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Abstract

The use of SDL (Specification and Description Language) for digital hardware description and analysis
is investigated in this report. It continues the work undertaken at the University of Stirling and the
Technical University of Budapest on hardware description with SDL, offering a modular approach to
hardware design in SDL.

Although SDL is widely used in the software and telecommunication community, it is not very popular
with hardware designers. However, it has attracted the researcher’s interest because it offers good system
structuring features and the possibili ty of software-hardware co-design.

One way of supporting hardware engineers when translating a circuit schematic into a SDL
specification is to have a library of ready-to-use or pre-defined digital components. These elements may
then be used as building blocks to aid in the development of more complex electronic hardware.

The main goal of this report has been to extend an existing SDL logic library, in an attempt to reflect
the range of components typically available to electronics designers. Using these libraries and a commercial
tool for SDL the properties of a realistic circuit can now be investigated. Making use of these new
elements, a practical case study has been carried out. The overall results clearly show that hardware
description in SDL is an interesting alternative to other more traditional methods of hardware analysis.

Thanks to the Faculty of Management for the financial support for this project and, finally, thanks to the
Department of Computing Science and Mathematics as a whole because it has been the perfect
environment for this work. Financial support is gratefully acknowledged from NATO under grant
HTECH.CRG 974581.
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1 Introduction

1.1 Background and Context

During the last decade, hardware design has evolved from using tools for synthesis from Boolean
equations and state diagrams, to synthesis from behavioural descriptions using HDLs (Hardware
Description Languages). Nowadays, high-level synthesis tools are commercially available and widely used
for design.

Although improving the performance of high level synthesis tools is an active research area, some
researchers have also started looking at the problem of direct synthesis from system specification languages
like SDL [1] (Specification and Description Language). The use of formal methods for hardware
description and specification is a relatively new research area, although much of the experience and
commercial tools for formal software design could be used for hardware too.

Digital hardware and software are not that different after all . They share things in common that could be
exploited to achieve a better understanding of complex structures implemented as hardware elements or
software routines. At a higher level of abstraction, system designs can be analysed, optimised and tested
independently of the implementation. The use of formal methods for hardware analysis and the new
approaches towards co-design can certainly weaken the barriers traditionally built between the two worlds,
the hardware and software realms.

1.2 Scope and Objectives

This dissertation continues the work already undertaken at the University of Stirling and the Technical
University of Budapest on hardware description with SDL. Kenneth J. Turner, Gyula Csopaki and Stephen
D. Laing have jointly developed the foundation work in the project ANISEED (Analysis In SDL Enhancing
Electronic Design) an innovative attempt to offer to electronics engineers a modular approach to hardware
design in SDL.

Complex circuits can be described and analysed in ANISEED making use of a library of electronic
components described in SDL. In order to extend the functionali ty and possibiliti es of ANISEED, the main
goal of this dissertation has been to extend the existing SDL logic library, in an attempt to reflect the range
of components typically available to electronics designers. Several components have been selected from
typical device famili es such as tri-state logic gates, flip-flops, code converters, multiplexers, etc. The
behaviour of hardware functional units has been specified by block types, and all the components stored in
SDL packages to be used as generic definitions. These generic elements can now be instantiated to specify
the characteristics of particular components, including parameters such as names of input and output
signals, timing characteristics, propagation delays, etc.

The main outcome of this project has been an extended SDL library for future use in ANISEED.
Besides, to make use of these new elements a practical case study has been carried out. The overall results
clearly show that the ANISEED approach to hardware description in SDL is an interesting alternative to
other more traditional methods of hardware design and analysis.

1.3 Structure of the Repor t

This dissertation is structured as follows:
• Chapter 1: (This chapter). Introduces the background and context of the work, establishing the

goals and main objectives.
• Chapter 2: Gives some notation and semantics of the basic digital components needed to

understand the following work. It also describes the state of the art in the most currently used
hardware description languages. The main characteristics of SDL are presented, and the ANISEED
approach is briefly described.

• Chapter 3: The approach to hardware description in SDL that has been followed in this work is
presented. Some simulation and validation issues are also discussed. Explanation of how a
commercial tool can be used to validate SDL descriptions of digital circuits is given.
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• Chapter 4: This chapter is dedicated to tri-state devices. Some particular aspects of these
components are commented on, the new elements included in the library are explained, and a
detailed example is given.

• Chapter 5: Code converters and multiplexers are presented in this chapter. Common aspects and
SDL descriptions of coders, decoders, BCD to decimal code converters and multiplexers are
discussed.

• Chapter 6: More than twenty different types of flip-flops have been included in the ANISEED
library. Different kinds of flip-flops and their timing constraints are described, discussing the
solutions found to deal with the inherent complexity of all these timing aspects in SDL.

• Chapter 7: This chapter describes how the new library was constructed and how to use it. Some
problems with the tool and the solutions found are also discussed. A case study shows our approach
to hardware analysis in SDL in action.

• Appendix A: The most commonly used SDL symbols and notation are included for reference.
• Appendix B: A list of the new ANISEED library components.
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2 State of The Ar t

2.1 Digital Hardware Components

Digital systems are extensively used in computation and data processing, control systems,
communications, measurement, etc. Because digital systems are capable of greater accuracy and reliabili ty
than analogue systems, many tasks formerly done by analogue systems are now being performed digitally.

The design of digital systems may be divided roughly into three parts; system design, logic design and
circuit design [2]. System design involves breaking the overall system into subsystems and specifying the
characteristics of each subsystem. Logic design involves determining how to interconnect basic logic
building blocks to perform a specific function. Circuit design involves specifying the interconnection of
specific components like resistors, transistors, logic gates etc. to form logic building blocks. Most
contemporary circuit design is done in integrated circuit form using appropriate computer-aided design
tools to lay out and interconnect the components on a chip of sili con.

Many of the subsystems of a digital system take the form of a reactive system with one or more inputs
and outputs which take discrete values. In combinational networks the output values depend only on the
present value of the inputs and not on past values. However, in a sequential circuit the outputs depend on
both the present and past input values. In other words, to determine the output of a sequential circuit a
sequence of input values must be specified. Sequential circuits are said to have memory because they must
remember something about the past sequence of inputs, while combinational networks do not.

The simplest building blocks used to construct combinational circuits are logic gates. The logic designer
must determine how to interconnect these gates in order to convert the input signals into the desired output
signals. The relationship between these input and output signals can be described mathematically in terms
of Boolean algebra.

The basic memory elements used in the design of sequential networks are flip-flops or latches. Flip-
flops can be interconnected with gates to form counters, registers and the like. The first step in designing a
sequential circuit is to construct a state table or graph which describes the relationship between the input
and output sequences. After doing that, there are different methods to implement sequential circuits, going
from a state table or graph to a network of gates and flip-flops.

Digital logic and digital systems design are highly developed topics. The operation of logic gates and
how to combine them into larger circuits and modules is well documented in the literature. Traditional
digital logic design normally uses hardware components as building blocks that are available in
manufacturer’s catalogues and datasheets.

The behaviour, truth tables and characteristics of the electronic components described in SDL for the
ANISEED library will be gradually explained in the following chapters. As a basic reference, the symbols
and truth tables for the basic logic gates (with two inputs) are presented in Figure 1.
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Figure 1. Basic logic gates symbols and their corresponding truth tables

2.2 Hardware Description Languages

Hardware Description Languages (HDLs) are, as the name implies, languages used to design hardware.
HDLs can be used to describe the functionali ty of hardware as well as its implementation. Nowadays,
hardware description languages that resemble software-programming languages are central to digital circuit
design.

Hardware description languages can describe the functionality of a piece of hardware
independently of the implementation. A great advance with modern HDLs was the fact that a single
language could be used to describe the function of the design and also to describe the implementation. This
allows the entire design process to take place in a single language.

VHDL (Very high-speed integrated circuit Hardware Description Language) [3] and Verilog [4] are
some of the most widely used HDLs nowadays. VHDL has been an IEEE Standard since 1987. It is an
Ada-based language that supports the development, synthesis, and testing of hardware designs through
simulation of hardware descriptions. Several synthesis, verification and simulation tools based on VHDL
are commercially available. The Verilog HDL was designed and first implemented at Gateway Design
Automation in 1984. Due to industry concerns about the proprietary nature of Verilog, the control of the
language was eventuall y given to a standards committee. Verilog is now an IEEE standard that is
maintained by the Design Automation Standards Committee. It is a language intended for use in all phases
of the creation of electronic systems, but it is primarily used for the design of integrated circuits at various
levels of abstraction.

Besides specific HDLs, some software-oriented languages have been used for hardware description too.
In a paper by Janstch [5], SDL and functional languages like Erlang [6] or Haskell [7] are found
appropriate to describe combined software/hardware systems.

The use of formal methods for verifying and validating complex systems behaviour is an active research
area. System level specifications can be used as a basis for deriving implementations, but with a higher
level of abstraction, in order to postpone implementation decisions and not to exclude any valid realization.
Many intermediate refinement steps are needed to achieve a realization, gradually closing the gap between
the specification and the implementation. However, several concepts supported by system level
specification languages are not easily represented in hardware description languages and, sometimes,
clumsy implementations are needed.
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Initial work by researchers for hardware synthesis from SDL specifications was mainly exploratory.
The initial objective was to demonstrate the feasibili ty of synthesis rather than development of practical
tools or methodologies. A very common strategy has been to select a restricted synthesisable subset of SDL
and then provide translators to VHDL code [8, 9,10,11]. Although SDL is widely used in the software and
telecommunication community, it is not that popular with hardware designers. It has attracted interest
because it offers good system structuring features, high level communication and the possibil ity of co-
design [12,13,14].

Like SDL, LOTOS (Language Of Temporal Ordering Specification [15]) was developed for describing
communications systems. The inspiration for the work reported in this report was the LOTOS-based
approach to hardware description currently under development at the University of Stirling: DILL (Digital
Logic in LOTOS [16, 17,18]).

2.3 SDL (Specification and Description Language)

SDL (Specification and Description Language) is an object-oriented formal specification and
description language for developing the structure, behaviour and data of complex systems. SDL serves as
the main international standard for protocol and system description in telecommunications, being
standardized by ITU (International Telecommunication Union) in recommendation Z.100. Although SDL is
widely used in the telecommunications field, it is also being applied to a diverse number of other areas.

SDL has been evolving since the first “Z.100 Recommendation” in 1980 with several updates. Object
Oriented features were included in the language in 1992. For some time most tools only supported the 1988
standard and, as a consequence, a distinction was made between “SDL-88” and “SDL-92” , even though
each new ITU standard has replaced the previous version. SDL-96 and SDL-2000 have offered new
features, though commercial support is still t o catch up.

SDL features a formal definition, i.e. rules that formally define the semantics behind each symbol and
concept, and stipulates how parts of the language fit together. SDL’s formali ty enforces precision during
specification and provides support for analysis and verification. SDL also supports dynamic features that
are software oriented, like dynamic process creation and dynamic addressing. This high-level language
improves productivity of the design process by letting the designer concentrate on the application problem
instead of dealing with low level programming issues. The formal nature of the language also facil itates
automatic generation of application code directly from SDL designs.

For systems engineering SDL is normall y used in combination with other languages such as the
OMT/UML object model, MSC (Message Sequence Chart) or ASN.1 (Abstract Syntax Notation).  The ITU
Z.105 standard defines the use of SDL with ASN.1, and the Z.120 standard defines Message Sequence
Charts [19]. MSC is a graphical and textual language for the description and specification of the
interactions between system components. The main area of application for Message Sequence Charts is as
an overview specification of the communication behaviour of real-time systems. Message Sequence Charts
may be used for requirement specification, simulation and validation, test-case specification and
documentation. They have been widely used to validate the hardware descriptions presented in this work.

The static structure of a system is described in SDL by a hierarchy of blocks. A block can contain other
blocks, resulting in a tree structure. The behaviour of the blocks is described by one or more
communicating processes, which are described by extended finite state machines (a number of states, and
transitions connecting these states).

Processes are connected with each other and to the boundary of the block by signalroutes. Blocks are
connected by channels. A communication through signalroutes is timeless while a communication through
a channel is delayed non-deterministically. Channels and signalroutes may be both uni- and bi-directional.

Each process is composed of a set of states and transitions and has an input queue where signals are
buffered on arrival. The arrival of an expected signal in the input queue enables a transition. The process
can then execute a set of actions such as manipulating variables, call ing procedures and sending signals.
The received signal determines the transition to be executed. When a signal has initiated a transition it is
removed from the input queue. Synchronization between processes is achieved using an exchange of
signals.

Each process has a unique address (process identifier) which identifies it. A signal always carries the
address of the sending and the receiving processes in addition to possible values. The destination address
may be used if the destination process cannot be determined statically. The address of the sending process
may be used to reply to a signal.
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In my view, SDL is a user-friendly language, mainly due to its graphical representation, SDL/GR, in
which graphical syntax is complemented by textual syntax when needed. There is also a textual phrase
representation, SDL/PR, using only textual syntax. SDL/GR and SDL/PR have a common subset of textual
syntax, and thus overlap each other. All new hardware elements included in this report have been
developed in SDL/GR but converted into SDL/PR to be included as part of the ANISEED library.
Appendix A contains the graphic representations, names and meanings of the most commonly used SDL
symbols and notation.

2.4 ANISEED

The ANISEED (Analysis In SDL Enhancing Electronic Design) project has been briefly presented in
chapter 1. Now it is time for a more detailed description, as it is the context in which the present work is
embodied.

Initial work on using SDL for hardware description in ANISEED has been carried out at the University
of Stirling (Department of Computing Science and Mathematics) and the Technical University of Budapest
(Department of Telecommunications and Telematics). A paper [20] by Gyula Csopaki and Kenneth J.
Turner addressed the specification and validation of digital components and digital systems using SDL in
ANISEED.

Hardware engineering usuall y deals with relatively low-level issues and, maybe for that reason,
specification and design are rather close. In software engineering a sharper separation is made between
requirements, specification and design. ANISEED brings this perspective to hardware engineering by using
SDL in the early stages of requirements definition and specification. The aim of ANISEED is therefore to
model a system before it is realised as even a hardware prototype. This higher-level, software-inspired
approach allows the feasibili ty and characteristics of a circuit to be evaluated at an early stage. As well as
being the project name, ANISEED also refers to the hardware description method and the special-purpose
tools and library developed within the project.

