
Department of Computing Science and Mathematics
University of Stirling

A Case Study in Integrated Assertion-Based Verification
with Omnibus

Thomas Wilson, Savi Maharaj, Robert G. Clark

Technical Report CSM-176

ISSN 1460-9673

January 2009

Department of Computing Science and Mathematics
University of Stirling

A Case Study in Integrated Assertion-Based Verification
with Omnibus

Thomas Wilson, Savi Maharaj, Robert G. Clark

Department of Computing Science and Mathematics
University of Stirling

Stirling FK9 4LA, Scotland
Telephone +44-1786-467421, Facsimile +44-1786-464-551

Email [twi,savi,rgc]@cs.stir.ac.uk

Technical Report CSM-176

ISSN 1460-9673

January 2009

Abstract

We present the example of the specification, implementation, and verification of a library system in
Omnibus. Three approaches to verification (runtime assertion checking, extended static checking, and
full formal verification) are applied to the example, and we compare the ease of use and the error
coverage of each approach. We then discuss how the three approaches may be used together within
Omnibus in an integrated manner, explain the benefits of this, and show how integration is supported
by the Omnibus IDE.

Keywords: static checking, run-time checking, integrated formal methods, object-oriented
programming

1. Introduction
In [13-15] we introduced the Omnibus system, which provides a flexible, integrated approach for
developing verified, object-oriented software. Omnibus supports three main approaches to verifying
assertion-annotated software: Runtime Assertion Checking (RAC), Extended Static Checking (ESC),
and Full Formal Verification (FFV). Different verification policies may be applied to different
components within a single software project, according to the level of rigor that is needed and the
amount of resources available for carrying out verification.

Since 2005 the Omnibus system has undergone further development. The guidelines for combining
verification approaches have been refined and tool support for enforcing these guidelines has been
greatly improved [14]. In this paper we present a medium-sized case study, carried out using Omnibus.
The case study provides a showcase for the range of verification techniques available in Omnibus, and
illustrates the advantages and disadvantages of each technique. The case study also demonstrates how
different verification techniques may be integrated within a single project.

We begin with an overview of the Omnibus IDE and language. This is followed by the case study,
which concerns a library system. We describe the implementation of the library system and then apply
the RAC, ESC and FFV approaches, in turn, to verify the project in its entirety. This was done to
permit direct comparison of the error coverage of each approach; we do not necessarily recommend
that the verification approaches be applied sequentially to real examples in this way. We see that the
approaches provide increasing error coverage and require increasingly expressive assertion annotations.
We then describe how the approaches can be used together in a more integrated fashion, utilising new
tool and language features.

2. An Overview of Omnibus
Omnibus provides three distinct verification approaches: RAC (exemplified in [7]), which uses
lightweight assertions which are converted into run-time checks; ESC (exemplified in [8]), which
provides automatic static detection of run-time errors and violations of lightweight assertion
annotations; and FFV (exemplified in [1]), which consists of proving the correctness of a program with
respect to a fully expressive, heavyweight specification.

By providing integrated support for the approaches within a single tool, the Omnibus IDE
allows different approaches to be used for different parts of a single project. The choice of
approach is managed through a system of Verification Policies. Each policy defines how to
manage the verification of a single class. Policies for RAC, ESC, and FFV are given as
defaults and further policies may be defined by fine-tuning these; for example, by defining
what theorem proving tool to use, how to handle troublesome constructs, or what detail to
include in failure reports.

Verification is carried out in a number of different ways, depending on the chosen policy.
For RAC, a Java generator translates the program into a Java program with embedded run-
time checks. When the program is executed, a run-time check report is generated giving
details of the assertion checks that have been executed. For ESC and FFV, the program is
subjected to symbolic execution, which generates verification conditions, expressed in a
generic logic [15]. These are then translated into the native logic of a theorem-proving tool,
which carries out the proofs. For ESC, the prover that is currently used is Simplify [9] which
is fully automatic. For FFV, there is a choice between Simplify or the interactive theorem-
prover PVS [11]. The proof output links directly back into the IDE.

The Omnibus programming language [15] is superficially like Java, using similar concepts
of packages, classes, methods, expressions, statements etc. To this is added a behavioural
interface specification language. The language has been designed so as to facilitate
verification and ease the annotation burden for developers. A key simplification is the use of
value semantics by default for objects.

An Omnibus program consists of a set of class definitions, each containing various
methods for manipulating instances of the class. Methods may be constructors, which create
an object; functions, which allow objects to be queried without side-effects; or operations,
which update objects. Constructors are class methods whereas functions and operations are
object methods.

In Omnibus, all objects are immutable with the system creating new objects behind-the-
scenes as needed to preserve value semantics. This is hidden from the programmers who are
allowed to think in terms of updating objects. There is a single equality operator which
represents deep equality.

