

Department of Computing Science and Mathematics

University of Stirling

The Late Acceptance Hill-Climbing Heuristic

Edmund K. Burke, Yuri Bykov

Technical Report CSM-192

ISSN 1460-9673

June 2012

1

Department of Computing Science and Mathematics

University of Stirling

The Late Acceptance Hill-Climbing Heuristic

Edmund K. Burke

Department of Computing Science and Mathematics

University of Stirling

Stirling FK9 4LA, Scotland

Telephone +44-1786-467020, Facsimile +44-1786-467016

Email e.k.burke@stir.ac.uk

Yuri Bykov

School of Computer Science

University of Nottingham, Jubilee Campus, Wollaton Road

Nottingham NG8 1BB, UK

Telephone +44-115-846-8376

Email yuri.bykov@nottingham.ac.uk

Technical Report CSM-192

ISSN 1460-9673

June 2012

mailto:user@cs.stir.ac.uk
mailto:user@cs.stir.ac.uk

2

Abstract

This paper introduces a new and very simple search methodology called Late Acceptance Hill-Climbing

(LAHC). It is a one-point iterative search algorithm, which accepts non-improving moves when a

candidate cost function is better (or equal) than it was a number of iterations before. This value appears

as a single algorithmic input parameter which determines the total processing time of the search

procedure. The properties of this method are experimentally studied in this paper with a range of

Travelling Salesman and Exam Timetabling benchmark problems. In addition, we present a fair

comparison of LAHC with well-known search techniques, which employ different variants of a cooling

schedule: Simulated Annealing (SA), Threshold Accepting (TA) and the Great Deluge Algorithm

(GDA). Moreover, we discuss the method's success in winning an international competition to

automatically solve the Magic Square problem. Our experiments have shown that the LAHC approach

is simple, easy to implement and yet is an effective search procedure. For all studied problems, its

average performance was distinctly better than GDA and on the same level as SA and TA. One of the

major advantages of LAHC approach is the absence of a cooling schedule. This makes it significantly

more robust than cooling-schedule based techniques. We present an example where the rescaling of a

cost function in the Exam Timetabling Problem dramatically deteriorates the performance of three

cooling-schedule based techniques, but has absolutely no influence upon the performance of LAHC.

Keywords: combinatorial optimization, heuristic, local search, travelling salesman, timetabling, hill

climbing, simulated annealing, threshold accepting, great deluge algorithm.

3

1. Introduction

A heuristic search paradigm, known as the one-point iterative search is one of the earliest and most

well-studied heuristic approaches in the field of Operations Research. Indeed, it is associated with a

wide range of techniques (metaheuristics), across a broad spectrum of problems. Generally, one-point

search algorithms have the following advantages: they are relatively simple in implementation,

computationally inexpensive and quite effective for large-scale problems. All of these techniques have

certain common properties, which distinguish them from other heuristic methods. In general, such a

search is started from some (usually random) initial solution, which plays the role of “current solution”

at the first iteration. The stochastic search procedure performs as a sequence of iterations (moves). At

each iteration, the current solution is somehow modified in order to produce a candidate solution. The

candidate can be accepted or rejected according to a given acceptance condition. If it is accepted, then

it serves as the current solution for the next iteration. If the candidate is rejected, then the next iteration

is carried out with the same current solution. Usually the search lasts until no further improvement is

possible (i.e. convergence). Different one-point search methods are distinguished by their acceptance

condition, which is usually based on an evaluation of the cost functions of generated solutions. The

simplest one-point search algorithm is the greedy Hill-Climbing (HC) methodology, which was one of

the earliest studies undertaken in this field (Appleby, Blake and Newman 1960). The HC accepts only

candidates with the same or better cost function value than the current one. This method is regarded to

be very fast, but not sufficiently powerful as it usually tends to get stuck quickly in a local optimum.

The effectiveness of such a search procedure can be increased by employing an alternative

acceptance condition, which allows the acceptance of candidates with lower (worse) scores of the cost

function. Of course, if all candidates are accepted then the search degenerates into just a series of

random perturbations. However, over the years, several methodologies have been introduced into the

literature for selecting candidates with worse cost function scores, which can be accepted. In many one-

point search algorithms, this mechanism is based on a so-called cooling schedule (CS). The common

property of these methods is that their acceptance condition is regulated by an arbitrary control

parameter (such as temperature, threshold or water level), which is varied in the course of the search.

At the beginning of the search, this parameter has some initial value, which should activate further

iterations. To terminate the search procedure this parameter must reach its final value where no

worsening moves are accepted and the search converges. The shape of the variation of the control

parameter (cooling schedule) is defined by a user and it can have a significant impact on the overall

performance of the algorithm. Over the years, a number of empirical recommendations have been put

forward for composing effective cooling schedules for different problems.

One of the most well studied one-point search metaheuristics is Simulated Annealing (SA)

proposed by Kirkpatrik, Gellat and Vecci (1983). It is a stochastic algorithm, which accepts a worse

candidate with probability P = exp[(C - C*)/T]. Here C and C* are respectively the cost functions of a

current and a candidate solution and T is the control parameter (called “temperature”). Its variation

during the search characterizes the cooling schedule. Several authors have proposed initial

temperatures so that a certain percentage of worsening moves are accepted at the beginning. Different

sources suggest different values for this percentage. Examples include between 40% and 90% (Johnson

et al 1989), 75% (Thomson and Dowsland 1996) and 95 % (Cohn and Fielding 1999). The final value

of the temperature should be close to zero. One of the most popular cooling schedules (called

“geometric cooling”) is represented by the following expression: Ti = Ti-1* , i.e. the temperature at the

i
th

 iteration is equal to the previous temperature Ti-1 multiplied by a user-defined cooling factor

(0<<1). However, some authors have suggested the use of alternative functions, such as the “quadratic

cooling schedule” (Anderson, Vidal and Iverson 1993) or even temporary increases in the temperature,

for example, adaptive cooling (Thompson and Dowsland 1996) or reheating (Osman 1993).

In addition to Simulated Annealing, a number of other similar search techniques have been

proposed. One that is particularly close to Simulated Annealing is the Threshold Accepting (TA)

method, which is also known as “Deterministic Simulated Annealing” (Dueck and Scheurer 1990).

Here, the candidate solution is accepted if C*- C T where T is a control parameter (called the

“threshold”) and the cooling schedule represents the process for its modification. It should be noted that

the above formula is given for minimization problems. This is the type of problem that we will consider

in the rest of our discussion. Another deterministic variant (proposed by Dueck 1993) is the Great

Deluge Algorithm (GDA). In contrast to TA, its control parameter B (called the “water level”) serves as

an upper bound of the candidate cost function. Thus, the algorithm accepts worse candidates with the

cost equal or less than the current value of the level, i.e. when C* B. Now, the variation of the level

4

plays the role of the cooling schedule. In classical GDA, it was recommended that the initial level be

equal to the initial cost function and that it should be lowered linearly during the search. However,

other propositions have also appeared in the literature, such as: initialization with a higher level (Burke

and Newall 2003), non-linear level lowering (Obit et al 2009) or reheating mechanisms (McMullan

2007). There are several other methods based on this pattern such as “Old Bachelor Acceptance” (Hu,

Kahng and Tsao 1995) or “Weight Annealing” (Nino and Schneider 2005).