ANISEED supports the hardware engineer when translating a circuit schematic into a SDL
specification, since it contains a variety of pre-defined components. Libraries in the form of SDL packages
supply ready-made circuit elements and design structures. These present solutions in a form that is famili ar
to electronics engineers. Translation into ANISEED allows properties of a circuit to be investigated,
making use of the resources available in a commercial tool for SDL [21]. Since SDL is widely used in
industry and well supported by commercial tools, it is hoped that the approach will be attractive to
hardware designers. Only a basic knowledge of SDL is required in order to describe and analyse circuits.

The behaviour of a functional unit is given in ANISEED by an SDL description. Block types are used to
represent generic components, actual components being instances of these. Component descriptions are
stored in a library as SDL named packages. When the generic definition of a component is instantiated, its
parameters are set to describe the characteristics of the particular instance. Parameters usually include the
names of input and output signals and timing characteristics such as propagation delays.

ANISEED follows a modular approach to hardware description. Once the design of a module is proved
correct, it may be used as a building brick in higher level designs. That is, it may be treated as a black box
whose internal structure is unimportant at a higher level of abstraction. A circuit design usually employs a
certain number of components. Processes are therefore combined into a SDL block structure. As a block
type, a structure can also be stored in an SDL package for future use.

ANISEED makes it possible to describe mixed hardware-software systems within the same framework.
If the designer wishes to specify functional behaviour at an abstract level, it is usuall y irrelevant whether
the realisation is in hardware or software. The designer merely has to specify the interfaces of the
functional unit, including input and output data (structures) and timing constraints. At this level of
abstraction, a functional unit can be a hardware or software element, as both realisations may be available.

The ANISEED method can also be used for specifying and analysing timing characteristics of hardware
designs. The original developers [22] have concentrated on timing aspects of hardware specification and
analysis, the main goal being to allow timing constraints on circuits and components to be specified and
analysed at various levels. Timing may be specified in ANISEED at an abstract (overall sequencing
constraints), behavioural (black-box viewpoint) and structural (internal design) level. For timing analysis,
ANISEED achieves a discrete event simulation by automatically modifying the scheduling strategy of a
standard SDL simulator. Another general approach, based on modified SDL descriptions, is currently being
developed at the Technical University of Budapest for real-time hardware simulation in SDL.
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3 Approach

3.1 General Approach to Hardware Descr iption in SDL

Most uses of SDL for hardware description have aimed at synthesis using standard engineering tools.
As has been said in chapter 2, SDL hardware descriptions are often translated into VHDL. This allows SDL
to be used for high-level hardware description, coupled with common tools for hardware synthesis and
more detailed analysis.

Hardware-software co-design using SDL has also been investigated. Hardware elements are usually
generated via VHDL, while software elements are generated in high level languages like C or C++. Some
SDL toolsets that support co-design include COSMOS [23] and ODE [24]. A system is generally viewed as
a set of communicating hardware (VHDL) and software © subsystems. The same C, VHDL descriptions
can be used for both co-simulation and hardware-software co-synthesis. In ANISEED the behaviour of a
functional unit is given by an SDL description. Translation to VHDL and/or C is assumed to be dealt with
by other tools.

The approach followed in ANISEED deals only with discrete signals, but it models continuous signals
implicitly by modelli ng discrete changes in them (the edges). Hardware signals are modelled as SDL
signals with two parameters: the time when the signal is generated, and the logic value. The time value of
an input signal records when it was generated. The time value is used to determine the time of possible
output signals (according to the time delay inherent in a component). The logic value of a signal may be a
single bit, but for generali ty a vector of bits (multi -bit) may be used. This caters for common situations
such as a bus or a group of wires that is to be specified as a whole.

Time delays are often significant in the design of digital logic – especially in asynchronous circuits. It is
important that the designer be able to state propagation delays and timing restrictions explicitly. Timing
information appears in process parameters and in signals. The unit of time in an SDL description is at the
discretion of the specifier. Integer time values are commonly used, with a typical interpretation being
nanoseconds.

The wires of a circuit are normally considered to carry signals instantaneously between components.
This is not strictly true, but the transmission time over a wire is usuall y negligible compared to the reaction
time of a component. In high-speed circuits, a wire can be modelled as a delay if necessary. In digital
hardware, the wires between components usually carry signals only in one direction. However bi-
directional signals are possible, for example over a bus. The SDL processes representing components are
connected by zero-delay channels representing the wires. As usual, channels can be uni-directional or bi-
directional.

One of the problems in modell ing digital logic is that the initial state of a digital system often cannot be
predicted.  A simple way to model initialisation is to set each output to 0. This assumption can give
temporary inconsistencies when two logic gates are connected, for example two inverters in series. To deal
with that, a more accurate model is used in ANISEED. Although binary signals have the value of 0 or 1, a
bit variable is also permitted to have the value X (meaning unknown). We make X the initial state of every
signal.  X can be interpreted as ‘unknown’ , ‘arbitrary’ or ‘do not care’ . This removes inconsistencies such
as in the example above.  The implications of having signals which can be in one of three states, 1, 0, or X,
is that the SDL buil t-in logical operators for the Bit type, AND, NOT, OR, etc. are no longer useful.
Therefore, ANISEED specifications use a library of abstract data types (ADTs) for the logical operators
AndB, NandB, OrB, NorB, etc. These new operators allow for operands with value X. As an example,
Figure 2 shows the truth table for the new AndB and OrB operators included in the package Bit1.
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Input 1 Input 2 Output (AndB) Output (OrB)
0 0 0 0
0 1 0 1
0 0 0 1
1 1 1 1
1 X 0 X
0 0 0 X
X X X 1
1 1 X 1
X X X X

Figure 2. Truth tables for the new AndB and OrB bit operators

Some aspects of logic design require special “components” in SDL. Sometimes it is necessary to
specify a source of logic 0 or 1, say to tie an input to a specific level. This is a nullary logic function,
specified by block types ZERO and ONE that provide logic 0 and 1 respectively. It may also be necessary
to specify a source of other constant values (e.g. some binary input vector). The CONSTANT block type
provides a constant output given by its parameter value. Logic sources generate their constant signals at
simulation time zero.

If the output of a component is not connected to anything, process output signals have to be consumed
but not used. The ABSORB block type is ready to accept and absorb any signal. Note that this differs from
standard hardware design: if an output of a component is unused, the engineer simply does not connect
anything to it. However, the corresponding SDL process must have a route for output signals to follow
(even if nothing is done with them). With a lit tle pre-processing, this can be made invisible to the specifier.
Nonetheless, it could be argued that it is desirable to force an explicit choice of what to do with each
output. If an output is accidentall y left unconnected, it is useful that a check of the corresponding SDL
should point out the error.

In general, signals carry time and value parameters but the time parameter of a signal may be omitted
when timing characteristics are not significant. This is appropriate for synchronous clocked logic, where
output signals are enabled by clock pulses. In synchronous circuits, component delays can be ignored since
it is assumed that the reaction time of a component is faster than the clock rate. But in an asynchronous
(unclocked) circuit, exact knowledge of component delays may be necessary to avoid race conditions.
Correct operation in the presence of timing constraints may be checked through simulation or through proof
of correctness.

Real logic gates have a fan-out (the maximum number of other gates that can be connected to an output)
and a fan-in (the maximum number of inputs). These are component limitations that can be checked by
static analysis of the SDL description. Since fan-out and fan-in have an effect on the delays introduced by
gates, the designer can take them into account by choosing appropriate values for the process delay
parameters.

A limitation of SDL is that an output cannot be broadcast to an arbitrary number of processes. To solve
this problem, ANISEED uses junction “components” that model the connecting points of wires. Although
these appear in a circuit diagram as small blobs, the specifier must instantiate a junction block type to link
the components. Where multi-bit components are interconnected with uni-bit components (e.g. a 4-bit
adder feeding into four inverters), a split ‘component’ is used to separate the bits. Correspondingly a merge
‘component’ is used to combine uni-bit signals into a multi-bit signal.

Making use of the solutions explained above, and exploiting the possibili ties offered by commercial
SDL tools, complex circuits can be described and analysed in SDL with relative ease.

3.2 Simulation / Validation approach

A standard SDL validator can be used to check for timing or functional errors in hardware design, and
also for consistency between design refinements. One method widely used with software, and implemented
in the SDL tool used in this work, is based on the state space exploration technique.

State space exploration emerged from research on applying formal methods to distributed, concurrent
systems, and has been used for several years to analyse telecom protocols. Telelogic [25] has implemented
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state space exploration in its SDT Validator, which is one component of Telelogic’s SDT (SDL Design
Tool), the software design and development tool based on SDL that ANISEED currently uses.

Testing complex systems usually consists of two parts: conformance testing to see that the required
functionali ty is implemented, and robustness testing to see that the system responds reasonably to
unforeseen inputs [26].

Conformance testing is a complex but well-defined task, since the requirements are known when
testing. Robustness testing is more diff icult since it tests the unknown ways the system might run.
Robustness testing becomes even more difficult for distributed systems because their concurrent nature
causes interleaving of events that can be diff icult to detect in advance. Traditionally, robustness testing was
done manually, which is costly, tedious and prone to error. Tools like the SDT Validator automate this
procedure to increase confidence that the system will work as expected. Informally, a validator executes all
possible combinations of events that can happen, and reports any indication that something has gone
wrong. In this way, it feeds back problems to the developer early in the process, reducing later maintenance
and debugging.

Systems validation is usually based on state space exploration: the automatic generation of the
reachable state space for the system. That means all possible states a system can be in, and all possible
ways it can be executed. A reachability graph represents the complete behaviour of a system. The nodes of
the graph represent SDL system states. The edges of the reachabili ty graph represent SDL events that can
take the SDL system from one system state to the next one. The edges define the atomic events of the SDL
system. These can be SDL statements like assignments, inputs and outputs, or complete SDL transitions
depending on how the state space exploration is configured. The state space of a system can be explored
using different algorithms. SDT includes random walk, exhaustive exploration, bit-state exploration,
interactive simulation, etc.

As its name implies, the random walk algorithm randomly traverses the state space. Each time several
possible transitions are available, the validator chooses one of them and executes it. The random walk
algorithm is useful as an initial attempt for robustness testing and when the state space is too large even for
a partitioned bit state search.

The exhaustive exploration algorithm is a straightforward search through the reachabili ty graph. Each
system state encountered is stored in RAM. Whenever a new system state is generated, the algorithm
compares it with the previously generated states to check if the state was reached already during the search.
If the state was previously reached, the search continues with the successors of this state. If the new state is
the same as a previously generated state in RAM, the current path is pruned, and the search backs up to try
more alternatives. The exhaustive exploration algorithm requires lots of RAM, which limits its practical
application. Even with a powerful machine like the one used in this work (a Sun workstation with 512
Mbytes of RAM) only very small SDL systems have been successfully validated with the exhaustive
exploration algorithm. The most common result has been the system running out of memory (after several
thousands of iterations), and the validation process abruptly finished.

The bit-state algorithm is fairly efficient for state space exploration. It works well , in particular if
combined with a partitioned exploration strategy. This is the standard algorithm in the SDT Validator and
the one I always used first to find problems and achieve 100 % symbol coverage in my specifications.
Invented by Gerard J. Holzmann at Bell Laboratories in the late 1980s for large verification problems of
distributed systems, the bit-state algorithm is based on using a bit array. All bits are initiall y set to zero to
store the reachabili ty graph. The idea is to compute a hash value, used as an index into the bit array, for
each generated system state. For each newly generated system state, the algorithm computes the hash value,
and checks the bit array. If the bit array has a 1 at the given index, we assume this state has been visited
before, and prune the search, i.e. back up in the execution sequence and try another alternative.

During its exploration, the SDT validator checks a number of rules executed for each transition.
Whenever a rule is violated, the validator saves a report that includes information about what rule was
violated and the path in the state space to the violation. When the automatic exploration finishes, the reports
are presented in a clickable tree overview, giving access to the system states that require investigation. The
user investigates the reported situations via the validator’s interactive mode. Essentially, the user gains
access to the complete execution path that led to the problem, being able to walk backward and forward in
this path to check the values of variables and other aspects of the system’s state.

Message Sequence Charts (MSCs) can also be used to show an overview of signal interchanges
between the different processes active in the investigated execution path. A “Navigator” feature allows the
user to manually check alternative paths in the state space. This Navigator, combined with MSCs and
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watch windows to show the values of variables, are some tools that have proved very useful (but time
consuming) during the validation of the systems presented in this report.

When the validator executes a transition and reaches a new system state, the situations reported may
include traditional execution errors such as:

• Data operator errors (such as division by zero)
• Sub-range violation (for syntypes)
• Index out of range (for arrays)

The validator also reports problem situations specific for distributed and concurrent systems such as:
• Deadlock
• Implicit signal consumption (One process sends a signal to another process that is not able to

handle it)
• Create errors (SDL allows dynamic creation of processes, so specific problems may arise)
• Output errors (Output of a signal with no receiver or too many receivers, etc).
In practice the predefined rules that the validator checks act as a fishing net that catches logical design

errors. One of the most recurrent errors in my early SDL descriptions was something that, fortunately, the
validator deals very well with. In systems with several timers, many different states and a certain degree of
concurrency, it is very likely that some signals are not properly handled in a particular state. The validator
really helps in finding bizarre combinations of signals and transitions that lead to wrong results. Even with
the most careful design efforts to do things properly, it is very difficult to foresee some unpredictable (but
possible) sequences of events that make things go completely wrong.

Other problems the validator detects are related to events happening at the same time in different parts
of the system. For example, a signal is received from the system’s environment at the same time as a timer
expires, leading to two different chains of execution interfering with each other in unexpected ways.

In addition to robustness testing, SDT’s validator automatically verifies consistency between message
sequence charts (MSC Verification). The validator automatically verifies consistency between MSCs and
the SDL system to insure that the SDL system fulfils user requirements and will solve the right problem.
The verification is achieved by giving the validator an MSC as input and checking the MSC during the
state space exploration. The validator matches the MSC with the possible execution sequences. When a
sequence of events is found that matches the MSC, an MSC verification is reported. An MSC violation, on
the other hand, is reported when the system might behave differently than the MSC prescribes. In practice,
I found some difficulty in making the best use of this last feature to validate the resulting block types of the
ANISEED library. It proved problematic and time consuming because of the differences in notation
between my original SDL descriptions that generated the MSCs to be verified and the systems under test
(instances of the new block types in the library). I had to re-arrange the names of signals in the systems
under test, but new problems related to the names of parameters arose, making this feature hard to use in
this particular case.