Behaviour specifications: The behaviour of a method is described using behaviour
specifications, expressed as requires, changes and ensures clauses. These state the method’s
pre-conditions, frame conditions and post-conditions, respectively. A subset of the functions
in the class are taken to represent the abstract state of the class; these model functions are
declared with the model modifier and do not have post-conditions. The behaviour of the
remaining methods is then specified in terms of the model functions. A method may have
different behaviour specifications at different levels of accessibility (public, private, or
protected). For example, a function can be declared as a model function at the public level but
described as a derived function in terms of the private attributes at the private level.

Requirements specifications: The requirements of a class are specified using initially,
invariant, and constraint assertions. Initially assertions should hold over all freshly
constructed objects, invariant assertions should hold over objects whenever they are
accessible by code in other classes and constraint assertions should hold across any operation
calls.

Implementations: Implementations of classes are defined in terms of method
implementations that manipulate the values of private attributes.

Libraries: Like JML [4], Omnibus hides mathematical abstractions like sequences and
sets behind a façade of library classes. The case study includes examples of the use of some
of these classes, such as List and Collection.

3. Informal description of the Library System
The Library contains a set of Items which can be loaned out. Each Item has a unique itemNo and
title. There are three concrete types of Item: Books, CDs and DVDs. In this paper we focus on the use
of Books. A Book has additional attributes: an ISBN, a list of authors (which may not contain
duplicates), a publisher and a published date.

The Library can hold multiple copies of each Item. Each Copy has a unique copyNo along with the
itemNo identifying the item of which it is a copy. Items and copies can be searched, added, deleted or
changed. Adding a new item creates a new copy and deleting the last copy of an item deletes the
Item’s details from the system.

People must register with the library as members before they can loan out a copy of an item.
Members can be searched, added, deleted or changed. Members can loan out copies of items. For each
Loan, the details of the memberNo, copyNo and start and end dates of the Loan are recorded. Loans
can be searched, added, deleted or changed via a standard loan/return/renew procedure.

4. Implementation of the Library System
Here we present an implementation with lightweight assertion annotations suitable for verification
using RAC. In later sections we will add further annotations to allow the use of ESC and FFV. An
initial implementation was developed as part of an investigation into a novice user’s experience of
using Omnibus [3]. Some of the code (and errors) discussed here derive from this work. The full code
for the library system may be viewed at [12].
4.1. Auxiliary classes
Most of the classes in the case study are simple data structures. These include Book, CD, Card, Copy,
DVD, Item, Loan, Member and Name. These all follow the same simple structure. Each of them is
defined in a file with sections for the abstract state, constructor and update operations.

As an example, consider the Book class. The abstract state is represented by four public model
functions, which also serve as accessor functions for the private attributes:
public class Book isa Item {
private attribute isbn:ISBN
private attribute authors:List[Name]
private attribute publisher:String
private attribute pubDate:Date
public model function isbn():ISBN
{ return isbn; }

public model function authors():List[Name]
{ return authors; }
public model function publisher():String
{ return publisher; }
public model function pubDate():Date
{ return pubDate; }

Requirement specifications such as invariants are used to describe restrictions on the abstract
state. For example, there should not be any duplicates in the list of authors. The omni.lang.List
class that is used to model the lists contains a function called containsDuplicates which can be
used to describe this:
public invariant noDuplicatesInAuthors:
!authors().containsDuplicates()
The constructor simply assigns the passed parameters to the corresponding attributes (including

attributes inherited from the superclass Item).
public constructor newBook(iNo:integer, t:String, isbnNo:ISBN,

auths:List[Name], pub:String, pDate:Date)
{ itemNo := iNo;
title := t;
isbn := isbnNo;
authors := auths;
publisher := pub;
pubDate := pDate; }
To complete the Book class, four operations, setISBN, setAuthors, and setPubDate, allow

updating of the state elements. These are declared to change the relevant state element. As an example,
setAuthors is shown below:
public operation setAuthors(as:List[Name])
changes authors

{ authors := as; }
Other auxiliary classes are ISBN, ItemStatus, MemberStatus, and Date, the details of which are

omitted.
4.2. The main Lib class
The bulk of the code is within the Lib class. This contains the items, copies, members, cards and loans
currently in the library along with methods to manipulate them.
Accessor functions
As in Book, the accessor functions for the private attributes are declared as public model functions.
This enables them to be referred to in changes clauses.

The model functions for the Lib class are:
public model function items():Collection[Item]
{ return items; }
public model function copies():Collection[Copy]
{ return copies; }
public model function members():Collection[Member]
{ return members; }
public model function cards():Collection[Card]
{ return cards; }
public model function loans():Collection[Loan]
{ return loans; }
Formalisation of invariants of Lib class
Seven class invariants were identified for the Lib class in the original informal specification of the
library [3]. Four invariants state that the identification numbers used for each item, copy, card and
member (item number, copy number, card number and member number, respectively) are unique. Two
invariants state that the copies and members that are referred to in any loan must be in the library’s
recorded copies and members, respectively. The final invariant expresses that a single copy cannot be
recorded as on loan more than once at any one time.

