can be run either in 

order to generate a ‘real’ condition history (20 

simulated years~7000 trials), or in order to 

obtain statistically sound values (14,000 trial 

simulation run 30 times: 420,000 trials). When 

14,000 trials were run, this almost always 

resulted in the turbine residing in each of the 28 

possible states at least once. In fact, in order for 

the sample to be statistically credible, all 

possible failure modes should occur: so an upper 

limit of 14,000 trials seems adequate. Of course 

in a real situation this may not be the case: a 

WTG may only experience a sub-set of the 

failures possible (since conditions and equipment 

vary from site to site). The spread of this sub-set 

of failures and frequency of failures experienced 

by the WTG may be a contributing factor to the 

perceived effectiveness of any maintenance 

policy.  



To increase statistical confidence, multiple 

simulation runs are conducted and average 

values taken. For direct comparisons of 

individual cases, correlated sampling was used. 

A simple statistical calculation can be carried out 

in order to establish confidence limits (L) of the 

simulation results: 

N

SDevZ
L
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Where SDev is the standard deviation of the 

samples, and N is the number of samples taken. 

If the degree of confidence in the result is set to 

95%, then the Z score is equal to 1.65. Using this 

statistical tool it is possible to assert that the real 

mean value is 95% certain to lie within the 

bounds of the upper and lower confidence limits.  

 

4 Case Studies 
 

A number of case study simulations are 

presented to illustrate the capabilities of the set 

of models as described in previous sections. The 

models were implemented in Fortran code and 

solved within five minutes in all cases. These 

studies are run at a time resolution of 1 day. 

 

4.1 Model Metric Benchmarking 
 

A short study was conducted to confirm that the 

models produce output metrics with a sufficient 

level of accuracy as compared with real figures. 

Table 5 shows a summary of the output, which is 

visualised in figure 10. 

 

 
Table 5: Model Metrics for Scheduled 6-

Monthly Maintenance  

 

 
Figure 10: Availability, Failure Rate, Yield and 

Turbine Revenue with Confidence Limits 

 

A figure of 98% is often quoted for wind turbine 

availability, which compares fairly well with the 

97.5% mean value produced by the model: 

although the upper confidence limit is only 97.76 

and so perhaps this requires slight adjustment.   

 

The annual yield in MWh can be estimated by 

using a simple calculation: 

 

ACFRatingHrsMWh MWYEARYEAR %
×××=  

 

Assuming a capacity factor (CF) of 0.22 (see 

section 3.5) and availability (A%) of 98%: 

 

377798.022.028760 =×××=MWhYEAR

 

 

This can be considered adequately close to the 

simulated mean value of 3728MWh (see above). 

Based on this yield, the annual revenue can be 

calculated: 

 
( ) CMPMPMWhvenue MOELECROCYEARYEAR &Re −+×=

 

Annual O&M cost (CO&M) is taken as £10,000 

per turbine. MPElec and MPROC are the market 

price of electricity and ROCs taken as £36/MWh 

and £40/MWh respectively, giving: 

 
( ) £277,052000,1036403777Re =−+×=venue YEAR

The large disparity between this value and the 

simulated £159,747 can be attributed to real 

CO&M being very much larger than the assumed 

£10,000 in the above calculation. Indeed, 

replacement of major components can have a 

large impact on the revenue stream, and this 

feature is captured in the models. Thus, while for 

individual years the turbine may reach high 

levels of revenue, these may be offset by years 

where a major unplanned outage occurs. 

 

Figure 11 shows the individual component 

failure rates. A comparison is made between the 

desired annual failure rates (based on reliability 

data and industry information: ‘Input values’) 

and simulated values obtained from the program. 

 

 
       Simulated Values        Input Values 

Figure 11: Key Component Annual Failure Rate 



In conclusion, it can be seen that the presented 

model simulations provide realistic outputs for 

WTG and sub-component reliability, energy 

yield, revenue and availability. With this 

established, an evaluation of condition 

monitoring can be conducted. 