Fully validating a complex system with the SDT validator is a very time consuming task. The tool really
helps in finding all possible combinations and detecting some clear error situations. However, checking that
in all circumstances the simulated behaviour matches the expectations is a question of long hours and
requires careful analysis by the user. The reward after a successful validation is a high degree of confidence
in the quali ty and robustness of the description.
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4 Tr istate Devices

4.1 Description Issues

Under some adverse circumstances, a logic circuit will not operate correctly if the outputs of two or
more gates are connected to each other. For example, if one gate has a “0” output (low level voltage) and
another has a “1” (high level voltage), when the outputs are connected together the resulting voltage may
be some intermediate value that does not clearly represent either a 0 or a 1. In some cases physical damage
to the gates may result.

Use of tristate logic permits the outputs of two or more gates to be connected together, solving this
problem. A tristate output is a feature of some digital electronic devices that allows a pin to either act as a
normal output, driving a signal onto a line, or to be placed in third state- a high-impedance condition. This
allows other outputs to drive signals onto the same line.

Tristate outputs are typically used for the connection of several digital components to a shared bus onto
which any one of them may output data for the others to input. There are tristate versions of the most
commonly used digital gates such as And, Or, Not, etc. Many other components such as buffers, drivers,
multiplexers, latches or flip-flops are also commercially available in tristate versions.

Besides the normal signals for any electronic component, tristate devices have an additional enable
input that controls the functionali ty and state of its outputs. Depending on the logical active level of this
enable signal, two basic versions of these devices exist, low or high logical level enabled. When a tristate
device is enabled (its enable input is set high or low as appropriate) it behaves like a normal component.
Outputs follow the variations in inputs, and their values depend on the intrinsic behaviour implemented in
the gate (And, Or, Not, Xor, etc). However, when the device is disabled, its outputs act like an open circuit.
In other words, the outputs are effectively disconnected so that current can not flow. This is often referred
to as a high impedance state of the output, since the circuit offers a very high resistance or impedance to the
flow of current.

Figure 3 shows two different kinds of tristate inverters and their corresponding truth tables. The one on
the left is a high-level enable version. When the enable input B is set to a high logic level the inverter
output is enabled, and it operates normally (like any other inverter). However, when B = 0 the inverter
output is effectively an open circuit. It remains in a high impedance state independently of its input value.
The low level enable version (on the right) is conceptuall y similar, but its enable (B) input is negated,
resulting in the inverter being in high impedance when B = 1.
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Figure 3. Symbols and truth tables for tristate inverters

As an example of the tristate components available on the market, figure 4 shows the internal structure
of a hex inverter buffer with tristate outputs (74F368 series). Six identical inverters are integrated in the
same chip. Two different enable signals (OE1 and OE2) control the behaviour of four and two inverters
respectively. As shown in the figure, these enable inputs are internally inverted and, for that reason, an
output Ox is in high impedance when its corresponding enable input is at high level.

Figure 4. Hex inverter buffer with tristate outputs
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Timing characteristics are an intrinsic part of digital hardware behaviour. Manufacturers offer timing
values for their products in datasheets where AC and DC characteristics, recommended operating
conditions and absolute maximum ratings are given. Parameters such as propagation delays, set-up and
recovery times, minimum pulse widths, etc. are important elements to be taken into account by digital
designers. All these parameters will be dealt with and explained in the following chapters, where SDL
descriptions for components with timing constraints are presented.

Tristate components are not especially complex as far as timing is concerned. They have, however,
some further complexity in relation to their equivalent (non tristate) components. The existence of a new
enable-disable input makes it necessary to deal with new propagation delays. Datasheets include switching
characteristics for tristate inverters like the one presented in figure 4. Minimum, maximum and typical
values for the propagation delays are given (in nanoseconds) as tested by the manufacturer under certain
conditions. Names like TpLH and TpHL are commonly used to indicate propagation delays for Low to
High and High to Low level output transitions respectively. These two values are common to any inverter
(non tristate inverters also have these two parameters). They represent the time needed by the inverter to
toggle its output after a change in its input. The actual values strongly depend on the technology and family
of the device, but it is common to find different values for High to Low and Low to High transitions. The
reason for this discrepancy is normally due to different parts of the internal circuit and even different levels
of logic being involved in one or another kind of transition.

Another delay normally given for tristate components is the time that the gate needs to re-establish its
output after receiving an enable input signal. This delay assumes that the output was in high impedance
when the enable input was received. Finally, another delay represents the time between a disable signal
being received and the output being changed to high impedance.

4.2 Library components

To construct a new SDL package for tristate components a divide-and-conquer approach was followed.
It was decided to start by describing two different basic tristate gates in both high and low level enabled
versions. An inverter and a two input And gate were selected as it was clear that all tristate gates,
independently of the function implemented (And, Or, Nor, Nand, etc.) would have a very similar structure.
After finding a solution for the ones selected as representatives, many things could be automaticall y applied
to the others. This approach has been extensively applied to hardware description at later stages in this
work. It is difficult and time consuming to find an SDL description for a new hardware component,
especially if a thorough validation is performed to make sure that the description exactly matches the
expected behaviour. However, after finding a valid solution it can be used to describe other hardware
components with similar structure. There is no need to construct and validate SDL descriptions for, say,
three-input Or and Nor gates. Timing constraints, usually the most difficult part of the specification, are
identical in both cases. Only the logical function implemented by the gate, and perhaps the values for the
delays (that can be selected as parameters), are different. Untimed versions of the components are even
easier, as they only need to omit time parameters in signals and delays (timing characteristics are no longer
significant in these devices). It was obvious that this circumstance had to be exploited, and it certainly was.

Figure 5 shows the SDL system constructed to specify a tristate positive-level enabled And gate with
two inputs. This hardware element is described as a single SDL block with two data inputs, one enable-
disable input and one output. Communication between the block and the environment is performed by
means of the channels Ch1 to Ch4. Channels Ch1 and Ch2 carry input signals from the environment to the
gate (SIp1 and SIp2). Channel Ch4 corresponds to the enable signal SE. Finally, the output pin of the gate is
represented by channel Ch3 and signal SOp. All these signals are declared in a text box in the top-left
corner of the figure. As described in chapter 3, signals carry time and value parameters. (We are dealing
with timed versions of the gates, as the untimed ones are just a simplification.) “Bit1lib” is the SDL
package with abstract data types for the bit operators that was described in chapter 3. It is referenced in the
specification by means of a “use” clause.



14

Figure 5. SDL system diagram for a tristate AND gate with two inputs

When signal SE carries a positive logical value, the gate is enabled (after the corresponding delay).
When the gate is enabled, the values of SIp1 and SIp2 determine the output. It is calculated by applying the
bit operator AndB to the input values. Whenever the inputs change, the output follows them accordingly,
but the variation in output is not instantaneous, since propagation delays must be respected.

As noted in chapter 2, SDL follows a hierarchical structure in which systems are composed of blocks,
blocks contain processes and so on. A single process could be used to describe the functionality of our
tristate And gate, but after some attempts at dealing with timing constraints in the gate, a solution
consisting of two different processes proved to be clearer and easier to implement. As shown in figure 6,
the process named And2_One receives the two input signals that come from the environment and outputs
signal SOp. Another process (Enable) receives signal SE, dealing with timing constraints in the enable-
disable signal. Both processes are marked (1,1) meaning there is exactly one instance of them.

Another internal signal has been included. Notice that signals SE, SIp1, SIp2 and SOp were also present
in figure 5. They are external signals between the gate and the environment. However, SEnable is an
internal signal declared within the block. It goes only between communicates processes and does not have
any direct relationship with the environment. As we will see shortly, SEnable follows the variations in
signal SE but only after process Enable has dealt with the enable-disable timing aspects. This way of
dividing the specification into several processes makes the whole solution simpler. With a single process,
the number of different states the system can be in grows alarmingly. Four different delays and two timers
had to be considered, and things tended to become complicated even in a simple device like the one
discussed here. A similar approach has been used to describe other hardware elements such as the flip-flops
presented in chapter 7.
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Figure 6. Processes contained in the block shown in figure 5

It is out not practicable to present a detailed description of all the SDL specifications written during the
project, but some SDL-GR diagrams may help to understand and ill uminate the most interesting points of
some components. As an example, consider the process Enable. As shown in figure 7, it is rather simple.
As far as the enable-disable behaviour is concerned, the tristate gate can only be in one of two states, ready
to receive enable-disable inputs or delaying a previous input. To avoid the temporary inconsistencies in the
initial state of digital logic mentioned in chapter 3, all signal values are initialised to X (unknown or
arbitrary) during start-up. A portion of SDL code deals with BE (the value of signal SE) being
undetermined and randomly chooses a value of 0 or 1 for it. Signal SEnable is sent at time 0 with the
random value chosen. When an enable signal SE is received, it contains the time at which it is generated,
TIp, and its logical value BIe. Depending on the value, the corresponding delay is selected: TDelayEnable
when the gate is going to be enabled and TDelayDisable in the other case. These two delays can be set as
parameters, so the user can give the particular values for a gate in a circuit.
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Figure 7. SDL-GR representation of the process Enable in its Ready state

Once the appropriate delay has been chosen, the output time for the signal SEnable is calculated and a
timer Th is set. While the timer is running the process enters a wait state. Basically two things can happen
during this period (figure 8).

Figure 8. Process Enable waiting for the timer to expire

Either the timer expires and then the signal SEnable is sent (at the calculated output time TOp with the
received value BE) to the process And2_One, or another signal SE is received. In this case the delay has not
been completed, in some way we could say respected. The gate did not have enough time to complete the
previous transition and now it has to deal with new changes. The timer is reset and a new attempt is made
to follow the inputs. Could some strange things happen then…?

Unpredictable behaviour is something really diff icult to specify. Datasheets do not explicitly say what
happens when timing constraints are not respected. The circuit will certainly behave in some way. Its
outputs will have a certain logical value, but these may be random or hard to predict. Manufacturers only
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guarantee that their products behave in a certain way when the devices are operated as expected. A high
level enabled tristate inverter, for example, will set its output to high impedance a certain number of
nanoseconds after its enable input has gone low. If during this delay the enable input changes again, the
inverter will certainly not be able to reach or maintain the high impedance state.

There is some degree of non-determinism in the behaviour of electronic hardware. This is certainly true
at start-up, since every chip will set its outputs to certain values that cannot be easily predicted. We have
modelled this in SDL using the value X (unknown) and giving random values to outputs at start-up.
However, there is another chance for non-determinism when timing constraints are not respected. The
hardware will certainly behave somehow, but how can this be specified? Well , this is something that made
me think for a while and more than once made me think that I was getting everything completely wrong. It
is impossible to specify something that real hardware cannot guarantee. We just can make sure that our
SDL system behaves like real hardware when it is operated under the adequate conditions. As a further
issue, what would happen if the inputs of a gate were continuall y changed at a faster rate than the
propagation delays for the gate? Well , it would certainly not follow the inputs, so its output would not be
the, say, And combination of its inputs at any given moment.

Coming back to our Enable process, we can just guarantee that if the enable-disable signal is set and the
corresponding delays respected, the gate will change from normal functioning to high impedance or vice
versa. If the delays are not respected the system will t ry its best to follow the demanding inputs, but no
success can be guaranteed.

The process And2_One shown in figure 6 implements the behaviour of the gate without having to be
bothered about timing aspects in enable-disable signals. This process has four different states: Ready,
HighImp, Waiting or HighImpWait.

The gate is Ready (figure 9) when the output is already the logical And of the two inputs and it is ready
to receive new inputs.

Figure 9. SDL description for the Tristate And2 gate in its Ready state
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As shown in the figure, a similar approach to the one used in the process Enable is followed here: the
output value BOp is randomly initialised to 1 or 0 at start-up. While in the Ready state the process
And2_One can receive three different signals: SIp1, SIp2 and SEnable. New input values (BIp1 and BIp2)
are received at their corresponding time (TIp). TIp represents the last input time, that is, the time when the
last input has been received. The bit operator NewOut2 (included in the package Bit1) is used to determine
if a new output is required as two inputs generate a different value. It applies the operator AndB to inputs
and compares the resulting value with the current output, generating a Boolean (true if a new output is
needed). Apply2 is also a bit operator contained in the package Bit1. It is used to calculate the resulting
AndB value of the two inputs. This resulting value determines whether the next transition is going to be
from low to high logical level or vice versa. This is important to find the corresponding propagation delay
that has to be used to set the timer. After setting the timer, the process enters the state Waiting.

Some problems arose with bit operator names being overloaded (the C compiler that translates C code
generated from SDL complained quite a lot). To get round this problem, Ken Turner has developed a new
version of the package Bit1  with slightly different names for the operators.

While in the Ready state an enable-disable signal can also be received. The gate we are talking about is
high level enabled, so only when BIe (the value of signal SEnable) is 0 does the gate enter the high
impedance state. Notice that no timing aspects in the signal SEnable are considered here. These timing
constraints have been dealt with in the process Enable. This process sends the signal SEnable only when
the enable or disable propagation times have been completed. When the process And2_One receives the
signal SEnable, it just responds to it instantaneously. If we were not using two different processes several
more states would be needed, and the overall description would be far more complicated.

Waiting (figure 10) represents the state where the gate has received new inputs
that require a change in output to be made. The gate is in some way busy trying to modify its output, and to
complete this task some time is needed.

Figure 10. Tristate gate waiting for the propagation delays to finish

If further input signals are received while waiting, the timer is reset, and the gate goes to its Ready state
again. If a new output needs to be generated, the gate will enter the wait state again but after setting a new
timer.

If the timer expires while waiting, the output is made available with value BOp and time TOp. This
output time was calculated before starting the timer.

The last option contemplates the possibil ity of receiving an enable-disable signal while waiting. If the
value of this signal is “1” the gate goes on waiting, as it was already enabled. If the value is “0” the gate
goes on waiting but now in a different state (HighImpWait). The gate waits for propagation delays to be
finished, but the output will no longer follow the input as it is now in high impedance.

Maybe we should say something about how to best model “high impedance” in SDL. Initial thoughts
were oriented towards some sort of special output value. The values used for signals so far are 1, 0 or X,
this last one only used as an initial value. Adding another value such as Z to represent high impedance
would not offer new features to ANISEED, and it would make bit operators far more complicated. It was
then decided not to modify output values to represent high impedance. A gate in high impedance will not
follow variations in its inputs, and its output will remain in the logical level that it was before entering in
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high impedance. The value of the output while in high impedance is not significant. To be exact,  a gate in
the high impedance state does not output at all . Only the fact that it no longer follows the input is modelled,
and that it no longer interferes with other possible signals connected to it.