For example, the invariants that the itemNos of the Items in the library are unique, that every
copy that is on loan is in the copies collection and that no copies are on loan more than once are
shown below.
public invariant itemNosInItemsUnique:

forall (i:Item in items()):
forall (i2:Item in items()):
i.itemNo() != i2.itemNo() || i = i2

public invariant allCopiesOnLoanInCopies:
forall (l:Loan in loans()):
exists (c:Copy in copies()):
l.copyNo() = c.copyNo()

public invariant noCopiesOnLoanMoreThanOnce:
forall (l:Loan in loans()):
forall (l2:Loan in loans()):
l.copyNo() != l2.copyNo() || l = l2

Lib operations
As an example of an operation from the Lib class, consider takeOutCopy, which is used to loan a
copy of an item to a member. This method accepts a member number, a copy number, and a date and
takes out a new loan:
public operation takeOutCopy(memNo:integer, cNo:integer, date:Date)
requires exists (m:Member in members()):

m.memberNo() = memNo,
exists (c:Copy in copies()):
c.copyNo() = cNo,

forall (l:Loan in loans()):
l.copyNo() != cNo

changes loans
ensures loans().size()=old loans().size()+1

{ loans.add(Loan.borrows(memNo, cNo, date,
calcNewDate(lookupItemFromCopy(cNo)

.itemNo(),date))); }
The requires clause asserts that the given member number and copy number must be known, and

that there must not be any existing loan with the given copy number. The changes clause states that
only the loans element of the abstract state may be changed. The ensures clause gives a lightweight
specification of the behaviour of the method: it simply states that the size of the loans collection
increases by one. This is sufficient for RAC.

The implementation constructs a new Loan object with the appropriate values and adds it to the
loans collection.

As an example of one of the update methods, consider the changeMemberName operation which is
used to change the name associated with a given member number:
public operation changeMemberName(

memNo:integer, f:String, s:String)
requires exists (m:Member in members()):

m.memberNo() = memNo
changes members
ensures members().size() = old members().size(),
lookupMember(memNo).name() = Name.newName(f, s)

{var memObj:Member:= lookupMember(memNo);
members.remove(memberObj);
memberObj.setName(Name.newName(f, s));
members.add(memberObj); }

The requires clause asserts that there must be a Member with the given memberNo. The changes
clause states that only the members state element is changed. The ensures clause gives a lightweight
specification of the behaviour of the method, saying that the size of the members collection does not
change and that the new name is associated with the given member number.

The implementation looks up the member with the given member number, removes that member
record, and then replaces it after updating it with the new name.
Lib functions
There are also functions to query aspects of the library. For example, consider the
lookupBookFromISBN function, which accepts an ISBN and returns a Book with that ISBN:
public function lookupBookFromISBN(isbn:ISBN):Book
requires exists (i:Item in items() where i is Book):

(i as Book).isbn() = isbn
ensures result.isbn() = isbn,

items().contains(result)
{ foreach (i:Item in items){

if (i is Book){
var book:Book := i as Book;
if (book.isbn() = isbn){return book;}

}}
unreachable; }

The requires clause asserts that there must be an Item which is a Book and has the specified
ISBN. The ensures clause says that the isbn of the returned Book must equal the passed ISBN and
that the Book must be in the items collection.

The implementation iterates through the elements in the items collection. If it finds a Book, it
checks the isbn and returns that Book if it matches the passed ISBN. The unreachable statement
should never be reached because the requires clause ensures that the book will be found.

5. Applying RAC to the Library System
Verification with RAC is built around testing. Tests are used to ensure that the application performs its
intended function without violation of any of the assertion annotations.

The Omnibus language provides the facility to define tests and the Omnibus IDE can be used to
automatically re-execute them at the push of a button. A Check Viewer tool is used to check the extent
that the assertions present in the class were covered by executing the tests.

As an example, a small part of one of the tests produced for the Lib class is displayed below. In its
complete state, this particular test covers adding, retrieving, updating and changing the loan status of
books.
test bookTest {
var lib:Lib := Lib.testDataLibrary();
// declare new book details
var t:String:="Comparative Programming Languages";
var i:ISBN:=ISBN.fromString("0201710120");
var n:Name:=Name.newName("Robert","Clark");

"Wilson");
var a:List[Name] := List[Name].empty().add(n);
var p:String := "AW";
var d:Date:=Date.newDate(6,11,2000);
var plItemNo:integer := lib.getNewItemNo();
var plCopyNo:integer := lib.getNewCopyNo();
// add the new book
lib.acquireBook(t, i, a, p, d);
// check details of added book
var plItem:Item := lib.lookupItem(plItemNo);
assert plItem is Book;
var plBk:Book := lib.lookupBook(plItemNo);
assert plItem = plBk;
// check search functions
assert lib.lookupItemFromTitle(t) = plBk;
assert lib.lookupBookFromISBN(i) = plBk; }

After a set of tests is executed, the Check Viewer reports which assertions passed (were
encountered at least once and evaluated to true all times), failed (evaluated to false at least once) or
were unchecked (were not encountered). Below, we show the Check Viewer screen after executing two
tests, bookTest and cdTest. There are some errors present.