In all of these algorithms, the variation of the control parameter can be viewed as a type of cooling

schedule. The cooling schedule has its strong and weak points. The strong point is that it enables an

explicit way of processing time management. A range of methods, like the Genetic Algorithm (GA),

the Ant Colony Optimization (ACO) or the Particle Swarm Optimization (PSO) have no such

advantage. Obviously, having a completely user-controllable search procedure, the cooling schedule

can be composed so that convergence will be achieved in exactly (or approximately) predefined

processing time. This feature is important because in many situations increasing the search time can

lead to better final results. However, in order to effectively use this property in practice, the time being

employed by long search procedures should be put to best effect during the search (see Burke et al

2004).

A weak point of the cooling schedule is that its optimal form is problem-dependent. Even the tuning

of scalar problem-dependent parameters is usually seen as a complex task. If we consider the

performance of a method as an objective function, then the optimal tuning of the cooling schedule

might represent a continuous optimization problem of even larger scale than the original problem. Of

course, it is impossible to find this optimal cooling schedule manually. That is the reason for the

existence of general empirical suggestions regarding cooling schedules, which are more or less

effective for a range of studied problems. However, there is no guarantee that such a proposition will

work for a new problem. In this paper, we present an example, where just a rescaling of the cost

function dramatically deteriorates the performance of all the evaluated cooling-schedule based

methods.

Another technique of interest is Tabu Search (TS) proposed by Glover (1986). This method

evaluates the complete set of possible modifications of the current solution and the candidate with the

best cost is accepted. To avoid cycling, it was proposed to also reject solutions, which were already

(relatively recently) accepted at previous iterations. For this purpose, TS maintains a list of previous

solutions (or moves) known as the “tabu list”, where all elements are compared with the complete set

of candidates at each iteration. The method has two interesting properties. Firstly, it does not employ

any version of a problem-dependent cooling schedule. Secondly, as noted by Laguna and Glover

(1996), the employing of a tabu list follows the idea of the “intelligent” use of information collected

during the search. Later, this idea was expanded and called Adaptive Memory Programming (AMP),

see Taillard et al (2001). In addition to Tabu Search, the authors also considered the GA and ACO as

examples of AMP.

In this paper we introduce a new AMP-related technique. This keeps the advantages of the one-

point procedure, but does not employ a cooling schedule. This technique was first publicly presented at

the PATAT 2008 conference by Burke and Bykov (2008). This also builds upon work presented at the

CEC'09 conference (Ozcan et al 2009). The description of our technique is given in the next section. In

Section 3, we present a comprehensive experimental study of the properties of the proposed method,

including a description of benchmark datasets, experimental software and several series of experiments.

Section 4 contains a comparison of the new algorithm with existing techniques and the results are

discussed in Section 5. In Section 6 we discuss the practical effectiveness of the proposed heuristic as

evidenced by its success in the International Optimisation Competition. A summary, conclusions and

further perspectives are presented in Section 7.

2. Late Acceptance Hill Climbing

In developing this search methodology, we had three clear goals in mind. Our first goal was to propose

a one-point search procedure which does not employ an artificial cooling schedule. The second goal

was to effectively use the information collected during previous iterations of the search. The third goal

was to employ a new acceptance mechanism that was not complicated, i.e. to make it almost as simple

as Hill-Climbing. As described above, in the greedy Hill-Climbing approach a candidate solution is

compared with the immediate current one (and accepted if it is not worse). In respect of the specified

goals, this paper is focused around the idea of delaying this comparison, i.e. to compare a new

candidate with that solution, which was the current several iterations before. In other words, the only

difference between our idea and greedy Hill-Climbing is that in the new algorithm each current

5

solution is employed during the later (not immediate) acceptance procedure. Therefore, we have named

this technique the Late Acceptance Hill Climbing (LAHC) algorithm.

In a similar way to other one-point search metaheuristics (such as HC, SA, TA or GDA), LAHC is

started from a randomly generated initial solution and at each iteration it evaluates a new candidate in

order to accept or reject it. In order to employ its acceptance rule, LAHC maintains a list (of a fixed

length) of previous values of the current cost function. The candidate cost is compared with the last

element of the list and if not worse, then accepted. After the acceptance procedure, the cost of the new

current solution is inserted into the beginning of the list and the last element is removed from the end of

the list. Note that the inserted current cost is equal to the candidate's cost in the case of accepting only,

but in the case of rejecting it is equal to the previous value.

“Memorizing” previous information in the form of a list is reminiscent of a similar mechanism

employed in Tabu Search. However, the lists in TS and LAHC have a different nature and purpose:

Firstly, in TS, we memorize solutions (or moves), but in the LAHC approach the list contains the

values of a cost function. Secondly, in the TS at each iteration we compare its candidate solutions with

the complete list, but in the LAHC approach only one value from the end of the list is used. These

distinctions in memory utilization mechanisms also suggest that the list operations in LAHC are much

less time consuming than in TS. Moreover, it is possible to make the processing time of LAHC

genuinely independent of the length of the list by eliminating the shifting of the whole list at each

iteration. For this purpose, we propose the first improvement of the initial idea, i.e. to use the “virtual”

shifting of the list. Now the elements of the list are unmovable and the list appears as a fitness array Fa

of length Lfa (Fa = {f0, f1, f2, … fLfa-1}). Its virtual beginning v, at the i
th

 iteration, is calculated as:

 v = i mod Lfa (1)

where “mod” represents the remainder of integer division. At each iteration, the value of fv is compared

with the candidate cost and after accepting or rejecting, the new value of the current cost is assigned to

fv.

The length Lfa appears as a single genuine input parameter for this algorithm. No other parameters

are required. The LAHC performance is not affected by the initial values of fitness array. At the

beginning of the search, the initial list can contain (generally speaking) any arbitrary values. If these are

much higher than the initial cost, the algorithm will produce a corresponding number (equal to the Lfa)

of random perturbations while filling the list with current costs. If all elements of the initial fitness

array are too low, then the algorithm will produce the same number of non-accepted moves and again,

will fill the fitness array with the value of the initial cost. Either variant can cause just a small delay in

the search procedure. If we do not wish to wait until the algorithm does it automatically, then we could

set up all elements of the fitness array to be equal to the initial cost before starting the search.

It should be noted that LAHC employs a greedy acceptance rule (rejects all worse candidates) only

in the sense of the delayed comparison. However, if we consider a current solution and its immediate

candidate, LAHC (in a similar way to SA, TA and GDA) allows the acceptance of worsening moves.

This can happen in the situation where the current cost is better than the value from the list and the

candidate cost is located between them. Taking into account that accepting worsening moves usually

increases the strength of a search procedure, it could be expected that LAHC has a better performance

than greedy HC. On the other hand, there are possible situations where the current cost is worse than

the value from the list. Here (using the initial idea of LAHC), even a non-worsening move can be

rejected. Such algorithmic behavior is usually not regarded as being desirable in computational search

(SA, TA, and GDA always accept non-worsening moves). To be consistent with this practice, we

propose a second improvement of the initial idea, i.e. to use the “late acceptance” rule for the worsening

moves, but also to accept all non-worsening ones. Our initial experiments have revealed certain

advantages to both improvements of the initial idea. All experiments in this paper were carried out with

the final (improved) version of LAHC. Thus, its final acceptance condition at the i
th

 iteration can be

expressed by Formula 2.

Ci* Ci-Lfa or Ci* Ci-1 (2)

In this formula, Ci* is the candidate cost, Ci-1 is the current cost and Ci-Lfa denotes the cost of the current

solution Lfa iterations before, which is equal to f(i mod Lfa). Obviously, when Lfa is equal to 1 or 0, LAHC

is simply greedy HC. Hence, LAHC obtains its unique properties with Lfa equal to 2 and higher. The

pseudocode of the complete search procedure is shown in Figure 1.