HighImpWait (figure 11) models the situation where the gate is in high impedance but the inputs have
changed, or the gate was waiting and a disable signal was received. The output state will remain in high
impedance as it does not depend on the

inputs, but the theoretical output value must be calculated, just in case the gate returns to its normal
operating conditions after an enable signal has been received. Timers are then normally used, but when
they expire the output is not changed unless the gate leaves the high impedance state.

Figure 11. Waiting while in high impedance

HighImp (figure 12) represents the state where the gate is disabled so the output is in high impedance
independently of the input values. Notice that despite being in high impedance when the inputs are
received,  the corresponding output value is calculated and the propagation timer is set. This is needed to
re-establish the output to the right value and at the corresponding time when the gate receives an enable
signal again.
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Figure 12. Tristate gate in high impedance

4.3 Validation

Testing and exhaustive exploration of the tristate SDL descriptions was performed with the validator
included in SDT. Even with the help of the tool validation is an arduous task, maybe not for all descriptions
but certainly for the more complex ones. Four SDL specifications, corresponding to high and low level
enabled versions of an And2 tristate gate and an inverter were constructed and tested. 100% symbol
coverage was achieved in all cases, and no error reports were given in the final versions. A bit state
exploration for an And2 gate reported the following results:

The power walk algorithm was also used, and 100% symbol coverage was easil y achieved:

Even exhaustive exploration, something not very easy to achieve as will be discussed later, was feasible
for the And2 tristate gate:
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After examining the Message Sequence Charts resulting from the power walk algorithm, and testing the
system with the navigator, a high degree of confidence in the goodness of the tristate components was
achieved.

The new tristate components in the library are summarised in appendix B. A short description of how to
instantiate them with the appropriate parameters is also given.



22

5 (De)coders and (De)multiplexers

Several devices such as encoders, decoders and multiplexers are presented in this chapter. These
components are commonly available as MSI (Medium Scale Integration) circuits, and can be used for
different purposes. Several SDL descriptions have been created for these famili es of devices, and two new
packages (aniseed_coder and aniseed_mux) added to ANISEED’s new library.

5.1 Description Issues

5.1.1 BCD-to-Decimal Decoders

In digital systems, binary representations are the most eff icient way to store numbers and compute
results. However, binary numbers are not easy to convert from or to decimal numbers, for human use for
example. If efficiency of storage and speed of computation are not critical, Binary Coded Decimal (BCD)
number representations may be preferable because they are easier to convert to a human-compatible format.
BCD numbers are divided into 4-bit groups; the bits within each group are binary weighted, but may take
on the values from only 0 to 9. Each group or BCD digit has a weight corresponding to a power of 10. Note
that an 8-bit BCD number may represent integers from 00 to 99, while an 8-bit binary number may
represent values from 0 to 255.

One possible design for a BCD-to-Decimal decoder and its corresponding truth table is shown in figure
13. It consists of eight inverters and ten, four-input Nand gates. The inverters are connected in pairs to
make BCD input data available for decoding by the Nand gates. Full decoding of input logic ensures that
all outputs remain off (this means high level in this example) for all i nvalid input conditions. There are
similar versions in positive logic, where the “off” state is a low logic level.

Figure 13. Schematic and truth table for a BCD-to-Decimal decoder

Switching characteristics for a BCD to decimal decoder usually include two different propagation
delays. After a variation in inputs, TpLH represents the time needed to set the outputs that must be high,
and TpHL the delay for the outputs that must be changed to a low logic level.

5.1.2  Decoders/Demultiplexers

Decoders are widely used in memory-decoding or data-routing applications. There are some versions to
be used with high-speed memories that offer very short propagation delay times. The delay times of these
decoders are usually less than the typical access time of the memory, and this means that the effective
system delay introduced by the decoder is negligible.
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A decoder such as the 74LS138 decodes one-of-eight lines, based upon the conditions at three binary
select inputs. Two active-low and one active-high enable inputs reduce the need for external gates or
inverters in circuits with more bits. A 24-line decoder can be implemented with no external inverters, and a
32-line decoder requires only one inverter. Exactly one of the output lines will be active (1 or 0 depending
on the logic of the device) for each combination of values of the inputs.

Other devices such as the 74LS139 (figure 14) comprise two separate two-line-to-four-line decoders in
a single chip. It also includes an active-low enable input that can be used as a data line, making it possible
to use the device both as a decoder (while the Enable input is active the two Select inputs are decoded) or
as a demultiplexer (depending on the Select values, the Enable input is sent to the desired output).

Figure 14. Schematic and truth table for a decoder/demultiplexer 74LS139

Typical switching characteristics for a demultiplexer usually comprise 4 propagation delays. Select-to-
output and Enable-to-output reaction times are usually different. This circumstance, combined with another
two propagation delays for Low-to-High and High-to-Low output transitions, lead to the 4 delays shown in
figure 15.

Figure 15. Switching characteristics for the device 74LS139

5.1.3 Encoders

The terms encoder, decoder and code converter are often used interchangeably. Encoders and decoders
are widely used in communications. An encoder basically converts its input into an output code with a
fewer number of lines. A decoder is later used to re-construct the original representation of the data again.

Priority encoding ensures that only the highest order input data line is encoded. An 8-to-3 priority
encoder accepts 8 input request lines 0–7 and outputs 3 lines A0–A2. Figure 16 shows the logic diagram
and truth table for one of these devices (74HC148). All data inputs and outputs in this particular component
are active at the low logic level. This device also includes cascading circuitry (enable input EI and enable
output EO) to allow octal expansion without the need for external circuitry, but these inputs have not been
included in the SDL specification.
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Figure 16. 8 to 3 encoder, logic diagram and truth table

5.1.4 Multiplexers

A multiplexer (or data selector) has a group of data inputs and a group of control inputs. Control inputs
are used to select one of the data inputs and connect it to the output terminal. Multiplexers are commonly
available in integrated circuit packages in several configurations: quadruple 2-to-1, dual 4-to-1, 8-to-1 and
16-to-1. In general, a multiplexer with n control inputs can be used to select any one of 2n data inputs.
Multiplexers are frequently used in digital system design to select the data that is to be processed or stored.
They can also be used to implement combinational logic functions. A 4-to-1 multiplexer can realize any 3
variable functions with no added logic gates.

Figure 17 shows a dual 4-input multiplexer (74F153). This device is a high-speed multiplexer with
common select inputs. The two buffered outputs present data in the true (non-inverted) form. It can select
two bits of data from up to four sources under the control of the Select inputs (S0, S1).

Figure 17. Dual 4-input multiplexer, logic diagram and truth table

A multiplexer such as this is the logic implementation of a 2-pole, 4-position switch, where the position
of the switch is determined by the logic levels supplied to the two Select inputs. A less obvious application
is to use this device as a function generator: it can generate two functions of three variables. This is useful
for implementing highly irregular random logic or functions that involve a complex gating structure.

5.2 Library Components

The new SDL packages for multiplexers and coders in ANISEED’s library are based on SDL
descriptions of components that were considered representative, namely a 4-to-1 multiplexer, an 8-to-3
encoder, a 2-to-4 decoder, a BCD-to-Decimal decoder and a 2-to-4 demultiplexer.
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There are some common aspects in all these devices that can be specified in a similar way. For example,
almost all them share the same number of possible states (in the SDL sense). A BCD-to-Decimal decoder
and a demultiplexer, for example, can basically be in one out of three possible states: ready for new inputs,
waiting after a new input has been received but no outputs have changed yet, or waiting after some outputs
have changed but not the others yet. In this last case two consecutive states are involved: waiting for low-
to-high or high-to-low output transitions to occur. The relative values of the low-to-high and high-to-low
propagation delays will determine which state of these two will happen first. This has been modelled in
SDL making use of four states, namely Ready, WaitingAll , WaitingHL and WaitingLH.

Timing constraints in decoders and multiplexers are rather straightforward. Even when four different
delays are involved (such is the case in a demultiplexer, for example), the number of possible states the
device can be in does not grow exponentially. Reaction times in a demultiplexer will be different depending
on which input (Select or Enable) has caused the transition. Even if response times are different (requiring
a more complex specification) the device still has the same number of states: ready, waiting for all outputs
to change, waiting for some outputs to go high after clearing the others or vice versa. For this reason,
solutions including a single process per block (as shown in figure 18) seemed to be clear and simple
enough, so they have been used.

Figure 18. Block with a single process to specify a demultiplexer

As in the previous chapter, outputs are initialised to X (unknown) to avoid inconsistent states during
start-up. Once the system is ready, outputs are given values randomly. Different approaches have been
followed to initialise devices with valid outputs. As shown in figure 19, an encoder can have any
combination of “1s” or “0s” in its output, so the approach on the left has been used. However, a valid
output for a demultiplexer consists of certain combinations only, so a solution like the one on the right is
better.
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Figure 19. Random output initialisation in an encoder (left) and a demultiplexer (right)

Procedures declared within processes (figure 20) have been extensively used. Some tasks, such as
setting the outputs or checking if the inputs have actually changed their values were found repetitive, the
only difference being the actual values involved in each instance of the operation. Procedures were very
useful, since they can be particularised using different parameters in each call .

Figure 20. References to procedures New_In and New_S in the process MUX4to1

When procedures are referenced within a process, they have access to its variables. Every process has
its own variable space, and SDL does not directly allow the use of global variables between processes.
However, I could not find any recommendation against accessing process variables in a procedure declared
within the process (and the tool certainly did not complain about this). An alternative to this solution could
be to pass all process variables that have to be modified as parameters to the procedure. I tried it (I must
admit that I felt uncomfortable about accessing variables that were declared outside the procedure), but it
made no difference, and in fact it was redundant and not needed at all .

Different solutions have been found to decode inputs and set outputs accordingly. In a BCD-to-Decimal
decoder, for example, an internal value is computed to determine the decimal equivalent of the inputs
(figure 21). However, in a priority encoder the order in which the inputs are checked is of the utmost
importance, so a solution like the one shown in figure 21 (on the right) was chosen. Calls to procedures
Set_Out contain, as actual parameters, the next output values needed (either 0s or 1s). This does not mean
that the outputs are changed instantaneously, as propagation delays have to be taken into account and dealt
with properly using timers.
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Figure 21. Two approaches to input decoding: BCD-to-Dec (left) and Encoder8-to-3 (right)

In some cases (when there are more than two possible delays in action) the particular delays involved
have been used as actual parameters in calls to procedures. In a demultiplexer, for example, the propagation
delay between a change in the Enable line and the output transition is different to the delay after a change
in the Select lines. Figure 22 shows a portion of SDL-GR code used to particularise the calls in a
demultiplexer. TpLH_D and TpHL_D are the delays to change the outputs to high and low level after a
change in the Data line. TpLH_S and TpHL_S are the ones corresponding to changes in the Select lines.
These delays are used in the procedure Set_Out to run timers.

Figure 22. Use of propagation delays as actual parameters in procedure calls

The behaviour during the wait states has been described following the approach shown in figure 23.
Three different wait states have been used. WaitingAll  is used to describe the system when the outputs are
going to be changed but no one has changed yet. Two different timers are running in this state, TPropLH
and TPropHL. When TPropLH expires, the outputs that must go high are changed. If the expiring timer is
TPropHL, the outputs that must go low are the ones involved in the transition. The procedure Outputs deals
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with the actual output signals being sent. Only one of these timers will expire while in the state WaitingAll .
Notice that after any timer has expired the system changes its state.

WaitingLH is the state reached after changing the outputs that had to be at low level. Now we are
waiting for the exact instant when the other outputs must become high. Only one timer is running in this
state, as the other timer expired before entering this state. WaitingHL is conceptually similar, but swapping
high and low levels as needed.

Figure 23. Wait states and use of timers to modify outputs at the right time

If the inputs change their values while the system is waiting, the wait is immediately stopped. The
timers that are still running are reset and the new inputs are decoded again as shown in figure 21. After
decoding, the next output values and timers are set again.

Three basic types of procedures (with some variants) have been used to specify repetitive tasks.
Procedure Set_Out, similar to the one shown in figure 24, receives as parameters the next values to be
output and, in some devices, the delays that must be used. Using these delays, the times when the outputs
will be ready are calculated, and the corresponding timers are set.

Figure 24. Procedure Set_Out

Several procedures similar to the one shown in figure 25 (for an 8-to-3 encoder) have been used to send
output signals. This kind of procedure receives two parameters: the time outputs must be sent at, and the
logic level of the outputs that must not be changed in this call . A procedure call li ke Outputs(1,TOpHL), for
example, sends to the environment all output signals that must go to low level at time TOpHL. Maybe the
other way round could have been more intuitive, in that case a call li ke Outputs(1,TOpHL) would change
only the outputs that had to be at high level. The first alternative was used, firstly because it certainly
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worked, and secondly because it took advantage of a single condition symbol being required, since only
those outputs that are not already at the required level are actually changed (both conditions are checked in
the same instruction). Notice that a complete change in the state of a device needs two consecutive calls to
this procedure. In one call the outputs that change from high to low level are altered. The other call deals
with the remaining outputs. The relative values of the high-to-low and low-to-high transition propagation
delays determine which ones wil l be first.

Figure 25. Procedure Outputs

5.3 Validation

The SDT validator was again used to test and validate the SDL descriptions of the devices presented in
this chapter. Individual components like the ones shown here can be full y validated using the exploration
algorithms that were presented in chapter 3. Depending on the complexity of a system, full exploration can
take anything from a few seconds to hours or even days. Achieving 100% symbol coverage in the systems
presented here was not that time-consuming, but analysing the generated MSCs and performing tests with
the navigator certainly was. Some validation options had to be particularised in order to achieve 100%
symbol coverage. The maximum depth and abort conditions such as the number of repetitions in the power
walk algorithm, for example, had to be increased to achieve 100% coverage in some systems.

MSC traces were used in the analysis of the SDL specifications. They can be viewed as a special trace
language, which mainly concentrates on message interchange by communicating entities (such as SDL
processes and blocks) and their environment.  The main advantage of an MSC is its clear graphical layout,
which gives an intuitive understanding of the described system behaviour. Maybe the main disadvantage is
that almost all the interpretation work is left to the user. Only some evident errors are reported as such by
the tool, but the user has to carefully check that the actual behaviour matches the expectations under every
possible combination.