To cover all the assertion checks in the Library system, we defined 7 tests, totalling 240 lines of
code (excluding comments). Each of these exercises a particular aspect of the system. To get all of the
assertions passed, we also needed to correct some errors, described in the next section.
5.1. Errors detected
As one would expect, the RAC process found some errors in the initial implementation. The most
common error was missing old operators in ensures clauses of operations. The old prefix is needed
to refer to the value of a state element before an operation is carried out. Novice specifiers often forget
to use it. For example, consider the original specification of the disposeOfCopy operation:
public operation disposeOfCopy(cNo:integer)
requires exists (c:Copy in copies()):

c.copyNo() = cNo
changes copies, items
ensures copies().size() = old copies().size() - 1,
if (isOnlyOneCopy(

lookupCopy(cNo).itemNo())) then
items().size() = old items().size() - 1

else
items() = old items()

{ ... }
This operation should remove the Copy with the specified number and, if it is the last Copy, delete

the associated Item. RAC checking this code yields the following error. (The full error message also
gives many other details.)
Lib.obs:248: Failure of public requires clause of the lookupCopy function

declared in Lib at line 780
The error arises from the use of the function lookupCopy in the ensures cause. The lookupCopy

function is used to search the copies collection to find the Copy with a given copy number; it requires
that that Copy is present. The specifier wanted to say that if there was only one copy of the associated
Item before the operation, then the size of the items collection is reduced by one; otherwise it stays
the same. However, the call of lookupCopy, without an old prefix, refers to the library after the
operation, when the copy has already been removed. This violates the requires clause of
lookupCopy. There is a similar mistake with the call to the function isOnlyOneCopy.

There were also a number of genuine mistakes detected by the RAC process. A good example is
from the acquireBook operation, an extract of which is shown:
public operation acquireBook(title:String, isbn:ISBN, authors:List[Name],

pub:String, pubDate:Date)
changes items, copies
ensures
if (forall (i:Item in old items()

where i is Book):
((i as Book).title() != title

&& (i as Book).authors() != authors))
then ...
else ...

{ var countOfCopies:integer := 0;
foreach (i:Item in items){
if (i is Book){
var b:Book := i as Book;
if(b.title()=title&&b.authors()=authors){
countOfCopies := countOfCopies + 1;

}}}
... }

The intention of this operation is to check for an existing Book with the specified title and authors,
if there is one, add a new Copy of it and if there is not then add a new Item and Copy. On invoking the
RAC checker, we get the following error. Here line 172 is the last line of acquireBook and line 1312
is a point in the bookTest test where a second Book authored by ‘Robert Clark’ is added.
Lib.obs:172: Failure of public ensures clause of the acquireBook operation

declared in Lib at line 145
Call stack:
at Lib.acquireBook(Lib:172)
at Lib.test_bookTest(Lib:1312)

The ensures clause expresses that both the title and the authors list are different from those of all
existing books. The implementation iterates through the items collection and counts the number of
Books with the given title and authors. If this is zero, it assumes the quantification in the specification
is satisfied. However, the quantifier should contain a disjunction to describe the intended behaviour.

This error was only picked up because of the comprehensiveness of the full bookTest test case.
The inconsistency is only exposed when a new Book is added with the same title but different authors
or same authors but different title as an existing book. It would have been easy to have missed this
scenario in our test case, in which circumstance the error would have gone undetected by the RAC
process.

We have seen that RAC allowed us to identify a range of errors in the original Library system.
However, as the next sections will show, there are other errors which the RAC approach was not able
to detect.

6. Applying ESC to the Library System
Next we consider the use of the ESC approach to check the library project. Our starting point is the
Omnibus implementation with lightweight specifications used in the previous section. We will see that
ESC allows us to uncover errors that were not detected by RAC.

The Omnibus ESC tool is straightforward to use: the programmer simply selects ESC in the Policy
Selector and then clicks ‘Verify Project’. The tool generates appropriate logical theories and then runs
the Simplify prover.
6.1. New errors detected
ESC uncovers several errors and omissions which were not detected by RAC.

In the specifications produced for the RAC approach, we did not give private specifications for the
public model functions as these were not needed. For example, the Item class included the following
public model functions:

public model function itemNo():integer
{ return itemNo; }
public model function title():String
{ return title; }

The Item class contains an operation called setTitle which is declared with a changes clause
expressing that only the title model function should be changed, i.e. itemNo should not be affected.
public operation setTitle(t:String)
changes title

{ title := t; }
On attempting to ESC-check this file we get the following error, where line 20 is the changes

clause of setTitle. ESC is unable to prove that setTitle does not change itemNo:
Item.obs:23: Unable to verify the implementation of the setTitle operation

respects the public changes clause at line 20
The problem is that the ESC tool is unable to deduce the relationship between the itemNo()

function and the itemNo attribute because there is no specification of this relationship. ESC uses

modular checking and can only reason about other methods using their specifications. The relationship
between the model function and the attribute is clear from the implementation of the function, but the
tool does not refer to this from within the setTitle operation.