6

Figure 1: The pseudocode of a general purpose Late Acceptance Hill Climbing

3. An investigation of the properties of the LAHC technique

3.1. Benchmark problems

The proposed LAHC does not employ the properties of any particular type of problems. Therefore, it

can be positioned as a general purpose technique. We expect that it can be applied to any problem,

where other one-point searches (HC, SA, TA, GDA) are applicable. To confirm its generality we

present an experimental study with two types of problems: the Travelling Salesman problem and the

Exam Timetabling problem.

The Travelling Salesman Problem (TSP) is a classical (and probably, the most well-studied) NP-

hard combinatorial optimization problem. It has a range of real-world applications: from printed circuit

board assembling to X-ray crystallography. Usually, this problem is formulated as a number of cities

with different distances between them. The goal is to find a shortest closed tour while visiting each city

only once. Over the years, most search techniques have been applied to the TSP. A detailed description

of these studies can be found in a range of surveys, such as (Johnson and McGeoch 1997) or

(Applegate et al 2006). There is also a well-known collection of TSP benchmark datasets of different

sizes known as TSPLIB available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. It

contains 111 datasets among which we have chosen for our tests seven instances with sizes from 783 to

3795 cities (the sizes are given in Table 4 later in this paper).

Exam Timetabling is another well-studied NP-hard combinatorial optimization problem. It

represents the real-world task of allocating university exams to a limited number of timeslots (and

usually rooms). This problem can be viewed as an extension of the Graph Coloring Problem, with a

high number of additional soft and hard constraints. Although there are different versions of the

specification of the Exam Timetabling Problem (representing different institutional requirements, see

(Burke et al 1996)) the most common hard constraint is that no one student should sit two exams at the

same time. Other hard constraints specify room availability, matching the durations of exams and

corresponding timeslots. The soft constraints represent the students and administrative preferences,

such as a sufficient interval between exams taken by a student should be allowed or larger exams

should be scheduled earlier. The goal is to allocate all exams while satisfying all hard constraints and

minimizing the violations of the soft ones. Over the last 10-15 years, this problem has been intensively

studied. For more information about the wide range of algorithmic approaches to this problem, the

following survey papers can be consulted: (Carter and Laporte 1996), (Schaerf 1999), (Lewis 2008)

and (Qu et al 2009). In this study we use the specification of the exam timetabling problem given at the

2
nd

 International Timetabling Competition (ITC2007). Its description can be found in (McCollum et al

2010) and on the original competition web site: http://www.cs.qub.ac.uk/itc2007/. This site also

contains 12 benchmark datasets, which we use in the experiments in this paper. Some characteristics of

these datasets will be also given in Table 3. It should be highlighted that both the Travelling Salesman

problem and the Exam Timetabling problem are minimization problems, so in all our experiments, the

lower the result, the better.

3.2. Experimental software

The proposed technique was evaluated using special purpose software developed in Delphi 2007 and

run on PC Intel Core 2 Duo, 1.86 GHz, 2 GB RAM under OS Windows XP. Two dedicated models

Produce an initial solution s

Calculate initial cost function C(s)

Specify Lfa

For all k{0...Lfa-1} fk:=C(s)
First iteration I=0;

Do until a chosen stopping condition

 Construct a candidate solution s*

 Calculate its cost function C(s*)

 v := I mod Lfa

 If C(s*)fv or C(s*)C(s)
 Then accept the candidate (s:=s*)

 Else reject the candidate (s:=s)

 Insert the current cost into the fitness array fv:=C(s)

 Increment the iteration number I:=I+1

7

were created: the first one for the TSP and the second one for the Exam Timetabling Problem. Each of

the models employs separate initialization procedures and a specially selected set of moves, which are

explained below. Of course, the problem representation and procedures of the calculation of cost

functions are also different in the models, but these are just a matter of implementation and do not

affect the performance of the method.

The initialization of the TSP is quite simple: the initial tour (solution) is just randomly generated. At

each iteration, a current solution is modified using a move, whose type is selected randomly. Currently

the algorithm employs three types of move:

 The “double-bridge” move studied by Lin and Kernighan (1973). Here a current tour is

randomly divided into two parts, which are reconnected in reverse order.

 The swapping of two randomly selected cities.

 The replacement of a random city into a different (randomly chosen) position in the tour.

The source code of our TSP software (its simplified variant, which employs only the first type of

move) is available online at http://www.cs.nott.ac.uk/~yxb/LAHC/.

For our experiments with the Exam Timetabling problem, we have adapted software used in (Burke

et al 2004). The major difference with that used for the TSP is a variety of hard constraints, which

should not be violated in the final solution. To guarantee this, our model operates only with feasible

solutions throughout the whole search process. Correspondingly, the feasible initial solution is

generated by the “Saturation Degree” Graph Coloring heuristic, which was slightly adapted in order to

take into account the allocation of exams to rooms. The range of applied moves was also chosen with

the intention of preserving the feasibility. Hence, in a similar way to that undertaken in our TSP model,

this algorithm randomly selects a move among the following types:

 The reallocation of a random exam into a different (randomly chosen) room.

 The replacement of a random exam into a different (randomly chosen) timeslot. Here the new

room is also chosen randomly. If this move causes an infeasible solution, the algorithm runs a repairing

procedure using Kempe Chains (see Johnson et al 1991).

 The swapping of two randomly selected timeslots including all their exams while keeping the

room allocation invariable.

In addition we have to select a proper termination criterion for LAHC. The literature suggests three

usual variants of the stopping condition:

 The algorithm stops after reaching some target solution (or the target value of cost function).

 The algorithm stops after a certain amount of time (or the number of iterations).

 The algorithm stops when reaching the convergence state (i.e. no further improvement is

possible).

The choice of the termination criterion depends on the type of the problem, the properties of the

search technique and on practical requirements. We will discuss LAHC stopping criteria in the next

section.

3.3. Experiments

When a new algorithm is proposed an obvious question immediately arises: how do its input

parameters affect its performance? Fortunately, for LAHC this question is not too difficult as it has a

single parameter: the length of the fitness array Lfa . Therefore the initial series of experiments is started

from this perspective.

In this first series of experiments, we investigate the basic properties of LAHC using time-cost

diagrams. Such a diagram illustrates how the cost function drops throughout the search process. The

algorithm was run with our benchmark problems several times while varying Lfa. During the search, the

current cost was recorded every second. All these points are depicted (connected with a curve) in a

plot, where the axes represent the current time and the current cost. Figure 2 presents an example of

four curves drawn for the Exam_1 instance: with Lfa =1 (which is the Greedy HC), 5000, 15000 and

30000. It should be noted that the time-cost diagrams plotted for other benchmark instances are similar

to this example. This demonstrates the typical behavior of LAHC.

8

Figure 2: The time-cost diagrams of LAHC for Exam_1 instance with different Lfa.

In this figure, all diagrams are started from the same initial solution with the cost function around

25000. The HC improves the cost almost immediately. The LAHC with Lfa =5000 improves the cost

more slowly; with Lfa =15000 even more slowly and Lfa =30000 yields the slowest (over the four

curves) improvement of the cost function. This observation suggests one of the major properties of

LAHC: the longer the fitness array - the slower the cost drop. This behavior has been observed in all

experiments with LAHC (either the presented in this study or other ones). Moreover, this behavior is

typical of many other one-point search heuristics: in SA, TA and GDA the cost drop can be also

regulated by adjusting their cooling schedules (see Burke et.al. 2004).