The SDT Validator automatically generates test values for the SDL system to be validated, but the user
must also check that the selected values are appropriate to test the system with. When validating a circuit
from the ANISEED library, the SDT Validator generates the test values 1, 0, and X for the user-defined
sort, Bit1.  The X value is unsuitable for input as a test value since this is only used by ANISEED to
initialise the inputs and output signals. Fortunately, unsuitable test values can be removed from the list of
test values using the ‘clear test value’ option in the validator.

Some initial attempts at fully validating these systems produced some symbol coverages slightly less
than 100%. This was further investigated using the coverage viewer, but it sometimes showed that the
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system actually had 100% symbol and transition coverage. Maybe one reasonable explanation for this
could be the use of operators defined in ANISEED’s single bit Data Type library (package Bit1). Perhaps
the SDT Validator is not able to fully validate this library because the operators have been implemented in
C code. However, by trying validation runs with different parameters, 100% coverage was finally reached.
It is surprising that the information displayed in the coverage viewer was exactly the same when, say,
98.7% or 100% coverage was achieved-something really strange, I must say. Figures 26 and 27 give some
examples of the coverage diagrams that the SDT Validator automaticall y generates.

Figure 26. Transition coverage tree shown in the coverage viewer (BCD-to-DEC decoder)

Figure 27. Symbol coverage graphs
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6 Flip-Flops

6.1 Description Issues

Flip-flops are one of the most commonly used devices in sequential circuits. Basicall y, a flip-flop is a
device that can assume one of two stable output states, has a pair of complementary outputs, and one or
more inputs that can cause the outputs state to change. There are several kinds of flip-flops, but all have
some common characteristics. Some of the most widely used types are the clocked J-K and D (or Delay)
flip-flops. These devices react to clock edges (either positive or negative), the output values depending on
the inputs. These types, and others such as T (Toggle) or R-S (Reset-Set) flip-flops, are readily available in
integrated circuit form.

Different notations can be found in the literature to represent the previous and next states of flip-flops.
Previous-state usually means the state of the Q output before the active clock edge. Next-state means the
state of the Q output after the flip-flop has reacted to the clock pulse.

The function table and symbols for two D flip-flops are shown in Figure 28.

Figure 28. Negative and positive edge-triggered D flip-flops

The state of these flip-flops (Q+ in figure 28) after the clock pulse is equal to the input D before
receiving the clock. For example, if D = 1 before the clock pulse, Q will be 1 after the clock edge
regardless of the previous value of Q. The arrowhead on the D flip-flop symbol marks the clock input, and
the small inversion circle indicates that the state changes occur on a high to low transition (negative-edge
triggering). When there is no inversion circle (as in the right side of figure 28) the state changes occur on a
low to high transition (positive-edge triggering).

A clocked J-K flip-flop (figure 29) has three inputs: J, K and the clock. This component changes state a
short time after the rising or falling edge of the clock pulse (depending on the kind of device). If J = 1
during the clock edge, Q will be set to 1. If K = 1 during the clock pulse, Q will be set to zero. However, if
J = K = 1, Q will t oggle state after the clock active edge. If J = K = 0 the outputs will remain the same. The
change in state is initiated by the clock pulse and never by a change in J or K.



32

Figure 29. J-K flip-flops (negative and positive-edge triggered)

A J-K flip-flop is more versatile than a D flip-flop. Only two operations are possible with the D flip-
flop: setting the D flip-flop output to 1, and resetting its output to 0. Four operations are possible with the J-
K flip-flop. Besides the operations of setting or resetting its output at each clock transition, the J-K flip-flop
may also toggle or remain in the same state.

Flip-flops have some important timing constraints and characteristics that must be considered when
analysing sequential circuits. In a D flip-flop there are two main considerations. Firstly, when the clock
makes the active transition the outputs do not change instantaneously: there is a certain propagation delay
between these two events. The second consideration is that the data on the D input should be steady before
the clock pulse. If the data is changing too closely to the instant of the clock pulse the stored value is
unpredictable. For this reason, the setup time is the minimum time interval the input must be stable before a
clock pulse. Similarly, the hold time is the minimum time interval the input must be held steady after the
clock edge. If these timing constraints are not respected the flip-flop output is unpredictable.

Users of J-K flip-flops also have to take timing characteristics into consideration. Both the J and K
inputs have associated time intervals, tSetup and tHold, where tSetup is the minimum time interval the J and K
inputs must be stable before the clock pulse and tHold is the minimum time the inputs must be held steady
after the clock pulse. Failure to adhere to these timing constraints again results in an unpredictable output.

Integrated circuit flip-flops often have additional inputs (Clear and Preset) that can be used to set the
flip-flop to an initial state independently of the clock. An appropriate logical level applied to the Clear
input will reset the flip-flop to Q = 0 and Qbar = 1. Similarly, an active signal on the Preset input will set
the flip-flop to Q = 1 Qbar = 0. These inputs override the clock and any other input. That is, a signal
applied to the Clear input will reset a J-K flip-flop regardless of the values of J, K and the clock. As an
example, figure 30 shows the function table for a D flip-flop with low level active Preset and Clear
(54HC74A). In this figure H represents a high logic level, L a low level and X is either high or low level.
Q0 is the level of the Q output before the indicated input conditions were established. The states marked
with an asterisk represent non-stable configurations; that is, they will not persist when Preset and Clear
return to their inactive level. The arrows represent positive clock edges.

Figure 30. Positive-edge triggered D flip-flop with Preset and Clear

Master-slave versions of the flip-flops discussed above are also commercially available. These devices
need a complete clock pulse (with a rising edge and a fall ing edge) to change their outputs. For example, a
master-slave J-K flip-flop (figure 31) processes the J and K data after a complete clock pulse. While the
clock is low the slave is isolated from the master. On the positive transition of the clock, the data from the J
and K inputs is transferred to the master. On the next negative transition of the clock, the data from the
master is transferred to the slave. The logic state of J and K inputs must not be allowed to change while the
clock is high. As in previous flip-flops, an active logic level on the Preset or Clear inputs will set the
outputs regardless of the other inputs.
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Figure 31. Function table for a master-slave J-K flip-flop with Preset and Clear

In figure 31, the positive pulse symbol in the clock column indicates that it is a master-slave flip-flop,
so J and K must be held constant while the clock is high. As commented above, data is transferred to the
outputs on the fall ing edge of the clock pulse. Toggle means that each output changes to the complement of
its previous level on each complete positive clock pulse.

6.2 Library Components

Twenty different models of flip-flops have been specified in SDL, validated and included in the new
ANISEED library. Appendix B includes details of the devices available and their main characteristics. Due
to space limits, only some general issues and a small example will be described here.

Timing constraints in flip-flops proved rather complicated to specify, especially in models with Preset
and Clear inputs. As shown in figure 32, a typical D flip-flop with Preset and Clear includes parameters
such as the maximum operating frequency, setup and hold times, 4 different propagation delays, removal
(or recovery) times and minimum pulse widths.

Figure 32. Timing parameters for a D flip-flop with Preset and Clear inputs

The problem of formall y specifying these devices in SDL was initially tackled following a one-
block/one-process approach. This solution was rather straightforward for D or T flip-flops without Preset
or Clear inputs, but it proved inadequate for more complicated devices. Using just a single process led to
very complex descriptions with a large number of possible states and very intricate timing behaviour. The
resulting specifications were difficult to understand and, what was even worse, adding new elements to
complete a specification required further and error-prone changes in all previous parts. It seemed clear that
a multi-process approach was needed, so solutions similar to the ones shown in figure 33 were used.
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Figure 33. Multi -process SDL descriptions for flip-flops with different complexity levels

The diagram on the left side of figure 33 shows one possible solution for a J-K flip-flop without Preset
or Clear. Both inputs (J-K) are included in a single process named JKInputs. The clock signal goes to
another process that deals with the maximum frequency rate for the device. Both outputs (Q and Qbar) are
also included in a single process JKOutput. Multiple instances of this process can be created by the process
JKFlipFlop as required.

The diagram shown on the right side of figure 33 corresponds to a J-K flip-flop with Preset and Clear.
This is one of the most sub-divided specifications that have been developed. It contains one process for
every input signal. Even the two outputs are dealt with separately, the reason for that being that now they
must be controlled independently. In this device Qbar is not always the negation of Q since there is a non-
stable state (when both Preset and Clear inputs are active) in which both outputs are at a high level (see
figure 31). A different solution consisting of a single output process with independent parameters for the
two output values was also tested in other flip-flop specifications.

With these multi-process approaches some additional internal signals are required. In the diagrams
shown in figure 33 only the internal signals are declared. The obvious reason for this is that the external
ones were declared with the external block (not included in the figure). The central process JKFFPos
receives these internal signals from the input processes without having to be bothered about external signal
timing constraints. Now, the particular timing aspects for each input signal are dealt with in its
corresponding process. Setup times, minimum pulse widths and maximum operation rates, for example, are
considered in these processes. Notice that, as shown in the figure, input processes have one initial instance
and can have a maximum of one instance, while the output processes have no initial instances and can have
an infinite number of instances.

Timers are used to model the time difference between input signals arriving and the output being
generated. Several timing aspects must be taken into consideration. First of all , upon receiving an input the
corresponding setup timer is set. For data inputs this setup timer represents the time prior to receiving a
clock pulse that the signal must be present. In Preset or Clear inputs the setup time can be used to model
the minimum pulse width required for these signals (the flip-flop does not react to Preset or Clear active
signals shorter than a certain duration). New inputs during the setup time make the process re-start the
corresponding timer and re-enter the setup state. Only when an input signal has completed its setup time is
it made available to the central process JKFFPos. As an example, figure 34 shows an (incomplete) SDL
specification for the process PresetIn. Only when the timer TPulseMin expires is the internal signal SPreset
sent (at the calculated time TOp) to the central process. Preset inputs shorter than the minimum time given
as parameter will not cause the flip-flop to react.
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Figure 34. Minimum pulse width specification in the Preset input

Similarly, the process Clock (figure 35) uses a timer to avoid the flip-flop working above its maximum
frequency rate.

Figure 35. Avoiding the flip-flop being overdriven if the clock is too fast

As shown in the figure, after a clock edge has been received there is a period of time where no new
clock pulses can possibly be attended to. A flip-flop working at clock speeds faster than the nominal rate
will certainly behave in a strange way. Even physical damage to the device might result, but no explicit
information about this issue is given in datasheets. The SDL specification presented in figure 35 deals with
this problem by ignoring clock pulses faster than the nominal rate. With this approach, the flip-flop will
simply ignore any premature clock pulse.

Similar to the devices presented in previous chapters, the central process JKFFPos randomly initialises
the flip-flop outputs during startup. As shown in figure 36, when BQ (the value of output Q) is unknown
(X), instances of the output processes are created with a random value and time 0 as parameters. The same
value (BNextQ) is passed to the two output processes. However, as will be described later, the process
JK_OutQbar internally negates this parameter.
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Figure 36. Random output initialisation during startup

Figure 36 also shows that new internal data signals do not cause the flip-flop to change its state. This
flip-flop only reacts to positive-edge clock signals, so the new inputs (after having finished their setup time)
are just received without further processing until the appropriate clock signal arrives.

Figure 37 shows the behaviour of the flip-flop when Preset or Clear signals are received while the flip-
flop is in the state Ready. First of all , the value of the signal is checked. Preset or Clear signals in this
particular flip-flop are low-level active, so only when their values (BCLR or BPR) are 0 are further actions
needed. If the outputs have to be modified, new instances of the output processes are created with the
proper values and times as parameters. Depending on the input signal received, the system changes either
to the state PreSetting or Clearing.

Figure 37. Preset or Clear signals while in the Ready state

The decoding of inputs after receiving a positive clock edge is shown in Figure 38. Basically, four
different paths can be taken. If the inputs J and K are both 0, no change in outputs is required so the flip-
flop is ready again without further actions. If J and K are both 1, the flip-flop must toggle its outputs so a
timer (Thold) is set to control the hold time before entering the state Holding_TQ. Similarly if J = 1 and K
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= 0, the flip-flop enters the state Holding_SQ (after the hold time the output Q will be set and Qbar
cleared). Finally when J = 0 and K = 1, the flip-flop enters the state Holding_RQ to indicate that the output
Q is going to be cleared and Qbar set to 1. Notice that the inputs that are decoded are the internal data
signals, not the external ones that come from the environment. These internal signals are considered steady
since they were generated after the external ones finished their setup times.

Some time was spent analysing the correctness of this approach, since bizarre situations may occur. For
example, imagine that the external inputs J and K are received, their setup times completed, and the
corresponding internal signals are sent to the process JKFFpos. This process is not concerned about setup
times, so as soon as it receives a positive clock pulse it decodes the values of the internal data signals to set
the outputs accordingly. Everything goes fine so far, but what would happen if during the hold time a new
external input were received? Setup times are usually longer than hold times, so the central process would
not know that the external inputs have changed while it was doing the holding. The outputs would be set as
appropriate and everything considered to be finished. Only when the external data signals finished their
setups would the central process know the new values, but it would not react to them until a new clock
pulse was received. This flip-flop specification then seems to have some sort of inertia. It does not respond
to input changes until setup times have finished. In an extreme bizarre situation where the inputs changed
continuously without finishing their setups, the central process (and hence the whole flip-flop) would
remain ignorant of the external events. However, this situation (and some others that caused concern while
developing the flip-flop specifications) are examples of non-deterministic behaviour. If setup times are not
respected the flip-flop will behave in a way that is not specified by the manufacturer. Datasheets, and hence
the SDL specifications, only guarantee that when the timing constraints are respected will t he system
behave as predicted. If for some reason setup times, hold times or clock rates are violated the behaviour of
the device will be unpredictable. Bearing this in mind, it does not really matter what output values the flip-
flop has when timing is not respected. Any logic level would be defensible, since the device is not working
under its normal conditions.

Figure 38. Decoding of the inputs J and K after a positive clock edge

Preset and Clear signals can also be received while the flip-flop is in one of the three possible holding
states. As shown in figure 39, when this happens the active hold timer is reset, the output processes are
instantiated, and the system is moved from the original holding state into PreSetting or Clearing.
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Figure 39. Preset or Clear signals during hold time

New clock pulses are simply ignored during hold time (figure 40). This situation is not specified in
datasheets and it is very unlikely to occur in practice, since hold times for modern flip-flops are usually as
short as one nanosecond. Two consecutive clock pulses in less than one nanosecond is clearly beyond the
normal frequency rate for common flip-flops. This situation would also be intercepted in the process Clock
if the parameter “maximum clock rate” were set to a sensible value. Figure 40 also shows that new data
signals SJData and SKData cause the holding time to be interrupted and the system moved to the state
Ready.