To fix this problem, we must add a private specification to the public model functions stating the
relationship between the public model functions and the private attributes:
public model function itemNo():integer
private ensures result = itemNo

{ return itemNo; }
public model function title():String
private ensures result = title

{ return title; }
These missing specifications are not really a mistake in the original code, more an additional

annotation burden for using ESC. We note that it was not clear from the error message that this was the
problem.
Missing requires clauses
When producing lightweight specifications, it is acceptable to specify as little as the programmer
wishes in the ensures clauses. However, the requires clauses should completely describe the
assumptions which a method makes about the state in which it is called. A method can only reasonably
expect that the caller respects its requires clause and so if the requires clause of a method is met
and then an assertion failure occurs during the execution of the method, that is a mistake in the called
method.

Consider the Book class as described in the previous section and RAC-checked. It contains an
invariant stating that there are no duplicates in the list of authors of a book. It also contains a
constructor, newBook, shown in Section 4.1. If we try to ESC-check this class we get the following
error:
Book.obs:51: Unable to verify the implementation of the newBook constructor

maintains the public invariant at line 35
The problem is that the author list that is passed into newBook is not constrained to not contain

duplicates. The ESC tool correctly picks up this omission. To fix the problem, we add the following
requires clause to newBook:
requires !auths.containsDuplicates()

Our RAC checks did not detect this missing requires clause because our test cases were written
to test correct execution for expected values, not graceful failure for invalid inputs. Let us consider
what happens if we now add a test case to check the rejection of the addition of a Book with duplicate
authors:
test bookTest {
...
var n:Name:=Name.newName("Robert","Clark");

"Wilson");
var a:List[Name] := List[Name].empty().add(n).add(n);
...
lib.acquireBook(t, i, a, p, d);
... }

Without the requires clause in newBook, we get the following error when RAC-checking the test
case:
Book.obs:36: Failure of public invariant declared in Book at line 24 at end

of newBook constructor
So, we get a failure report for the invariant at the end of the newBook constructor. Since this is not a

requires clause failure, we would expect it to indicate an error by the implementer of the newBook.
However, it is not an error in the implementation, it is the omission of a suitable requires clause.
Here, ESC is much more accurate than RAC at pinpointing the cause of the error.

Truisms in ensures clauses
A subtle mistake was made in the entry of the changeFineDue operation in the Member class. The
operation was initially defined as follows:
public operation changeFineDue(f:integer)
changes fineDue
ensures fineDue() = fineDue()

{ fineDue := f; }

There is clearly an error in the ensures clause, which states vacuously that fineDue() is equal to
itself. Instead, the specifier meant to say that fineDue() is equal to the parameter f. Unfortunately,
this error is not picked up by RAC since fineDue() = fineDue() always evaluates to true so no
assertion failure is ever triggered.

This error also escapes detection in the ESC-checking of the Member class, again because the
assertion evaluates to true when it is checked at the end of the implementation of changeFineDue.
However, the error is picked up by ESC when we check the Lib class, which includes a
changeMemberFine operation. The lightweight specification of this operation asserts that the
fineDue for a specified member should be set to a passed value. This is implemented via a call to
changeFineDue. As ESC uses modular reasoning, it uses the specification of
changeFineDue to reason about how the member’s fine is changed. The
specification does not contain the information required for this, so an
error is reported.

This mistake was not picked up by RAC because RAC interprets other methods by executing their
implementations, not by reasoning about their specifications. This property of RAC makes it excellent
for working with external components with limited specifications, but here it is a hindrance and
prevents the detection of a genuine error.
6.2. Limitations of the ESC tool
The ESC tool is not able to verify the full Lib and Date classes. If verification is attempted, the prover
hangs. The specification of the Lib class is too sophisticated to be ESC-checked. The problem with the
Date class is that it was not completely specified.
6.3. Conclusions about ESC
ESC was able to detect a range of mistakes that RAC did not detect. This is, firstly, because ESC
considers the execution of the methods for arbitrary symbolic values, not a specific set of inputs
covered by associated test cases. In particular, this helped identify errors in the handling of invalid
input values which required additional requires clauses. Secondly, when verifying a method, ESC
reasons about other methods using their specifications and this can help us find errors in the
specifications. However, ESC was not able to verify the entire project because some of the
specifications were too complex or incomplete.

7. Applying FFV to the Library System
We now consider the full formal verification of the library project. We will see that FFV requires more
comprehensive specifications, and therefore uncovers issues that RAC and ESC did not detect.

There is a key difference between ESC and FFV concerning the way that verification is carried out
for constructors and operations. ESC checks only that the implementation satisfies the behaviour
specification and requirements specification. FFV, however, generates additional proof obligations that
the behaviour specification guarantees the requirements, independently of the implementation. Because
of this, FFV requires more expressive, heavyweight specifications of behaviour, instead of the
lightweight specifications that are sufficient for ESC (and also for RAC).