To explain the benefit of slowing the cost drop (by increasing the Lfa) we present, in Figure 3, a part

of the above plot in a larger vertical scale.

Figure 3: Part of the plot in Figure 2 in a larger vertical scale

First of all, the diagrams in Figures 2 and 3 demonstrate the second major property of LAHC: its

convergence is quite clear. I.e. after reaching some value the cost drop is slowed dramatically and the

diagram becomes flat. It is assumed that after convergence no further improvement is possible (or the

improvement is negligible). It should be noted that, once again this is typical of other one-point

methods.

Secondly, Figure 3 shows an interesting tendency: the runs with the slower cost drop tend to

converge with better final result. The opportunity of producing better results by increasing the

convergence time has been studied in the literature with respect to other one-point search methods

applied to different problems, e.g. (Johnson et al 1989), (Burke et al 2004). Drawing upon this work,

we can see that an increase in the length of the fitness array in LAHC could help to achieve better

results.

0

5000

10000

15000

20000

1 51 101 151 Time (sec)

Cost

Lfa=1 (HC)

Lfa=5000

Lfa=15000

Lfa=30000

3500

4000

4500

5000

5500

1 51 101 151 Time (sec)

Cost

Lfa=1 (HC)

Lfa=5000

Lfa=15000

Lfa=30000

9

Thirdly, investigation of the time-cost diagrams in Figure 3 can also suggest suitable stopping

conditions for LAHC (see the variants in Section 3.2). In the first variant, we stop the search when

reaching some target solution. Usually, the algorithm has to reach such a solution in the shortest time.

This stopping condition is common for problems where the target solution is known in advance. For

example, when we have to satisfy just hard constraints, then the target could correspond to a solution

with zero cost. However, our tests are run with problems of a different type: the major goal is to

minimize the soft constraints (which cannot usually be satisfied completely) and the target cost is not

so clear. Therefore, if we set arbitrary some target cost, then in order to minimize the search time we

need to adjust Lfa to the given target value. In the example in Figure 3, we can see that if the target

value is more than 5500, then HC (Lfa =1) is the fastest option. LAHC with larger Lfa will also achieve

this value, but in a longer time. However, if the target is set to 4500, then HC will never reach that. The

best (over four curves) option here is LAHC with Lfa =5000. Again, LACH with larger Lfa will be less

effective. Finally, if the target is 4000, the only option is Lfa =30000.

The second variant suggests stopping the search after some given time (or a given number of

iterations). This stopping condition is usual for those search techniques, which do not show a clear

convergence, but which continue to steadily improve over time. For example, GAs often terminate after

a given number of generations. In contrast, if we have an algorithm with a clear convergence criterion,

then a decision to terminate it at a point in time could well prove to be ineffective. In this case, such a

stopping condition should be applied with particular care in order to spend the available time in an

effective way as possible. Let us return to the example in Figure 3. If we decide to stop the search after

50 seconds, then the best result will be achieved by the search with Lfa =5000. Greedy HC converges

earlier, but with a worse result; LAHC with larger Lfa does not yet reach convergence and its

intermediate result is also worse. The same reasoning can reveal that if the search lasts 100 seconds, the

best value of Lfa is 15000 and for a search of 150 seconds the best Lfa =30000.

This analysis of two variants of the stopping condition demonstrates that in both cases, the most

effective approach is to terminate the search at the moment of convergence. If we terminate it before

the convergence then we do not employ the full power of the method. If we let the search run after the

convergence, then we just waste computing time (this time could be spent more effectively with a

larger Lfa). Hence, we suggest a third variant of the stopping condition for LAHC: to terminate it

exactly at the point of convergence. In all of our experiments below (with both models and all studied

heuristics) we use this stopping condition (this also helps to maintain the compatibility of the results).

This stopping condition is quite common to one-point search methods and has been widely studied in

the literature. In general practice, the convergence is detected when the current solution is not improved

for a significantly long time. This time can be either fixed or it can be calculated as a percentage of the

total search time. In this study, we employ the second variant: our search procedure is terminated after

passing 2% of consequent non-improving (idle) iterations over the total number of iterations. For

example, if the search has produced (overall) 10
6
 iterations from the beginning and during the last

20000 iterations, there was no improvement, then the search is stopped. It should be noted, that a

detailed examination of the curves in Figure 3 reveals that the maximum effectiveness can be achieved

when the search is stopped exactly at the point of the intersection of the time-cost curve and the

envelope of all these curves. However, the form of the envelope is problem dependent and we currently

have no reliable method to detect these points during the search. Therefore, the points of convergence

are considered to be an acceptable choice.

As noted, the above basic properties of LAHC are very similar to other one-point search heuristics.

To demonstrate this, we have produced similar time-cost diagrams for Simulated Annealing (also

applied to the Exam_1 instance) with a geometric cooling schedule while varying initial temperature Ti

and cooling factor . Four examples of these curves are shown in Figure 4. For comparability, the scale

of this plot is the same as in Figure 3.

10

Figure 4: The time-cost diagrams of SA for the Exam_1 instance with different Ti and

In this figure, the first three curves (plotted for runs with Ti =20 and different) are quite similar to the

ones produced by LAHC and presented in Figure 3. Correspondingly, all previous reasoning (including

the termination condition) is applicable to this case. The variation of the cooling factor affects just the

convergence time (this is analogously to Lfa in LAHC), whilst the balance between the search time and

the quality of the results is always kept. As was the case in Figure 3, the points of convergence in these

diagrams can be thought of as composing an analog of the Pareto front in the time-cost coordinates.

These points are non-dominated, which means that any value of in SA or Lfa in LAHC can be

considered to be the best value depending on particular circumstances.

However, at this stage the similarity ends. If the initial temperature is set up to an incorrect value

(for example Ti =5), then SA loses its power without any counterbalancing profit. In Figure 4, any point

on the fourth curve (with Ti =5) is dominated by some point on the diagrams produced with Ti =20. It is

clearly the case that the initial temperature plays a completely different role in the performance of the

SA search than the cooling factor. The cooling factor can be viewed as a “time affecting” parameter,

which should be tuned only if the situation requires it. On the other hand, the initial temperature can be

thought of as a "power affecting" parameter, which must always be tuned because SA cannot achieve

high quality performance without an appropriate value. This could be seen as a major reason for the

extensive and wide ranging study of SA parameterization in the literature.

In contrast, the performance of LAHC search procedure cannot be damaged by the incorrect setting

of parameters. This is because the "power affecting" parameters are simply absent in LAHC. I.e. when

we have no tool for adjusting an algorithm’s performance, we can assume that this performance is

always optimal (for this algorithm). This property of LAHC distinguishes it from search techniques

such as SA (or TA). This property is quite important for practical applications where a search is run in

a fully-automated mode and we have no chance to verify manually the appropriateness of the

parameterization. It should be noted that GDA is also free from "power-affecting" parameters (similar

to LAHC). However, our experiments below have revealed that GDA is clearly outperformed by

LAHC. Although Lfa and both affect the convergence time, their internal mechanisms for time

regulation are completely different. Therefore, the next part of our study contains an investigation of

the correlation between Lfa and the search time.