Figure 40. New clock pulses or data signals during hold time

Figure 41 shows that new output processes are created when the timer THold expires. This figure
corresponds to the state Holding_RQ, but similar specifications have been used for the other two hold states
(Holding_SQ and Holding_TQ).
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Figure 41. Output process instances after a hold timer has expired

The behaviour of the flip-flop in the states Clearing, Presetting or ClearAndSet (this state is reached
when the Preset and Clear inputs are both active) is very similar. As an example, figure 42 shows the
specification for the state Clearing. In this state the flip-flop only reacts to Preset or Clear inputs, either to
return the device to its Ready state or to move it to ClearAndSet when both are active at the same time.
New data inputs or clock pulses are ignored in this state. The ClearAndSet and Presetting states, not shown
here, are similar.

Figure 42. Clearing state behaviour

As described in figure 32, a flip-flop is not immediately ready after a Preset or Clear. When these
signals are inactive again, there is a removal or recovery time during which no clock pulses can possibly be
attended. This has been modelled in SDL using another timer (TRecovery) and the diagram shown in figure
43. During recovery new clock pulses and data signals are ignored. However, Preset and Clear are
independent of the clock and, for that reason, can make the device to enter into Clearing or Presetting
again. If the timer TRecovery expires, the flip-flop enters the state Ready so new clock edges will be
detected again.
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Figure 43. Recovery time after finishing a Preset or Clear

Finally, one of the two output processes (JK_OutQbar) is shown in figure 44. This process calculates
the actual output time as the input process time plus the propagation delay duration (TDelayProp). It also
sets a timer TProp that models the time it takes for the output to be generated. Once the TProp timer
expires, the output signal SQBar is generated. Notice that this particular example uses a bit operator NotB
to invert the value BQ passed as a parameter. After sending the output signal this output process instance
dies, but a new one will be created later if a new output is required.

Figure 44. Output process showing the formal parameters

6.3 Validation

Except for the simplest T flip-flop specifications, exhaustive exploration for the flip-flops presented
here has not been possible. The state space explodes exponentially and the SDT Validator terminates early
with an ‘out of memory’ error message. A valid alternative has been to use the random-walk or power-walk
algorithms with the SDT Validator advanced options set.
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Bit state explorations for these devices achieved 100% symbol coverage (figure 45). The time needed
strongly depends on the complexity of the description. Sometimes the default parameters of the SDT
Validator had to be changed. Values such as the termination conditions in the power walk algorithm
(number of repetitions, maximum depth, etc.) had to be increased to achieve 100% symbol coverage.

Figure 45. Bit state exploration for a D flip-flop

Besides automatic exploration, MSCs have been extensively used to analyse behaviour. They have
proved useful to find intricate errors and strange combinations that caused problems. As an illustrative
example of the kind of things MSCs are useful for, figure 46 (left) shows a sequence chart taken from an
originally wrong specification. Here, a Preset signal has finished its setup time while the flip-flop is
recovering from a previous Preset. This specification ignored Preset signals during recovery, but that was
certainly wrong. Since Preset and Clear are independent level signals, the flip-flop should immediately
enter the state Presetting again. This situation is very unlikely to occur in physical flip-flops, since recovery
times (typically 6 ns) are usually shorter than Preset or Clear setup times (typically 9 ns). The diagram on
the right shows what would happen in a flip-flop with sensible parameters; now the behaviour is correct.
However, just in case flip-flops with strange parameters exist, the original specification was modified to get
round this problem.

Figure 46. Use of Message Sequence Charts to analyse system behaviour
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7 Putt ing I t All Together

7.1 Constructing the New ANISEED library

The SDL specifications presented in the previous chapters were not added to the library in their original
format. Although it would have been possible to specify all the library components individually, this would
have been very inefficient. For example, a two-input tri-state Nand gate has largely the same specification
as one with three, four or eight inputs. The gates for And, Or, Nor, Xor and Xnor differ from Nand only in
their logic function. Since each kind of logic gate has uni-bit/multi-bit and untimed/timed versions, a large
number of variants would have to be specified explicitly. As a more pragmatic solution, these were all
generated automaticall y from an SDL template that is parameterised by the logic function, the number of
inputs, whether timed and whether multi-bit.

The original SDL-GR specifications were converted into textual SDL-PR format and comments added
to the code. This proved a time-consuming and error-prone task, as thousands of lines of SDL code were
generated. After adding comments, the resulting PR files were re-imported into the tool, trying to re-
construct the original SDL-GR systems. That was the best way of checking that the final PR files (after all
the editing work) were still correct. Common problems were minor syntactic errors due to the editing.

Using the SDL-PR files, Ken Turner constructed library modules in the macro language m4 format.
These files were processed by the macro processor m4 [25] to generate the new PR library packages. This
approach makes the m4 library much smaller and more maintainable, since a single template needs to be
changed if modifications are required. In every case a library PR package is automatically generated from a
library m4 module, including explanatory comments.

The conversion from the original PR files to library form required many global edits and modifications
of a syntactic nature. All original blocks became block types. Block types were given synonym context
parameters for timing parameters and signal context parameters for external signals. Block types were also
given gate parameters corresponding to channels. Processes needed SignalSet parameters for inputs. All
these modifications and global edits proved a real risk of accidental alterations.

The next step in constructing a reliable library was to instantiate and test the brand new block types. We
constructed SDL systems with single blocks that were instances of the block types contained in the library.
Due to limitations of the SDT tool, a filter written by Ken Turner was used to handle context parameters.
An environment variable (SDLPATH) causes an automatic search for the corresponding definitions. The
only packages that need explicit “ #INCLUDE “ or “Use” clauses are those that have to be imported
literally (basically the “Bit1” and “BitM” packages for single and multiple bits). Appropriate parameters
are given and gates connected via channels to the environment. The signalroutes within the block (i.e.
among its processes) are automaticall y inferred by SDT.

The resulting systems were tested again as before they were put in the library. Unfortunately, due to
time limitations, a thorough and complete validation could not be performed again for all block types.
However, they were instantiated to check that SDT could use them without errors. Whenever problems
were found, they were corrected in the m4 source files, and the library reconstructed again. The most
common errors were wrong number of parameters in block types, missing gate declarations, missing
SignalSets and some spelling problems with signal names.

Further problems with SDT arose while trying to use the library to do some case studies. Context
parameters are not supported by SDT so they are dealt with by a script (sdlctx) developed by Ken Turner
and used as a filter in the SDT analyser. The interactions between the script and the tool are currently being
investigated by Ken Turner, but error messages about several units leading to the same name were given
when trying to start a validator in systems that included block type instances (Telelogic has subsequently
confirmed that this is due to a limitation of SDT). Fortunately, a temporary solution to get round the
problem was found. Since no errors were reported by the tool when running the analyser (only the validator
was in conflict), a valid PR file was generated by SDT for each of our systems. Converting these PR files
into GR format and importing them into the tool was a messy but usable solution to validate systems with
instantiated block types. Following this approach, the ANISEED library could finally be used to implement
and analyse electronic designs. The new available elements in ANISEED library are summarised in
appendix B.
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Achieving 100% symbol coverage when validating instances of block types proved harder than with the
original descriptions. The selection of parameters for block types is critical. Depending on the values given
to parameters such as propagation delays, some parts of the system may not be covered. This is something
reasonable, since the specification contains descriptions for all possible situations. For example, if a
particular component has a propagation delay for low-to-high transitions (TpLH) shorter than TpHL, (high-
to-low) the portion of the general specification that deals with TpHL finishing first will never be executed.
Several validation runs with different parameters were tried and, sometimes, conflicting parameters were
given the very same values, so that the validator could follow all possible paths. Even with this approach
some devices such as flip-flops with preset and clear signals needed long validation times.

7.2 Using The New L ibrary

Once the library is ready to use, modelli ng electronic circuits in SDL is a rather straightforward task. A
circuit can be specified as a SDL system with some inputs and outputs to interact with the environment.
The system will be composed of SDL blocks that are instances of the block types included in the library.

As mentioned before, all the elements included in the library are generic block types that can be
instantiated with actual parameters. The values given to these parameters allow designers to adapt the
behaviour of the circuits under test to their particular needs. Parameters such as propagation delays, setup
intervals etc. are readily available in datasheets, making it possible to represent different logic famili es and
commercial devices.

The SDL-PR files contained in the ANISEED library include details about the parameters needed to
instantiate every particular block type. For example, as shown in the following fragment taken from
aniseed_mux.pr, to instantiate a four-to-one multiplexer four timing parameters are needed: TDelayS1,
TDelayS0, TdelayD1 and TdelayD0.

Block Type FourOneMultiplexerAT
<
  Synonym TDelayS1 Duration; /* Select-high prop. delay */
  Synonym TDelayS0 Duration; /* Select-low prop. delay */
  Synonym TDelayD1 Duration; /* Data-high prop. delay */
  Synonym TDelayD0 Duration; /* Data-low prop. delay */

  Signal /* Input-output signals */
    SIp0 (Time, Bit1), SIp1 (Time, Bit1), /* Inputs 0-1 */
    SIp2 (Time, Bit1), SIp3 (Time, Bit1), /* Inputs 2-3 */
    SSel0 (Time, Bit1), SSel1 (Time, Bit1), /* Select 0 and Select 1 */
    SOp (Time, Bit1) /* Output */
>;

TDelayS1 and TDelayS0 represent the propagation delays after a variation in the Select inputs. Two
values are needed since these delays are usuall y different depending on the output previous and next logic
levels. TDelayS1 is the delay for low-to-high output transitions, and TDelayS0 the delay for high-to-low
ones. Similarly, TDelayD1 and TDelayD0 represent the low-to-high and high-to-low propagation delays
after a variation in the multiplexer Data inputs.

If a particular four-to-one multiplexer has to be used in a circuit, now it can be modelled as an instance
of the ANISEED library block type FourOneMultiplexerAT. The name for the new block, the block type to
be instantiated, the parameters and the signals involved must be given. As an example, the following code
creates a instance with timing values (in nanoseconds) taken from a datasheet:

MyMux:FourOneMultiplexerAT<18, 27, 18, 24, SIp0, SIp1, SIp2, SIp3, SSel0, SSel1, SOp>
MyMux is the name given to the new block. Any valid SDL name can be selected for this purpose. The

semicolon indicates that MyMux is an instance of a block type, in fact it is an instance of the block type
FourOneMultiplexerAT included in the library. The four numerical values are the actual parameters in
nanoseconds for the propagation delays (TDelayS1, TDelayS0 etc). SIp0 to SIp3 are the Data input signals,
SSel0 and SSel1 the Select input signals and SOp the multiplexer output signal. These signals must also be
declared in the SDL diagram.
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Telelogic SDT does not support context parameters, so they are managed by a script (sdlctx) written by
Ken Turner and used as a filter in SDT. Every device in the library needs some particular parameters to be
instantiated. For example, as shown in the following PR code taken from aniseed_flipflop.pr, a D flip-flop
without Preset or Clear only has three parameters: the Setup period, the Holding time and the propagation
delay. If the number of parameters passed in the call i s not consistent with the block type declaration, sdlctx
reports the problem.

Block Type DFlipFlopAT
<
  Synonym TDelaySetup Duration; /* Setup delay */
  Synonym TDelayHold Duration; /* Hold delay */
  Synonym TDelayProp Duration; /* Prop. delay */
  Signal /* I/O signals */
    SC (Time, Bit1), SD (Time, Bit1), /* Clock and Data */
    SQ (Time, Bit1), SQBar (Time, Bit1) /* Outputs */
>;
  Gate D In; /* Input data */
  Gate C In; /* Input clock */
  Gate Q Out; /* Output */
  Gate QBar Out; /* Output negated */

As shown in the PR code above, besides the timing parameters four signals are also needed to
instantiate a D flip-flop: two inputs (Clock and Data) and the outputs. The corresponding gate declarations
for these signals are also shown in the code. Since every block type instance includes the input and output
signals, the interconnecting wires for the circuits in SDL diagrams are actually optional. However, they can
be modelled as SDL channels for clarity. Sdlctx also infers the gate names, so they do not have to be
explicitly typed in the SDL diagram. To make things clearer, the following section presents an example of a
complete SDL system with two instances of D flip-flops and other components. Some points presented here
are discussed in more detail .

7.3 Case Study – The Single Pulser

In order to demonstrate that the ANISEED methodology can be used to implement and analyse practical
circuits, a case study was carried out. This case study is a circuit design taken from the standard benchmark
circuits for verification and validation [28]. These benchmark circuits are widely used to assess the
performance of hardware validation tools.

A single pulser is a clocked-sequential device with one-bit input I and one-bit output O. It has a
debounced push-button, on (true) in the down position, off (false) in the up position. An electronic circuit
senses the depression of the button and asserts an output signal for one clock pulse. The system should not
allow additional assertions of the output until after the operator has released the button. Assuming that the
circuit is synchronous, the specification may be stated as saying that for each input pulse, the Single Pulser
issues exactly one pulse of unit duration regardless of the duration of I. The specification may be also
characterised by the following three properties [29]:

1. Whenever there is a rising edge at I, O becomes true some time later.
2. Whenever O is true it becomes false in the next time instance and it remains false at least until the

next rising edge on I.
3. Whenever there is a rising edge, and assuming that the output pulse does not happen immediately,

there are no more rising edges until that pulse happens (There can not be two rising edges on I without a
pulse on O between them).

The implementation shown in figure 47 is taken from [30]. The incoming, not yet debounced
asynchronous signal Pulse_In is fed to a D flip-flop and thus becomes the synchronised signal Pulse_sync,
which is then delayed for one clock cycle by using another D flip-flop. Its output is negated, and the And-
connection of the synchronous pulse with its own delay generates the resulting, one clock-cycle lasting
signal Pulse_Out. Figure 48 shows some ideal (no delays) waveforms that il lustrate the behaviour of the
circuit.
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Figure 47. One possible implementation of the single pulser

Figure 48. Example waveforms for the single-pulser (no delays considered)

The SDL system constructed to simulate and analyse the single pulser is shown in figure 49. It consists
of a system with eight blocks that are instances of block types contained in the library. In this figure the
interconnecting wires for the circuit are modelled as SDL channels. They have been included for clarity but
they are not compulsory.