FFV is performed using either an automated or interactive theorem prover.
FFV with an automated prover
After corrections, it is possible to verify the specifications of the auxiliary classes (i.e. all the classes
apart from Lib) with the automated Simplify prover. This involves the proof of 19 VCs which takes 2
seconds.

Verification of the Lib class with the automated prover is less successful. The first 7 VCs,
corresponding to proving the invariants for a constructor which creates an empty library, are proved in
a total of just over 4 seconds; but then the prover hangs whilst trying to verify the main operations.
This is not an unexpected result and is consistent with previous attempts to use Simplify for FFV
projects [9].
FFV with an interactive prover
To fully verify the Lib class we must use an interactive prover. When this option is chosen, the IDE
generates PVS files containing the specification of the class and the libraries it uses, the proof
obligations, and default proof attempts. These files are then opened separately in PVS and the proof
attempts are manually developed into full proofs. The Omnibus IDE consults the PVS proof files to
keep track of which proof obligations have been satisfied.

As an example, consider the verification that the registerMember operation preserves the
invariants. The registerMember specification is given below. It is quite straightforward, simply
constructing a new Member with the passed attributes and adding it to the members collection.

public operation registerMember(name:Name, ad1:String, ad2:String,
pCode:String, telNo:integer, isAdult:boolean, isStaff:boolean)

changes members
ensures members() = old members().add(

Member.newMember(old getNewMemberNo(), ...))
The memberNo for the new Member is calculated using the getNewMemberNo function. The

specification of this function says that it returns an integer which is not the memberNo of any existing
Member in the members collection.
public function getNewMemberNo():integer
ensures !(exists (m:Member in members()):

m.memberNo() = result)
Now let us consider the verification of the invariants. We assume that the invariants hold before the

operation and must demonstrate that they are preserved. The changes clause says that only the public
members model function is changed, so any invariant which does not refer to members will be trivially
maintained. This covers 5 of the 7 invariants from the Lib class. The default proof attempts generated
by the IDE are almost sufficient to complete these proofs, with only a few extra steps needed.

Next, we have an invariant that says that every memberNo referred to in a loan corresponds to an
existing member. This is also fairly easy to demonstrate as we have not removed any members from
the members collection

Finally, we prove the invariant that there are no two members with the same memberNo:
public invariant memberNosInMembersUnique:
forall (m:Member in members()):
forall (m2:Member in members()):
m.memberNo() != m2.memberNo() || m = m2

This is more complicated to prove, and relies on the specification of getNewMemberNo. The proof
consists of 104 steps and involves several side-conditions. The details are described in [15].
7.1. New errors detected
FFV found no errors in the registerMember operation, but other parts of the project were found to
contain errors or omissions that were missed by the other approaches.
Missing ensures clauses
As part of the ESC process, we had to add a requires clause to the newBook constructor to ensure
the invariant is satisfied (Section 6.1). We did not have to provide an ensures clause since the
invariant was checked at the end of the implementation of the method. For FFV, however, we must
show that the specification alone is sufficient to verify the invariant. If we attempt to verify Book
using automated FFV, we get the following error:
Book.obs:13: Unable to verify the public behaviour of the newBook

constructor satisfies the public invariant at line 7
This is because there is no ensures clause to describe how the value of the public authors model

function relates to the passed auths lists at the end of the method. We must add an ensures clause to
describe this.
ensures itemNo() = iNo, title() = t,
isbn() = isbnNo, authors() = auths,
publisher() = pub, pubDate() = pDate

Ensures clauses not strong enough
After applying RAC and ESC, we have already made a number of corrections to the acquireBook
operation. However, there is still a remaining error in the heavyweight specification produced by the
novice user. This specification with all the existing corrections is shown below.
public operation acquireBook(title:String, isbn:ISBN, authors:List[Name],

pub:String, pubDate:Date)
requires !authors.containsDuplicates()
changes items, copies
ensures if ... then // if it is a new book

items() = old items().add(...)
&& copies() = old copies().add(...)

else
copies() = old copies().add(...)

This specification is not sufficient to verify the invariant that the itemNos in the items collection
are unique.
public invariant itemNosInItemsUnique:

forall (i:Item in items()):
forall (i2:Item in items()):
i.itemNo() != i2.itemNo() || i = i2

The problem is that in the case where there is an existing entry for the Book, the new value of
items() is not described. It cannot be assumed to be unchanged because it is mentioned in the
changes clause to allow it to be changed when a new Book needs to be created. The intention was
that, when a new Book is not to be added, the contents of items should not be changed, but this is not
documented in the ensures clause. Like many specification errors, this is probably the result of the
programmer thinking in imperative terms about the declarative specification.