In the second series of experiments, we employ the "convergence" stopping condition within LAHC

and run this algorithm on all benchmark problems with three values for Lfa: 1, 5000 and 50000. With

each value, our algorithm was run 20 times. Table 1 shows the average results and the average run

times for 12 exam timetabling benchmark datasets. The same results for 7 TSP datasets are presented in

Table 2.

3500

4000

4500

5000

5500

1 51 101 151 Time

Cost

Ti=20 =3E-7

Ti=20 =1E-7

Ti=20 =5E-8

Ti=5 =1E-7

11

Table 1: Results for exam timetabling instances produced by LAHC with different Lfa

 Lfa = 1 (HC) Lfa = 5000 Lfa = 50000

Dataset Cost Time (sec) Cost Time (sec) Cost Time (sec)

Exam_1 5737 5.0 4368 41 3818 412

Exam_2 571 1.4 459 15 395 149

Exam_3 11720 8.4 8359 103 7479 1065

Exam_4 18620 2.3 14043 26 12652 269

Exam_5 4000 1.5 2748 36 2527 323

Exam_6 26963 0.74 25818 9.1 25460 101

Exam_7 5303 5.9 3988 147 3592 1367

Exam_8 9147 2.9 7331 41 6736 434

Exam_9 1315 0.31 1073 3.3 988 39

Exam_10 13786 0.43 13161 4.5 13024 41

Exam_11 35445 9.9 25775 146 23299 1333

Exam_12 5677 0.19 5313 1.07 5244 11.2

Table 2: Results for TSP instances produced by LAHC with different Lfa

Dataset
Lfa = 1 (HC) Lfa = 5000 Lfa = 50000

Cost Time (sec) Cost Time (sec) Cost Time (sec)

Rat783 11082 0.10 9226 8.9 8991 95

U1060 263196 0.42 232840 14 227987 134

Fl1400 22656 0.90 20548 30 20316 282

U1817 68709 2.2 61253 43 58920 386

D2103 97283 3.4 88339 52 85210 473

Pcb3038 159299 8.2 148648 95 142346 929

Fl3795 33067 18 30692 155 29892 1331

These tables demonstrate that the proposed properties of LAHC hold for all of the tested benchmark

instances: the longer the fitness array, the longer the search (convergence) time and, consequently, the

better the final results. Moreover, it could be observed that in these tables, the average processing time

of runs with Lfa=50000 is approximately 10 times longer than that with Lfa=5000. Based on this, we

propose a hypothesis that the convergence time is linearly dependent on the length of the fitness array.

To provide more evidence to support this proposed hypothesis, a more precise examination was

carried out in our third series of experiments. We conducted a high number of runs (around 500) while

randomly varying Lfa in the interval from 1 to 50000. The produced results were visualized in the form

of diagrams. As in the first series, the experiments were run with all benchmark datasets and, in all

cases, the algorithm showed a similar behavior. Therefore, we present here the examples for the

Exam_1 dataset only. Figure 5 illustrates the dependence of the final cost on the Lfa. Here, each point

represents the result of a single run, while its coordinates show the corresponding value of Lfa and the

final cost.

Figure 5: Dependence of the final cost on Lfa for the Exam_1 instance

This diagram confirms the proposition regarding the dependence of the final cost on Lfa in this case.

Even though the results are scattered (which is typical for search algorithms), this dependence is clear

and distinct. Correspondingly, the observation expressed in (Johnson et al 1989) for SA that “up to a

certain point, it seems to be better to perform one long run than to take the best of a time-equivalent

3000

4000

5000

0 10000 20000 30000 40000 Lfa

Cost

12

collection of shorter runs” looks to be also appropriate for LAHC. For example, in Figure 5, any result

with Lfa=50000 is better (in spite of the scatter) than any result with Lfa=5000.

The diagram in Figure 6 represents the dependence of the convergence time on the Lfa. Here each

run is depicted as a point with coordinates corresponding to Lfa and the convergence time.

Figure 6: Dependence of run time on Lfa for Exam_1 instance

For the majority of points, this diagram appears as a straight line, which provides further evidence to

support our hypothesis regarding the linear dependence between Lfa and the convergence time. This

property can be employed in practice, for example, knowing the processing time of a short run, it is

possible to calculate an angle coefficient Time/Lfa and then use it to set up the necessary length of the

fitness array for a long run within a limited time interval.

The examination of run times presented in Tables 1 and 2 could reveal that the above mentioned

angle coefficient Time/Lfa is different for each particular instance. Factually, it appears as a unique

constant of each dataset, which can be thought of as an amount of time (or a number of iterations)

passed within the unit of the fitness array. Its particular value might somehow reflect the properties of a

problem and a search algorithm. To investigate this hypothesis, we present Table 3, which shows the

dimensions (in terms of exams, timeslots and rooms) of our exam timetabling instances and the

corresponding angle coefficients. It should be noted, that although the processing time of a single

iteration is not dependent on Lfa , there is a strong differentiation between different instances,

implementations and hardware. To avoid these issues, in the rest of the paper, we express the

computing time as the total number of iterations. However, the actual computing time can be easily

evaluated: the number of iterations per second, which our algorithm produced in the presented

experiments is shown in the last column of Table 3. This table also contains the angle coefficients in

the form of ratios of the total number of iterations Nit to Lfa.

Table 3: Dimensions and angle coefficients of exam timetabling instances

Dataset Exams Timeslots Rooms Time/Lfa Nit/Lfa Nit/sec

Exam1 607 54 7 0.0082 2918 360000

Exam2 870 40 49 0.003 1371 460000

Exam3 934 36 48 0.021 4188 200000

Exam4 273 21 1 0.0054 321 60000

Exam5 1018 42 3 0.0065 3515 540000

Exam6 242 16 8 0.002 915 460000

Exam7 1096 80 15 0.027 11652 430000

Exam8 598 80 8 0.0087 5066 580000

Exam9 169 25 3 0.00078 765 980000

Exam10 214 32 48 0.00082 665 810000

Exam11 934 26 40 0.027 3622 134000

Exam12 78 12 50 0.00022 103 470000

This table demonstrates a certain dependence between the angle coefficient and the dimensions of a

problem: generally the larger problems impose the higher coefficients. However, even for similar sized

problems the angle coefficients can be very different. The problem’s set of hard and soft constraints

may also influence its value. Obviously, even a smaller, but more highly constrained problem can be

0

200

400

0 10000 20000 30000 40000 Lfa

Time
 (sec)

13

more difficult to solve. Here, it would be possible to express a hypothesis that the angle coefficient

might somehow serve as a measure of the “hardness” of a problem. To check this proposition, we

present Table 4 where we examine (in the same way) our TSP instances, which are free from

constraints and their hardness is mostly dependent on their size (number of cities).

Table 4: Sizes and angle coefficients of TSP benchmark instances

Dataset Size Time/Lfa Nit/Lfa Nit/sec Nit/Lfa/Size
1.2

Rat783 783 0.0019 10984 5800000 3.70

U1060 1060 0.0027 13117 4900000 3.07

Fl1400 1400 0.0056 22047 3900000 3.70

U1817 1817 0.0077 26616 3500000 3.27

D2103 2103 0.0095 30880 3300000 3.18

Peb3038 3038 0.019 56410 3000000 3.73

Fl3795 3795 0.027 74654 2800000 3.78

In contrast to Table 3, this table demonstrates a quite clear dependence between the angle coefficients

and the size of the instances. We have proposed that this dependence might be expressed in the form of

some non-linear function. Over several possible forms of such a function, we have selected a variant

where the angle coefficient is proportional to the size of the problem to a degree of 1.2. The last

column in Table 4 demonstrates that the coefficients of proportionality of this function are quite close

to each other for all our TSP instances. Hopefully, in the future this proposition will be either proven or

a more correct function will be discovered. Hypothetically, the existence of such a function could help

to adjust Lfa automatically to a TSP instance of any size. We believe that the investigation of the LAHC

angle coefficients with respect to different types of problems, the influence of constraints, and other

related issues represents a very interesting subject of future research.