DFF1 and DFF2 are instances of the D flip-flops with positive-edge triggering included in the library
(DFlipFlopAT). The parameters given are the setup time (10 ns), holding time (1 ns) and the propagation
delay (8 ns). These values have been selected as being representative of some D flip-flops available on the
market. The signals that every flip-flop receives are also included as parameters. Gate names are not
explicitly required in the diagram, but SDT still shows (figure 49) these small squares (within block bodies)
where gate names are supposed to be. Adding gate names is time consuming and error prone, so they are
inferred by sdlctx, the script that deals with context parameters as well.

The inverter and the two-input And gate are instantiated in a similar way. Parameters include the low-
to-high and high-to-low propagation delays (values taken from an inverter 74H05 and a gate 74LS08) and
the signals. All signals are declared in a text box on the left bottom corner of the figure.
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Figure 49. SDL implementation of the single pulser using the ANISEED library

There are some other peculiarities in the SDL system given in figure 49. Electrical connections between
wires are represented by instances of block type Junction2T (a timed junction with one input and two
outputs). As described in chapter 3, a limitation of SDL is that an output cannot be broadcast to an arbitrary
number of processes. To solve this problem, ANISEED uses junction components that model the
connecting points of wires. In addition, process output signals have to be consumed even if not used.
Unused terminals (such as the inverted outputs of the D flip-flops) are connected to instances of block type
AbsorbT. The Absorb process type is ready to accept and absorb any signal. Both Absorb and Junction are
part of the previous ANISEED library, but are also available in the new version.

The single pulser specification was successfull y validated using the SDT validator. To get round the
compilation problems with the SDT code generator mentioned before, the PR file for the system was
converted into GR format and imported into the tool. Figure 50 shows the structure of the re-constructed
system. Files with extension “ .sbk”  are SDL blocks and files with extension “ .spr”  are processes.
“ Pulser.ssy”  represents the whole system. Notice that the package Bit1 is also included.
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Figure 50. Structure of the SDL system for the single pulser

Successful validation was achieved when using all but the exhaustive exploration algorithm. The bit
state algorithm easily achieved 100% symbol coverage and no error reports were generated.

The power walk and random walk algorithms also finished without error reports. The resulting MSC
traces given by the tool were analysed to check the functionali ty and behaviour of the system.

Exhaustive exploration failed after the computer running out of memory in just a few minutes. The
machine used is a Sun workstation with 512 Mbytes of RAM memory, something that makes it difficult to
understand how this algorithm can fail in such a short period of time. From previous discussions with
Telelogic, it appears that SDT is severely limited (and not by RAM) in exhaustive exploration.
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After validation, the Single Pulser circuit was carefully simulated, using both the standard SDT
simulator and the new run time library developed by Stephen Laing [31] for real-time hardware simulation
with SDT. When appropriate signals were sent and all subsequent transitions executed before sending new
signals, no difference in behaviour was noticed between these two simulator scheduling algorithms. The
diagrams presented later in this chapter were obtained with the standard SDT simulator.

Some plans were made prior to the simulation, especially lists of the signals that had to be sent at
certain times. The clock rate used to simulate the system was 10 MHz; that means 100 nanoseconds for the
clock period. MSC charts were activated and the results were converted from MSC charts into timing
diagrams (figure 51). Timing diagrams are frequently used in the analysis of electronic systems. These
diagrams show various signals as a function of time. Several variables are usually plotted with the same
time scale so that the times at which these variables change with respect to each other can easily be
observed.

Figure 51. Timing diagram after simulating the SDL description of the single pulser

The conclusion after simulation is that the single pulser circuit behaviour matches the specification and
follows the properties stated in the benchmark document. Some interesting results were noticed. For
example, when a Pulse_In signal arrives at the same instant as a Clock rising edge, no Pulse_Out is
generated. The reason for this is the setup time of the flip-flop not being respected, a situation considered in
our SDL specification (clock pulses during setup are simply ignored). The actual behaviour of a physical D
flip-flop under these conditions is not specified by the manufacturer. Only normal operation is explained in
datasheets, so non-determinism would apply to how a real flip-flop would behave in this case.

Before sending signals to the circuit it is necessary to execute all the initial transitions. All the elements
in the circuit have initialisation sequences similar to the ones described in previous chapters. Outputs are
randomly initialised and the circuit needs some time to stabili se. Deciding when the system is stable is not
as easy as it might seem. In all t ime diagrams presented here, the duration of the first output pulse is longer
than the clock period (110 ns instead of 100), something that goes against the specification of the circuit.
The reason for this is the initial state of the second flip-flop and the inverter. In figure 52 the inverter output
is high at time 150, when a positive edge clock transition is received and PulseIn is also at high level.
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Figure 52. Timing diagram for the single pulser

After 9 nanoseconds (1 ns for holding and 8 ns for propagation) the first flip-flop changes its output.
Notice that the setup time is not part of the flip-flop response time here, as it had finished before the clock
edge was received (setup finished at 120+10=130 ns). At time 159 the And gate has its both inputs high, so
it starts a transition to set its output accordingly. After 8 ns (low-to-high propagation delay given as
parameter to the gate) PulseOut goes to high level, unfortunately 10 ns before it should.

Figure 52 also shows that a transient variation in PulseIn between positive edges of the clock is
irrelevant. Between times 550 and 650 PulseIn is low for some nanoseconds, so we might think that at time
650 a new output pulse sequence would be initiated (the previous output pulse has already finished).
However, the first flip-flop only reads the state of the input when it receives positive clock edges, so it does
not detect variations in input between clock active signals. After completing an output pulse the circuit
needs some recovery time before a new one can be generated. PulseIn must be low during a period of time
long enough to reach the next positive clock edge, so that the first flip-flop can effectively detect that
PulseIn has been at low level.

Only the first output pulse has the problem commented above. As shown in figures 51 and 52, the
second pulse is right, since it lasts exactly one clock period (100 ns). Figure 53 shows a sequence of several
consecutive output pulses. All but the first are correct. In the second output pulse, for example, the clock
edge is received at time 250. Nine nanoseconds later the first flip-flop changes its state, but now the second
flip-flop changes too, since its input Pulse_sync was zero. The inverter now needs 10 nanoseconds to set its
output high. In the meantime, the AND gate has one of its inputs at low level, so it must wait until the
inverter has finished its propagation time. For this reason, the output pulse is 10 nanosecond shorter that the
first one. As shown in figure 53, all pulses but the very first one are correct.
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Figure 53. Time diagram showing a consecutive sequence of output pulses
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8 Conclusions

SDL is a well-structured and user-friendly language. The language itself combined with the facilities
included in Telelogic SDT made this work a rewarding experience. However, even with the help of SDL
and SDT, formall y specifying of hardware components is not an easy task.

Describing truth tables and the basic behaviour of electronic components is usuall y a rather
straightforward activity. However, timing constraints are always the trickiest aspect of the specification.
Dealing with timers, propagation delays and transient conditions have proved the hardest part of any
specification.

After achieving a clear and precise SDL specification for a device’s normal operation, there was usually
a need for further questions. Datasheets describe the behaviour of components under certain assumptions. If
the ‘ rules of the game’ are not respected, electronic components will probably behave in a non-
deterministic way. Something as simple as ignoring any strange conditions in the specification is actually
an explicit decision. More often than desired these reflections lead to very intricate thoughts about the best
way of dealing with transient or abnormal behaviour while keeping the specifications simple.

Validating systems with the SDT validator is more a question of time than skill . The tool really helps in
finding the most bizarre combinations of inputs, outputs and adverse circumstances that can make
everything go wrong. The bad news about this approach is that, even in a small size description, thousands
of possible combinations may exist. Long hours of careful analysis of Message Sequence Charts are then
the central part of the job. Besides automaticall y generated MSCs, some SDT features such as the
navigator, the watch window to trace variables, and the coverage viewer to detect parts not fully explored
have proved really useful.

SDT is quite an impressive tool. However, it creates real problems sometimes. More than once the
graphical editor was suddenly closed, a big core dump was created and SDT closed without any chance of
getting the work saved. Some care had also to be taken about “dead” processes running out of control in the
background after closing the tool.

SDL and the ANISEED approach have been shown to be very much applicable to the realm of
hardware analysis and design. It has been possible to formally specify a whole range of electronic
components that now can be used to create and analyse more complex devices and electronic systems. The
deep software roots of SDL make it clear that software-hardware co-design can also be achieved.

There is a great deal of scope for future work on hardware description in SDL and ANISEED in
particular. These are some of the future options:

• Providing a nicer graphical front-end that allows entry of circuit diagrams more closely resembling
those an engineer would draw.

• Further extension of the library.
• Investigating exhaustive validation further. The SDT validator fails very rapidly, even in machines

with a considerable amount of RAM.
• Carrying out new case studies.
• Automatic generation of tests from descriptions.
• Carrying out a practical comparison of ANISEED and other traditional approaches such as VHDL,

for example.
• Looking at hardware-software co-design with SDL.
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A. SDL Notation
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B. List of New L ibrary Components

Naming conventions for logic components are  as follows:

    decoder <func>Decoder[<abst>][<time>][<mult>]
e.g. BcdDecDecoderAT, TwoFourDecoderT

    encoder <func>Encoder[<abst>][<time>][<mult>]
e.g. EightThreeEncoder

    flip-flop <func>FlipFlop[<abst>][<time>][<trig][<pre>]
e.g. DFlipFlopA, JKFlipFlopATN, RSFlipFlopATNP,
TFlipFlopAT

    junction Junction<outputs>[<time>][<mult>]
e.g. Junction2T, Junction4TM

    merge Merge<outputs>[<time>][<mult>]
e.g. Merge2TM, MergeT

    n-ary logic <func><inputs>[<time>][<mult>][<tris>]
e.g. And2T, Xor4TM, Nor8MH

    nullary <func>[<time>][<mult>]
e.g. AbsorbT, OneTM, Zero

    split Split<outputs>[<time>][<mult>]
e.g. Split2TM, SplitH, SplitTL

    unary <func>[<time>][<mult>]
e.g. InverterT, RepeaterM, RepeaterTM

    variants <abst> A/I  (abstract/intermediate, default gate-level)
<func>         (function)
<mult> M    (multi-bit, default single-bit)
<pre> P     (preset/clear, default neither)
<time> T     (timed, default untimed)
<trig> N     (negative FF trigger, default positive)
<tris> H/L (high/low tristate enable, default neither)

Naming conventions for context parameters and formal parameters are as follows:
    data values BIp[<number>]
    B[Next]Op
    B<func>[Next]

e.g. BIp1, BIp0, BNextOp, BNextQ

    input gates Ip[<number>]
<func>
e.g C, D, Ip, Ip1

    input signals S[<func>][ Ip][<number>](<parameters>)
e.g. SDIp (Time, BitM), SIp (Bit1),
SIp0 (Time, Bit1)
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    output gates Op[<number>]
<func>
e.g Op, Op2, Q, QBar

    output signals S[<func>][Op][<number>](<parameters>)
e.g. SOp (Bit1), SOp0 (Time, Bit1), SQ (Time, Bit1)

    parameter values TDelay<func>
e.g. TDelay1, TDelaySetup

    timers T<func>
e.g. T1, THold

    times TIp, Top

Aniseed_Coder (all components timed)

EightThreeEncoderAT Eight to three lines priority encoder
BcdDecDecoderAT BCD to decimal decoder
TwoFourDecoderAT Two to four lines decoder

Aniseed_FlipFlop

DFlipFlopAT D flip-flop positive edge triggering
DFlipFlopATN D flip-flop negative edge triggering
DFlipFlopATP D flip-flop positive edge triggering with preset and clear
DFlipFlopATNP D flip-flop negative edge triggering with preset and clear
MSDFlipFlopATP Master–slave D flip-flop with preset and clear
JKFlipFlopAT JK flip-flop positive edge triggering
JKFlipFlopATN JK flip-flop negative edge triggering
JKFlipFlopATP JK flip-flop positive edge triggering with preset and clear
JKFlipFlopATNP JK flip-flop negative edge triggering with preset and clear
MSJKFlipFlopATP Master-slave JK flip-flop with preset and clear
RSFlipFlopAT RS flip-flop positive edge triggering
RSFlipFlopATN RS flip-flop negative edge triggering
RSFlipFlopATP RS flip-flop positive edge triggering with preset and clear
RSFlipFlopATNP RS flip-flop negative edge triggering with preset and clear
MSRSFlipFlopATP Master-slave RS flip-flop with preset and clear
TFlipFlopAT T flip-flop positive edge triggering
TFlipFlopATN T flip-flop negative edge triggering
MSTFlipFlopAT Master-slave T flip-flop
TFlipFlopATP T flip-flop positive edge triggering with preset and clear
TFlipFlopATNP T flip-flop negative edge triggering with preset and clear

Aniseed_Mux (all components timed)

FourOneMultiplexerAT Four to one line multiplexer
TwoFourDemultiplexerAT Two to four line demultiplexer
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Aniseed_Tr igate (all components tr i-state)