 

4.2 Condition Monitoring 
Evaluation 

 

In this section a comparison is made between a 

6-monthly scheduled maintenance policy and a 

condition based policy. The goal is to begin to 

answer the questions posed in the introduction.  

 

Each simulation was run 30 times, in order that 

statistical tests can be made. Figure 12 shows the 

annual turbine revenue for the individual 

simulations. This first result is interesting as it 

shows immediately that in some cases the 

scheduled maintenance policy will out-perform 

the condition-based one, in roughly one third of 

the cases. 

 
Figure 12: Simulated WTG Revenue 

 

Considering the turbine failure rate for each case 

in figure 13 it can be seen in all simulation cases 

that the overall turbine failure rate is lower for 

the condition-based maintenance policy. This is 

fairly intuitive since in the CBM cases wait times 

are shorter and correspond to the needs of the 

equipment. 

 
Figure 13: Simulated WTG Failure Rate 

 

Equally intuitive is the fact that the maintenance 

effort for the condition-based results varies over 

the sample: this can be clearly seen in figure 14. 

The overall mean annual CBM frequency of 4.3 

is more than double the scheduled value of 2 

actions per year. Since the CBM policy is 

dependent on the condition of the monitored 

components, the frequency of maintenance 

actions is strongly coupled with the number of 

potential failures experienced by the WTG over 

its operational lifetime. In general, more reliable 

components mean less maintenance effort. 

 

 
Figure 14: CBM Maintenance Frequency  

 

Table 6 summarises the average values taken 

from the 30 simulations, directly comparing the 

outputs of the different maintenance policies.  

 

 
Table 6: Annual Mean Values for Simulation 

Output Metrics 

 

One of the central points of interest is how the 

revenue streams of the two approaches compare. 

Figure 15 shows a mean annual value of just 

over £2000 for the condition-based maintenance, 

relative to the widely-used scheduled 

maintenance policy. Over the 20 year life of the 

WTG this represents a saving of £40,000 per 

turbine, so for a medium sized wind farm of 20 

turbines this equates to significant additional 

revenue. 

 
Figure 15: Comparison of Annual WTG 

Revenue with Confidence Level 



It should be noted however that the possible 

ancillary costs of the monitoring, i.e. a human 

expert or extended automated interpretation 

system, have not been included in the model. In 

addition, the monitoring system itself is made up 

of components, especially transducers, which 

will have to be replaced during the operational 

lifetime of the wind turbine. This, coupled with 

figure 15, seems to conclude that the case for 

onshore condition monitoring systems for wind 

turbines is currently borderline cost-effective.  

 

5 Conclusions 
 

A set of models to quantify the benefits of 

condition monitoring systems for wind turbines 

has been presented in this paper. The results, 

especially figure 15, indicate that the benefit of 

onshore WTG CM is marginal for the conditions 

evaluated here. This is a fairly intuitive result 

given the low-economic margin of wind plant in 

general: however it has been backed up through 

the detailed modelling presented in this paper. 

This conclusion appears to be in keeping with 

the opinion of electric power industry utilities, 

understandably reluctant to change their 

maintenance strategies unless clear economic 

benefits of condition-based maintenance for 

WTGs can be demonstrated. It must be noted 

however that the value of the information 

provided by WTG CM systems may have some 

benefit beyond informing maintenance, such as 

information regarding how turbines react to 

specific operating conditions.  

 

This paper has demonstrated that the value of a 

WTG CM system can indeed be quantified. 

Future work will be geared towards increasing 

model accuracy via less simplifying assumptions 

and better characterisation of the subcomponent 

deterioration behaviour. In addition, further 

model simulations with different conditions may 

yield interesting results. The effects of wind 

regime, turbine ratings, and reliability of the CM 

system itself are issues which will be tackled in 

future work, along with an evaluation of WTG 

CM in the offshore environment. 
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