4. A Comparison of LAHC with other techniques.

In the previous section we have shown that the results produced by LAHC can be improved with a

relatively long fitness array. However, we need to determine how well it performs compared to existing

one-point search methods such as Simulated Annealing, Threshold Accepting and the Great Deluge

algorithm? We carry out this comparison in our fourth series of experiments, where we use the same

software whilst varying just the acceptance conditions.

However, a fair comparison of several one-point search methods is not straightforward because of

three issues: firstly, the initial temperatures in SA (and thresholds in TA) should be properly tuned;

secondly, the quality of results of all competing techniques is dependent on their processing time and

thirdly, these results are quite scattered.

To address the first issue, we followed general suggestions from the literature: The initial

temperature of SA was selected so that, at the starting point, the algorithm accepted 85% of non-

improving moves. The same method was used for selecting the initial threshold in TA. In GDA, the

initial level was equal to the initial cost function. In addition, in SA and TA, we applied the geometric

cooling schedule whilst, in GDA, we used the linear lowering of the level. Note that the use of the

common settings for the cooling schedules (without adjustment for particular instances) was

undertaken in order to underpin the fairness of the comparison. As LAHC and GDA do not require a

tuning of the "power affecting" parameters, spending extra time on tuning their competitors could be

seen as a certain bias in favor of them.

The second and third issues are more complex. The performance of an algorithm appears as a

scattered curve (see Figure 2) and we have to compare curves rather than scalar numbers. It should also

be taken into account that the convergence time (the total number of iterations) is pre-defined

differently (and rather approximately) in different methods (see Burke et al 2004). Therefore, we

propose a methodology for the comparison of search techniques that we believe is quite fair. In a

similar manner to that carried out in the experiments in the previous section, each competitor algorithm

was run a high number of times (around 500). The time-affecting algorithmic parameters (cooling

factors in SA, TA and GDA and Lfa in LAHC) were randomly varied so, that the resulting total number

of iterations was distributed in the interval of 1...240(*10
6
). In this way, we produced a plot similar to

that presented in Figure 5. Then the horizontal axis (which represents a number of iterations) was

divided into 12 equal segments and, for each segment, we calculated an average cost among all the

results belonged to that segment. Thus, the function is represented as a series of cut-offs by segments of

equal size. The resulting cut-offs produced by four competitor techniques for the Exam_1 dataset are

presented in Table 5. The best result for each cut-off over four competitors is highlighted in bold.

14

Table 5: The comparison of cut-offs for SA, TA, GDA and LAHC for the Exam_1 dataset

N of iterations (*10
6
) SA TA GDA LAHC

1-20 4907 4723 5160 4874

20-40 4357 4280 4579 4276

40-60 4216 4169 4447 4136

60-80 4125 4093 4330 4059

80-100 4088 4025 4299 4020

100-120 4028 3991 4213 3966

120-140 3992 3918 4198 3930

140-160 3956 3907 4154 3888

160-180 3926 3896 4129 3882

180-200 3912 3854 4098 3848

200-220 3912 3839 4073 3846

220-240 3877 3840 4053 3807

Surprisingly, a distinctly worse performance is shown by GDA. The three remaining competitor

techniques perform almost in the same way. This tendency was observed in our experiments with all

other benchmark instances. In this paper, we present an example of the cut-offs for a single interval.

Table 6 contains the cut-offs in the interval of 80-100 (*10
6
) iterations for 11 exam timetabling

datasets. The cut-off results for our TSP instances in the interval of 380-400 (*10
6
) iterations are shown

in Table 7. The difference in the scale of the intervals is caused by the difference in the computational

speed of our algorithms (see Tables 3 and 4).

Table 6: The comparison of cut-offs in the interval of 80-100 (*10
6
) iterations for SA, TA, GDA

and LAHC for the Exam Timetabling datasets.

Dataset SA TA GDA LAHC

Exam_2 393 393 413 397

Exam_3 7771 7718 7827 7645

Exam_4 12038 11854 12222 12037

Exam_5 2566 2517 2831 2592

Exam_6 25380 25430 25533 25411

Exam_7 3916 3854 4103 3914

Exam_8 7068 7029 7525 7000

Exam_9 961 953 994 964

Exam_10 12993 13011 13134 12993

Exam_11 23935 23585 24761 23682

Exam_12 5154 5190 5231 5200

Table 7: The comparison of cut-offs in the interval of 380-400 (*10
6
) iterations for SA, TA, GDA

and LAHC for TSP datasets.

Dataset SA TA GDA LAHC

Rat783 9017 9032 9285 9003

U1060 228679 228255 236406 228697

Fl1400 20425 20372 20776 20429

U1817 60260 59831 64116 60488

D2103 87510 87488 92470 87221

Pcb3038 147221 146590 156249 147558

Fl3795 30865 31041 32239 31021

When analyzing Tables 5, 6 and 7 it could be concluded that for three algorithms (SA, TA and LAHC)

the results hardly represent strong evidence of the superiority of either of the techniques. It would be

possible to be given the impression that only the allowing the worsening solutions provides an increase

in the effectiveness of the search procedure and it does not matter in which way we allow them. In this

context, the following question arises: what is the reason for proposing a new heuristic if it is not better

than the existing ones? Is there any advantage in the absence of the cooling schedule in LAHC?

To answer this question we propose a fifth experiment. Let us assume that the Exam_1 problem is

reformulated so that its cost function C is transformed by a cubical polynomial expressed by Formula 3

and now we have to minimize a new cost function Cr instead of C.

Cr = C
3
– 32400*C

2
+ 350*10

6
*C (3)

15

It should be noted that the discriminant of the first derivative of this function is always negative

therefore this function is monotonic. We suppose that the monotonic transformation of an objective

function does not affect the major properties of a problem and preserves the dominance relations

between solutions, i.e. for any pair of solutions s1 and s2, if C (s1) > C (s2) then Cr (s1) > Cr (s2).

Consequently, all original global and local optima are also preserved within this new formulation.

Factually, such a transformation appears as just a nonlinear rescaling of the cost function. To reveal

how our competitor algorithms perform with the rescaled cost function, we have repeated the previous

experiment. All experimental conditions remain untouched, only the initial temperatures and thresholds

were re-tuned in the context of the new problem. The produced results are presented in Table 8. For

consistency with previous experiments, the figures in this table represent the values of the original cost

function (before the rescaling).

Table 8: The comparison of cut-offs for SA, TA, GDA and LAHC for Exam_1 dataset with the

rescaled cost function.

N iterations (*10
6
) SA TA GDA LAHC

1-20 5365 5240 5579 4805

20-40 5064 4992 5142 4217

40-60 4898 4919 4946 4117

60-80 4867 4882 4845 4044

80-100 4838 4788 4826 4012

100-120 4814 4834 4763 3991

120-140 4796 4789 4657 3934

140-160 4755 4748 4627 3852

160-180 4720 4719 4548 3877

180-200 4753 4729 4498 3845

200-220 4703 4721 4471 3830

220-240 4695 4687 4466 3812

We see in the table that the rescaling of the cost function has a dramatic impact on the performance of

three competitor techniques: SA, TA and GDA have completely failed with this new problem. Their

performance has deteriorated significantly. Indeed, they are not far from the greedy HC results (see

Figure 2) while taking much more computing time. In contrast, the rescaling has no effect on the

performance of LAHC. It has produced results of the same quality as they were without rescaling

(small deviations are present because of a stochastic scatter).