InverterH Untimed single-bit inverter with high-level enable
InverterTH Timed single-bit inverter with high-level enable
InverterMH Untimed multi-bit inverter with high-level enable
InverterTMH Timed multi-bit inverter with high-level enable
InverterL untimed single-bit inverter with low-level enable
InverterTL timed single-bit inverter with low-level enable
InverterML untimed multi-bit inverter with low-level enable
InverterTML timed multi-bit inverter with low-level enable
And2H untimed single-bit “and” gate with 2 inputs with high-level enable
And3H untimed single-bit “and” gate with 3 inputs with high-level enable
And4H untimed single-bit “and” gate with 4 inputs with high-level enable
And8H untimed single-bit “and” gate with 8 inputs with high-level enable
And2L untimed single-bit “and” gate with 2 inputs with low-level enable
And3L untimed single-bit “and” gate with 3 inputs with low-level enable
And4L untimed single-bit “and” gate with 4 inputs with low-level enable
And8L untimed single-bit “and” gate with 8 inputs with low-level enable
And2TH timed single-bit “and” gate with 2 inputs with high-level enable
And3TH timed single-bit “and” gate with 3 inputs with high-level enable
And4TH timed single-bit “and” gate with 4 inputs with high-level enable
And8TH timed single-bit “and” gate with 8 inputs with high-level enable
And2TL timed single-bit “and” gate with 2 inputs with low-level enable
And3TL timed single-bit “and” gate with 3 inputs with low-level enable
And4TL timed single-bit “and” gate with 4 inputs with low-level enable
And8TL timed single-bit “and” gate with 8 inputs with low-level enable
And2MH untimed multi-bit “and” gate with 2 inputs with high-level enable
And3MH untimed multi-bit “and” gate with 3 inputs with high-level enable
And4MH untimed multi-bit “and” gate with 4 inputs with high-level enable
And8MH untimed multi-bit “and” gate with 8 inputs with high-level enable
And2ML untimed multi-bit “and” gate with 2 inputs with low-level enable
And3ML untimed multi-bit “and” gate with 3 inputs with low-level enable
And4ML untimed multi-bit “and” gate with 4 inputs with low-level enable
And8ML untimed multi-bit “and” gate with 8 inputs with low-level enable
And2TMH timed multi-bit “and” gate with 2 inputs with high-level enable
And3TMH timed multi-bit “and” gate with 3 inputs with high-level enable
And4TMH timed multi-bit “and” gate with 4 inputs with high-level enable
And8TMH timed multi-bit “and” gate with 8 inputs with high-level enable
And2TML timed multi-bit “and” gate with 2 inputs with low-level enable
And3TML timed multi-bit “and” gate with 3 inputs with low-level enable
And4TML timed multi-bit “and” gate with 4 inputs with low-level enable
And8TML timed multi-bit “and” gate with 8 inputs with low-level enable
Nand2H untimed single-bit “nand” gate with 2 inputs with high-level enable
Nand3H untimed single-bit “nand” gate with 3 inputs with high-level enable
Nand4H untimed single-bit “nand” gate with 4 inputs with high-level enable
Nand8H untimed single-bit “nand” gate with 8 inputs with low-level enable
Nand2L untimed single-bit “nand” gate with 2 inputs with low-level enable
Nand3L untimed single-bit “nand” gate with 3 inputs with low-level enable
Nand4L untimed single-bit “nand” gate with 4 inputs with low-level enable
Nand8L untimed single-bit “nand” gate with 8 inputs with low-level enable
Nand2TH timed single-bit “nand” gate with 2 inputs with high-level enable
Nand3TH timed single-bit “nand” gate with 3 inputs with high-level enable
Nand4TH timed single-bit “nand” gate with 4 inputs with high-level enable
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Nand8TH timed single-bit “nand” gate with 8 inputs with high-level enable
Nand2TL timed single-bit “nand” gate with 2 inputs with low-level enable
Nand3TL timed single-bit “nand” gate with 3 inputs with low-level enable
Nand4TL timed single-bit “nand” gate with 4 inputs with low-level enable
Nand8TL timed single-bit “nand” gate with 8 inputs with low-level enable
Nand2MH untimed multi-bit “nand” gate with 2 inputs with high-level enable
Nand3MH untimed multi-bit “nand” gate with 3 inputs with high-level enable
Nand4MH untimed multi-bit “nand” gate with 4 inputs with high-level enable
Nand8MH untimed multi-bit “nand” gate with 8 inputs with high-level enable
Nand2ML untimed multi-bit “nand” gate with 2 inputs with low-level enable
Nand3ML untimed multi-bit “nand” gate with 3 inputs with low-level enable
Nand4ML untimed multi-bit “nand” gate with 4 inputs with low-level enable
Nand8ML untimed multi-bit “nand” gate with 8 inputs with low-level enable
Nand2TMH timed multi-bit “nand” gate with 2 inputs with high-level enable
Nand3TMH timed multi-bit “nand” gate with 3 inputs with high-level enable
Nand4TMH timed multi-bit “nand” gate with 4 inputs with high-level enable
Nand8TMH timed multi-bit “nand” gate with 8 inputs with high-level enable
Nand2TML timed multi-bit “nand” gate with 2 inputs with low-level enable
Nand3TML timed multi-bit “nand” gate with 3 inputs with low-level enable
Nand4TML timed multi-bit “nand” gate with 4 inputs with low-level enable
Nand8TML timed multi-bit “nand” gate with 8 inputs with low-level enable
Or2H untimed single-bit “or” gate with 2 inputs with high-level enable
Or3H untimed single-bit “or” gate with 3 inputs with high-level enable
Or4H untimed single-bit “or” gate with 4 inputs with high-level enable
Or8H untimed single-bit “or” gate with 8 inputs with low-level enable
Or2L untimed single-bit “or” gate with 2 inputs with low-level enable
Or3L untimed single-bit “or” gate with 3 inputs with low-level enable
Or4L untimed single-bit “or” gate with 4 inputs with low-level enable
Or8L untimed single-bit “or” gate with 8 inputs with low-level enable
Or2TH timed single-bit “or” gate with 2 inputs with high-level enable
Or3TH timed single-bit “or” gate with 3 inputs with high-level enable
Or4TH timed single-bit “or” gate with 4 inputs with high-level enable
Or8TH timed single-bit “or” gate with 8 inputs with high-level enable
Or2TL timed single-bit “or” gate with 2 inputs with low-level enable
Or3TL timed single-bit “or” gate with 3 inputs with low-level enable
Or4TL timed single-bit “or” gate with 4 inputs with low-level enable
Or8TL timed single-bit “or” gate with 8 inputs with low-level enable
Or2MH untimed multi-bit “or” gate with 2 inputs with high-level enable
Or3MH untimed multi-bit “or” gate with 3 inputs with high-level enable
Or4MH untimed multi-bit “or” gate with 4 inputs with high-level enable
Or8MH untimed multi-bit “or” gate with 8 inputs with high-level enable
Or2ML untimed multi-bit “or” gate with 2 inputs with low-level enable
Or3ML untimed multi-bit “or” gate with 3 inputs with low-level enable
Or4ML untimed multi-bit “or” gate with 4 inputs with low-level enable
Or8ML untimed multi-bit “or” gate with 8 inputs with low-level enable
Or2TMH timed multi-bit “or” gate with 2 inputs with high-level enable
Or3TMH timed multi-bit “or” gate with 3 inputs with high-level enable
Or4TMH timed multi-bit “or” gate with 4 inputs with high-level enable
Or8TMH timed multi-bit “or” gate with 8 inputs with high-level enable
Or2TML timed multi-bit “or” gate with 2 inputs with low-level enable
Or3TML timed multi-bit “or” gate with 3 inputs with low-level enable
Or4TML timed multi-bit “or” gate with 4 inputs with low-level enable
Or8TML timed multi-bit “or” gate with 8 inputs with low-level enable
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Nor2H untimed single-bit “nor” gate with 2 inputs with high-level enable
Nor3H untimed single-bit “nor” gate with 3 inputs with high-level enable
Nor4H untimed single-bit “nor” gate with 4 inputs with high-level enable
Nor8H untimed single-bit “nor” gate with 8 inputs with low-level enable
Nor2L untimed single-bit “nor” gate with 2 inputs with low-level enable
Nor3L untimed single-bit “nor” gate with 3 inputs with low-level enable
Nor4L untimed single-bit “nor” gate with 4 inputs with low-level enable
Nor8L untimed single-bit “nor” gate with 8 inputs with low-level enable
Nor2TH timed single-bit “nor” gate with 2 inputs with high-level enable
Nor3TH timed single-bit “nor” gate with 3 inputs with high-level enable
Nor4TH timed single-bit “nor” gate with 4 inputs with high-level enable
Nor8TH timed single-bit “nor” gate with 8 inputs with high-level enable
Nor2TL timed single-bit “nor” gate with 2 inputs with low-level enable
Nor3TL timed single-bit “nor” gate with 3 inputs with low-level enable
Nor4TL timed single-bit “nor” gate with 4 inputs with low-level enable
Nor8TL timed single-bit “nor” gate with 8 inputs with low-level enable
Nor2MH untimed multi-bit “nor” gate with 2 inputs with high-level enable
Nor3MH untimed multi-bit “nor” gate with 3 inputs with high-level enable
Nor4MH untimed multi-bit “nor” gate with 4 inputs with high-level enable
Nor8MH untimed multi-bit “nor” gate with 8 inputs with high-level enable
Nor2ML untimed multi-bit “nor” gate with 2 inputs with low-level enable
Nor3ML untimed multi-bit “nor” gate with 3 inputs with low-level enable
Nor4ML untimed multi-bit “nor” gate with 4 inputs with low-level enable
Nor8ML untimed multi-bit “nor” gate with 8 inputs with low-level enable
Nor2TMH timed multi-bit “nor” gate with 2 inputs with high-level enable
Nor3TMH timed multi-bit “nor” gate with 3 inputs with high-level enable
Nor4TMH timed multi-bit “nor” gate with 4 inputs with high-level enable
Nor8TMH timed multi-bit “nor” gate with 8 inputs with high-level enable
Nor2TML Timed multi-bit “nor” gate with 2 inputs with low-level enable
Nor3TML Timed multi-bit “nor” gate with 3 inputs with low-level enable
Nor4TML Timed multi-bit “nor” gate with 4 inputs with low-level enable
Nor8TML Timed multi-bit “nor” gate with 8 inputs with low-level enable
Xor2H Untimed single-bit “xor” gate with 2 inputs with high-level enable
Xor3H Untimed single-bit “xor” gate with 3 inputs with high-level enable
Xor4H Untimed single-bit “xor” gate with 4 inputs with high-level enable
Xor8H Untimed single-bit “xor” gate with 8 inputs with low-level enable
Xor2L Untimed single-bit “xor” gate with 2 inputs with low-level enable
Xor3L Untimed single-bit “xor” gate with 3 inputs with low-level enable
Xor4L Untimed single-bit “xor” gate with 4 inputs with low-level enable
Xor8L Untimed single-bit “xor” gate with 8 inputs with low-level enable
Xor2TH Timed single-bit “xor” gate with 2 inputs with high-level enable
Xor3TH Timed single-bit “xor” gate with 3 inputs with high-level enable
Xor4TH Timed single-bit “xor” gate with 4 inputs with high-level enable
Xor8TH Timed single-bit “xor” gate with 8 inputs with high-level enable
Xor2TL Timed single-bit “xor” gate with 2 inputs with low-level enable
Xor3TL Timed single-bit “xor” gate with 3 inputs with low-level enable
Xor4TL Timed single-bit “xor” gate with 4 inputs with low-level enable
Xor8TL Timed single-bit “xor” gate with 8 inputs with low-level enable
Xor2MH Untimed multi-bit “xor” gate with 2 inputs with high-level enable
Xor3MH Untimed multi-bit “xor” gate with 3 inputs with high-level enable
Xor4MH Untimed multi-bit “xor” gate with 4 inputs with high-level enable
Xor8MH Untimed multi-bit “xor” gate with 8 inputs with high-level enable
Xor2ML Untimed multi-bit “xor” gate with 2 inputs with low-level enable
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Xor3ML Untimed multi-bit “xor” gate with 3 inputs with low-level enable
Xor4ML Untimed multi-bit “xor” gate with 4 inputs with low-level enable
Xor8ML Untimed multi-bit “xor” gate with 8 inputs with low-level enable
Xor2TMH Timed multi-bit “xor” gate with 2 inputs with high-level enable
Xor3TMH Timed multi-bit “xor” gate with 3 inputs with high-level enable
Xor4TMH Timed multi-bit “xor” gate with 4 inputs with high-level enable
Xor8TMH Timed multi-bit “xor” gate with 8 inputs with high-level enable
Xor2TML timed multi-bit “xor” gate with 2 inputs with low-level enable
Xor3TML timed multi-bit “xor” gate with 3 inputs with low-level enable
Xor4TML timed multi-bit “xor” gate with 4 inputs with low-level enable
Xor8TML timed multi-bit “xor” gate with 8 inputs with low-level enable
Xnor2H untimed single-bit “xnor” gate with 2 inputs with high-level enable
Xnor3H untimed single-bit “xnor” gate with 3 inputs with high-level enable
Xnor4H untimed single-bit “xnor” gate with 4 inputs with high-level enable
Xnor8H untimed single-bit “xnor” gate with 8 inputs with low-level enable
Xnor2L untimed single-bit “xnor” gate with 2 inputs with low-level enable
Xnor3L untimed single-bit “xnor” gate with 3 inputs with low-level enable
Xnor4L untimed single-bit “xnor” gate with 4 inputs with low-level enable
Xnor8L untimed single-bit “xnor” gate with 8 inputs with low-level enable
Xnor2TH timed single-bit “xnor” gate with 2 inputs with high-level enable
Xnor3TH timed single-bit “xnor” gate with 3 inputs with high-level enable
Xnor4TH timed single-bit “xnor” gate with 4 inputs with high-level enable
Xnor8TH timed single-bit “xnor” gate with 8 inputs with high-level enable
Xnor2TL timed single-bit “xnor” gate with 2 inputs with low-level enable
Xnor3TL timed single-bit “xnor” gate with 3 inputs with low-level enable
Xnor4TL timed single-bit “xnor” gate with 4 inputs with low-level enable
Xno8TL timed single-bit “xnor” gate with 8 inputs with low-level enable
Xnor2MH untimed multi-bit “xnor” gate with 2 inputs with high-level enable
Xnor3MH untimed multi-bit “xnor” gate with 3 inputs with high-level enable
Xnor4MH untimed multi-bit “xnor” gate with 4 inputs with high-level enable
Xnor8MH untimed multi-bit “xnor” gate with 8 inputs with high-level enable
Xnor2ML untimed multi-bit “xnor” gate with 2 inputs with low-level enable
Xnor3ML untimed multi-bit “xnor” gate with 3 inputs with low-level enable
Xnor4ML untimed multi-bit “xnor” gate with 4 inputs with low-level enable
Xnor8ML untimed multi-bit “xnor” gate with 8 inputs with low-level enable
Xnor2TMH timed multi-bit “xnor” gate with 2 inputs with high-level enable
Xnor3TMH timed multi-bit “xnor” gate with 3 inputs with high-level enable
Xnor4TMH timed multi-bit “xnor” gate with 4 inputs with high-level enable
Xnor8TMH timed multi-bit “xnor” gate with 8 inputs with high-level enable
Xnor2TML timed multi-bit “xnor” gate with 2 inputs with low-level enable
Xnor3TML timed multi-bit “xnor” gate with 3 inputs with low-level enable
Xnor4TML timed multi-bit “xnor” gate with 4 inputs with low-level enable
Xnor8TML timed multi-bit “xnor” gate with 8 inputs with low-level enable