The problem is solved by changing the else part of the assertion to say explicitly that items does
not change:
else
copies() = old copies().add(...)
&& items() = old items()
This problem was not picked up by RAC because RAC does not test the completeness of ensures

clauses. It was not picked up by ESC because, when verifying the Lib class, the invariant was checked
at the end of the implementation and not from the behaviour specification. The tool would have
identified the omission if we had ESC-checked a class that uses the Lib class and needed to assert
some property about items after adding a new copy of a Book.
7.2. Conclusions about FFV
FFV allows the specifications of the system to be improved still further. Richer specifications can be
used since the user can guide the PVS prover through proofs that are beyond the automated Simplify
prover. However, the costs are much higher. Our experience is that manually carrying out proofs for
FFV requires considerable time and mathematical ingenuity and would be beyond many users.

8. Integrated Verification
In the preceding sections we considered the use of the different approaches, in turn, to verify the
entirety of the library project. In this section we consider how we can use the different verification
approaches offered by Omnibus in a more integrated fashion. The question of how to combine the
approaches safely is discussed in detail in [13-15] which present a number of guidelines for developers
to follow.
8.1. Using different policies for different files
The simplest way to combine the use of the different approaches is to select different verification
policies for different classes in the project. For example, ESC was very good at verifying the auxiliary
classes in the library project but it could not handle the richer specifications in the Lib class or the
incompletely specified Date class. The Policy Selector permits different policies to be specified for
different files. So we could select the RAC policy for the Lib and Date classes and ESC for the others,
as shown below.

The integrated verification process can be started via the Verify Project option. If the versions of
the files before corrections are used then the errors will be detected and displayed together in the Errors
tab, as shown below.

If we use the corrected versions, no errors will be reported and the check viewer will report that all
run-time assertion checks in the Date and Lib classes were covered and all the automated VCs for the
other classes were proved.

However, combining ESC and RAC in this way violates the guidelines which we previously
proposed [13], because ESC policy does not involve the generation of run-time pre-condition checks.
The tests used to RAC check the assertions in the Lib class use instances of the other classes which
were statically verified and have no run-time pre-condition checks. This means the tests may be silently
violating the pre-conditions of the other classes, invalidating their verification, which was based on the
assumption that the pre-conditions of their methods are respected by calls.

Our Obligation Viewer tool (below) allows this to be detected. For example, the verification of the
acquireBook operation in the Lib class will lead to the Obligation Viewer reporting an unjustified
obligation for the check that the pre-condition of the newBook constructor is respected when the new
Book object is created.

To address this problem, our guidelines prescribe that run-time checks must be generated for the
pre-conditions of the Book class, because it is used in a RAC-verified class. We can do this by
changing the verification policy for the Book class to be ‘ESC with RAC client checks’. This policy
includes run-time checks of the pre-conditions as well as statically verifying the implementation. When
this change is made, no unjustified correctness obligations are reported.
8.2. Fully integrating the verification approaches
Omnibus provides a number of features to support higher levels of integration between approaches.
Here we discuss two of these features: special cases and targeted tests.

The verification policies to be used when verifying a project are usually specified on a project-wide
or per class basis, as described in section 8.1. However, targeted tests and special cases allow different
verification policies to be selected for specific test cases or individual obligations, respectively. A
targeted test is a test declared with a policy clause which names a verification policy to be used to
verify the test. Special cases are defined via a Special Cases tab in the Policy Selector by supplying the
name of an obligation and the corresponding verification policy to use for that obligation.

This section describes how these facilities can be used to fulfil various purposes. More examples
are given in [15].
Using static verification special cases to omit obligations that are not RAC-compatible
Certain obligations in a RAC-checked project may be too costly to evaluate, either because of their
complexity or the frequency with which they are encountered. As an example, consider the items
model function of the Lib class. We may wish to add a private ensures clause for this function in
order to allow classes that use it to be ESC-checked.

However, in the test cases used to cover all the assertions in the project, the private ensures clause
of the items function is executed 1,531 times, which is costly in execution time and not a particularly
smart way to verify the assertion.

In response, we may deem that the assertion is not RAC-compatible [14,15] because it cannot be
efficiently run-time checked, and remove it. When using RAC, we must be conscious of the limitations
of the verification approach and adjust our specifications to what can be efficiently run-time checked.
Of course, then there would be no specification of how the public items function relates to the private
items attribute. This could prevent us from using ESC to verify code that uses instances of the class.

A better option would be to use the Policy Selector (above) to define the verification of the private
ensures clause of the items function as a special case and use ESC to verify it, instead of RAC. The
method is easy to statically verify, and this approach enables us to retain the specification while still
ensuring that it is respected.