5. Discussion

The above phenomenon can be discussed from different points of view. At first glance, the following

naïve explanation can be used. For example, in TA, the acceptance of a worse solution is dependent on

the particular value of ΔC = C*-C (see the notations in Section 1), which is numerically compared with

the threshold. Obviously, the value of ΔC is scale-dependent, i.e. it can be different in the original and

the rescaled problems. This represents highly possible situations where, for the same current and

candidate solutions, the original ΔC is lower but the rescaled ΔC is higher than the threshold.

Correspondingly, this candidate will be accepted in the first case and rejected in the second one. As a

result, the entire search process will be generally reshaped.

In contrast, LAHC does not employ the numerical comparisons, but operates with just a ranking of

different values. In other words, the acceptance of a worse candidate is dependent only on a dominance

relation (i.e. “less”, “equal” or “more”) between the candidate cost Ci* and the corresponding element

of the fitness array f(i mod Lfa) (see Formula 2). The candidate is accepted in all cases when the value Δ =

Ci* - f(i mod Lfa) is non-positive, even though this value is different in the original and the rescaled

problems. In LAHC, the value of Δ is not numerically compared with any other one: only its sign is

taken into account during the acceptance procedure and this sign is scale-independent.

Correspondingly, if the candidate is accepted in the original problem, then it will be also accepted in

the rescaled one. Thus, having the same initial randomization, the original search process can be

completely repeated within any rescaling as long as the original dominance relations are preserved.

The above naïve reasoning explains why the rescaling affects the performance of the competing

methods. But why have they deteriorated so badly? This might be because the cooling schedule and the

cost function are two highly interconnected entities. We can express a hypothesis that the application of

an original cooling schedule to the rescaled cost function is equivalent to the application of an inverse

rescaled cooling schedule to the original cost function. Of course, the reverse rescaled cooling schedule

has a bizarre shape and cannot provide a good performance. To get a normal performance with the

16

rescaled cost, we should correspondingly rescale the cooling schedule. However, if the form of the

rescaling is not known in advance, it is hardly possible to find this function empirically. From this point

of view, we can think of LAHC as having a self-generated cooling schedule, i.e. the pattern of Lfa

previous iterations serves as a cooling schedule for Lfa next iterations. This pattern is automatically

adjusted to the properties of a particular region of the search space: when the cost tends to rapidly fall

down, then the gradient of this “cooling schedule” is also increased and vice versa. It becomes more

flat in those regions when an average reduction in cost is quite small.

It is also possible to observe certain fundamental principles behind the robustness of LAHC. A

naive level of reasoning (similar to the above) can clarify that, in addition to LAHC, the rescaling of

the cost function also does not affect a range of other techniques, such as HC, TS, and some variants of

GA. The distinguishing property of such methods is that they are also based on the ranking of solutions

(rather than numerical comparisons like in SA, TA or GD). There is sometimes an assumption among

the research community that the “ranking-based” methods are relatively more natural and hence, more

reliable (for example, have wider applicability, or are not sensitive to scales) than those employing

numerical data. From this point of view, LAHC proposed here (even though it has many similarities

with cooling-schedule based one-point searches) holds the properties and shows the behavior typical to

algorithms from the “ranking-based” class. Thus, it could be supposed that LAHC is more reliable than

SA, TA and GD because it represents a conceptually different methodology, which belongs to the class

of relatively more natural and robust algorithms.

One can argue that the problem investigated here with the rescaled cost function is artificially

created rather than taken from the real-world. This is true, of course. However, at first, this example is

quite efficient for testing search algorithms: here the level of robustness of different methods is highly

evident. Secondly, having a single precedent (even with the artificial problem) where a technique fails

enables us to observe the limited application area of this technique. Thirdly, similar situations (maybe

less distinctive) are quite possible in the real-world. For example, they might be caused by some

specific constraints. If supposing that the rescaling somehow rearranges the density of solutions over

different regions of the search space, then the exclusion of certain solutions (forced by the hard

constraints) from the search space could cause the same effect. In addition, many highly non-linear

problems in different application areas (such as bioinformatics or automated design) are well-known

across the computational search literature. Thus, all the above reasoning suggests that LAHC might be

especially effective with highly constrained and non-linear problems.

6. The success of LAHC in the International Optimisation

Competition

The high level of practical effectiveness of LAHC has also been confirmed in the International

Optimisation Competition (IOC), where a LAHC-based algorithm won the 1
st
 place prize. The IOC was

organized by SolveIT Software Pty Ltd in October-November 2011. The purposes of the competition

were announced as follows: to promote modern heuristic optimization methods among research

communities and to identify world-class talent in the area of optimization science. The competitor's

goal was to develop a Java command-line application, which is able to solve the largest constrained

Magic Square (MS) problem within one minute of the run time. The constraint in MS was represented

as a pre-defined sub-matrix placed into a given position. It should be noted that there was just one

month from the announcement of the competition to its deadline. Thus, the development time was very

tight and there was not enough time for careful study of the properties of the problem. In fact, the entry

algorithm had to manage a new and unstudied problem. More information about the IOC can be found

on the official competition web site at: http://www.solveitsoftware.com/competition.

The competition results were announced on 19 December 2011. The second runner-up algorithm

had solved the MS problem of size 400x400 within one minute. The first runner-up had solved the

1000x1000 MS problem. The winning LAHC-based algorithm was able to solve the 2600x2600

constrained MS problem within one minute. It should be noted that all top-3 entry algorithms employ

different variants of the decomposition of the entire MS problem into a series of smaller sub-problems,

which are solved separately. For example, in the winner's algorithm MS is firstly decomposed into a

series of concentric frames and then LAHC is applied several times to each of the frames.

Taking into account a very short development time and the necessity of working in a fully-

automated mode, the choice of optimization heuristic was based on three main criteria: the simplicity of

the development, the simplicity of the parameterization and the reliability of the heuristic. Here it

should be noted that many sophisticated and intensively studied techniques in the literature would not

17

satisfy the above criteria: both runners-up algorithms were based on just the greedy HC method. In this

environment, LAHC has a definite advantage: it is as simple and reliable as HC, but it is much more

powerful.

In addition to LAHC, during pre-competition testing of the winning algorithm there was an attempt

to employ Simulated Annealing as a kernel optimization method. However, this attempt was

unsuccessful. It was found that the optimal cooling schedule parameters are highly varied for MS

problems of different sizes. As the entry algorithm should be able to solve MS of any size, the real-

world application of SA technique de-facto requires an additional algorithm for its automatic

parameterization, which requires extra development time and extensive investigation of the properties

of the problem. Of course, this was impossible to complete in the tight competition time. However,

with less sophisticated parameterization (manual or random) SA has shown quite a poor performance:

with the 1000x1000 MS problem in 5% of runs, the algorithm failed to produce MS in 1 minute.

Furthermore, with the 2600x2600 MS problem, up to 62 % of runs (depending on the constraint

position) were unsuccessful.