This technique can also be used to statically check obligations that cannot be translated into run-
time checks by our tool. For example, obligations involving quantifiers that are not restricted to
enumerable ranges could be statically verified as special cases.
Using RAC or FFV special cases to check obligations that are not ESC-compatible
There are limits to what can be proved with automated provers. For example, the automated Simplify
prover used by Omnibus is poor at handling recursion, arithmetic and complex quantified expressions.
Within ESC we could combat this by adjusting the specifications to remain within the bounds of what
the tool can do or by using assumption constructs [13]. Alternatively, we could define the troublesome
VCs as special cases and use FFV with interactive theorem proving or RAC with associated tests to
justify them. For RAC special cases, additional test cases must be provided in order to execute the
special case RAC assertion to give justification that it is valid. By using a RAC targeted test, we can
define a test to cover the run-time assertion check, without the burden of also having to ESC-check the
test.
ESC-compatibility of RAC- and FFV-checked classes
Specifications developed for RAC and FFV are often not amenable to ESC-checking. For RAC, the
problem is generally that the ensures clauses are not sufficiently expressive. For FFV, they are
generally too expressive. We can use ESC targeted tests to detect these insufficiencies. The ESC-
compatibility of the Book class introduced in section 4.1 could be checked using an ESC-targeted unit
test. This test should use the methods of the Book class to create and manipulate a Book object. It
should be declared with a policy clause specifying that ESC should be used. ESC will then be used to
verify the test case, ensuring that the specification is suitable to verify properties of the class.

9. Related Work
JML [4] is another language with tools supporting RAC, ESC and FFV. The tools contain facilities
which address many of the limitations of the respective approaches. For example, the JML RAC tool
[7] supports the automated generation of unit tests [6]. The ESC/Java2 tool [8] provides feedback on
the limits of the automated approach so that users can differentiate between errors and limits of the tool
[10]. The KeY tool [1] provides a visual interactive proof environment, making interactive verification
more accessible and less costly. These are all separate tools, but it has been proposed [5] to provide
built-in support for integration in the next generation of tools for JML.

10. Conclusions and Future Work
Our application of RAC, ESC and FFV, in turn, to the library case study demonstrated that the
approaches offered increasing error coverage in return for increasing user burdens such as the need for

more comprehensive specifications and, for FFV, user assistance in the proof process. Our verification
policy system enables different approaches to be used for different classes within a single project.
When doing this, gaps in the coverage of the assertion checking can arise but our Obligation Viewer
tool helps detect these. Our tool also offers the possibility of even greater levels of integration between
the different approaches through special cases and targeted tests. This gives great flexibility and means
that flaws in the main approach used for a class can be addressed through selective use of other
approaches.

Current work on Omnibus is focused on the re-implementation of the Omnibus tools within
Omnibus itself. We are developing a formal semantics for the language and using it as a specification
for the new type checker, interpreter and static verifier. This work will give us a formal semantics for
the language, a rigorously verified toolset and a substantial case study of the Omnibus approach. In the
longer term, we propose a number of extensions to Omnibus: disciplined support for reference
semantics in the programming language; more libraries and case studies; and further verification
options, such as model checking.

References
1. W. Ahrendt, T. Baar, B. Beckert, et al. The KeY tool. Software and Systems Modeling, vol. 4, no. 1, 2005.
2. J. Barnes, J.G. Barnes, High Integrity Software: The SPARK Approach to Safety and Security, Addison-

Wesley, 2003.
3. K.A. Bell. Developing Reliable Software Using Omnibus. BSc (Hons) thesis, University of Stirling, UK, 2005.
4. L. Burdy, Y. Cheon, D. Cok, et al. An overview of JML tools and applications. International Journal on

Software Tools for Technology Transfer, 7(3), 2005.
5. P. Chalin, P.R. James, G. Karabotsos. The Architecture of JML4, a Proposed Integrated Verification

Environment for JML. ENCS-CSE-TR 2007-006, Concordia University, 2007.
6. Y. Cheon, M.Y. Kim, A. Perumandla. A Complete Automation of Unit Testing for Java Programs. Software

Engineering Research and Experience (SERP '05), 2005.
7. Y. Cheon, G.T. Leavens. A runtime assertion checker for the Java Modeling Language. SERP 2002, 2002.
8. D. R. Cok, J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. CASSIS 2004, 2004
9. D. Detlefs, G. Nelson, J.B. Saxe. Simplify: A theorem prover for program checking, Tech. Rep. HPL-2003-

148, HP Labs, 2003.
10. J.R. Kiniry, A.E. Morkan, B. Denby. Soundness and Completeness Warnings in ESC/Java2. Workshop on

Specification and Verification of Component-Based Systems, 2006.
11. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, M.K. Srivas. PVS: Combining Specification, Proof Checking,

and Model Checking. CAV 1996, LNCS 1102, 1996.
12. T. Wilson. Omnibus site. http://www.cs.stir.ac.uk/omnibus/
13. T. Wilson, S. Maharaj, R.G. Clark. Omnibus Verification Policies. SEFM 2005, IEEE Computer Society 2005.
14. T. Wilson, S. Maharaj, R.G. Clark. Flexible and Configurable Verification Policies with Omnibus. Software

and Systems Modeling, Springer, 2007
15. T. Wilson. The Omnibus Language and Integrated Verification Approach. PhD thesis, University of Stirling,

UK, 2007.