In contrast, the application of LAHC to the unstudied MS problem was successful. With constant

Lfa=20000, LAHC has shown 100% reliability on all runs with either 200x200, 1000x1000 and

2600x2600 MS problems. It should be noted that the described LAHC-based algorithm has the

potential to solve MS problems of much larger size than the 2600x2600 limit within 1 minute. In

reality, this limit was caused by hardware restrictions rather than the algorithm's performance.

All the above observations can be experimentally confirmed using the original entry competition

algorithm. To check everything (including the implementation details) by himself/herself the interested

reader can download the Java source code from: http://www.cs.nott.ac.uk/~yxb/IOC/. This source code

was slightly modified in order to facilitate easy switching between different search heuristics (HC, SA,

TA, GD and LAHC) by changing just one parameter. Now it is possible for anyone to carefully test the

performance of all these heuristics with the MS problem to verify the fact that LAHC represents the

best choice among them.

7. Conclusions and future work

Over the years, a wide range of different search heuristics have been proposed and applied for different

problems. In this situation, it is quite difficult to discover a really new and workable idea. The proposed

LAHC has a range of unique properties, which can be outlined as follows:

 It is almost as simple as the greedy HC, but much more powerful.

 It could be considered as a variant of Adaptive Memory Programming as it intelligently uses

the information collected during previous iterations.

 It is a one-point iterative search, but does not employ any variant of a cooling schedule and,

therefore, might have a wider applicability than cooling-schedule based algorithms.

 It is free from "power affecting" parameters and it is well-known that the inappropriate setting

of these parameters can deteriorate the performance of the search.

 It is dependent on a single input parameter, which regulates the convergence time. The

presented experiments have revealed that the convergence time is approximately proportional to this

parameter. Moreover, the coefficient of proportionality is constant for each particular instance and

seems to reflect the difficulty of the problem.

 It is almost not sensitive to initialization.

 It does not employ the properties of a particular type of problem and, therefore, could be

positioned as a general-purpose metaheuristic.

To confirm the generality of LAHC we presented its experimental evaluation with the Travelling

Salesman and Exam Timetabling problems. We expect that it can be applied to any optimization

problem where other one-point search methods are applicable. In addition to our own tests with LAHC,

a number of researchers from different institutions have started separate studies on LAHC, e.g.

(Verstichel and Vanden Berghe 2009), (Abuhamdah 2010) by drawing on our initial presentation at

PATAT conference (Burke and Bykov 2008). Furthermore, in December 2011 the LAHC-based

algorithm has won the 1
st
 place prize in the International Optimisation Competition.

18

This paper represents the introduction of LAHC to the literature. Of course, it requires further

intensive investigation. It may be possible to propose different improvements and variations of this

algorithm. For example, the compared value can be taken randomly from the fitness array or it can be

calculated as an average value over all its elements. The fitness array can be of variable length or the

values of its elements can be at some point reassigned (in analogue to “reheating” in cooling-schedule

based methods). Also, LAHC might be useful in different hybrid approaches where the greedy HC is

applicable, for example, in Memetic Algorithms. Although, in this paper, we have applied the idea of

the late acceptance to Hill-Climbing, this idea can be embedded in any method where a candidate cost

is compared with the current one. For example, we can imagine a Late Acceptance Simulated

Annealing. In addition, we hope to develop a multiobjective version of the Late Acceptance algorithm.

Finally, we have proposed, applied and discussed a methodology for testing the robustness of

optimization heuristics using the non-linear monotonic rescaling of a cost function. We believe that it

represents quite a promising subject of future research. For example, it may be beneficial to investigate

the performance of other search algorithms (such as ACO, PSO and hybrid methods) with the same

rescaled problem.

Acknowledgements

The work described in this paper was carried out under grant (GR/S70197/01) awarded by the UK

Engineering and Physical Sciences Research Council (EPSRC).

We would like to thank Ender Ozcan, Peter Demeester and John Woodward for helpful advice in

addition to other colleagues who expressed their opinions about our method. We would also like to

thank the anonymous referees for their valuable advice.

References

Abuhamdah, A. 2010. Experimental result of late acceptance randomized descent algorithm for

solving course timetabling problems. IJCSNS International J. of Compu. Sci. and Network Security 10

192-200.

Anderson, K., R. V. V. Vidal, V. B. Iverson. 1993. Design of teleprocessing communication

network using simulated annealing. Springer Lecture Notes in Econom. and Math. Systems 396 201-

216.

Appleby, J. S., D. V. Blake, E. A. Newman. 1960. Techniques for producing school timetables on a

computer and their application to other scheduling problems. The Comput. J. 3 237-245.

Applegate, D. L., R. E. Bixby, V. Chvátal, W. J. Cook. 2006. The Traveling Salesman Problem: A

Computational Study, Princeton University Press.

Burke, E. K., D. Elliman, P. Ford, R. Weare. 1996. Examination timetabling in British universities:

a survey. Springer Lecture Notes in Comput. Sci. 1153 76-90.

Burke, E. K., J. Newall. 2003. Enhancing timetable solutions with local search methods. Springer

Lecture Notes in Comput. Sci. 2740 344-354.

Burke, E. K., Y. Bykov, J. Newall, S. Petrovic. 2004. A time-predefined local search approach to

exam timetabling problems. IIE Trans. 36(6) 509-528.

Burke, E.K., Y.Bykov. 2008. A late acceptance strategy in hill-climbing for exam timetabling

problems (extended abstract). In Proceedings of the 7
th

 International Conf. on the Practice and Theory

of Automated Timetabling (PATAT 2008). Montreal, Canada, August 2008.

Carter, M.W., G. Laporte. 1996. Recent developments in practical examination timetabling.

Springer Lecture Notes in Comput. Sci. 1153 3-21.

Cohn, H., M. Fielding. 1999. Simulated annealing: searching for an optimal temperature schedule.

SIAM J. on Optim. 9(3) 779-802.

Dueck, G. 1993. New optimization heuristics. The great deluge algorithm and the record-to-record

travel. J. of Computational Phys. 104 86-92.

Dueck, G., T. Scheurer. 1990. Threshold accepting: a general purpose optimization algorithm

appearing superior to simulated annealing. J. of Computational Phys. 90 161-175.

19

Glover, F. 1986. Future paths for integer programming and links to artificial intelligence. Comput.

and Oper. Res. 5 533-549.

Hu, T.C., A. B. Kahng, C.-W. A. Tsao. 1995. Old bachelor acceptance: a new class of non-

monotone threshold accepting methods. ORSA J. on Computing 7(4) 417-425.

Johnson D. S., C. R. Aragon, L. A. McGeoch, C. Schevon. 1989. Optimization by simulated

annealing: an experimental evaluation; part I, graph partitioning. Oper. Res. 37(3) 865-892.

Johnson D. S., C. R. Aragon, L. A. McGeoch, C. Schevon. 1991. Optimization by simulated

annealing: an experimental evaluation; part II, graph coloring and number partitioning. Oper. Res.

39(3) 378-406.

Johnson, D. S., L. A. McGeoch. 1997. The Travelling Salesman Problem: a case study in local

optimization. In E. H. L. Aarts and J. K. Lenstra (eds) Local Search in Combinatorial Optimization.

J.Willey and Sons, London 215-310.

Kirkpatrick, S., J. D. C. Gellat, M. P. Vecci. 1983. Optimization by simulated annealing. Sci. 220

671-680.

Laguna, M., F. Glover. 1996. What is tabu search? Colorado Bus. Rev. 61 5-12.

Lewis, R. 2008. A survey of metaheuristic-based techniques for university timetabling problems.

OR Spectrum 30(1) 167-190.

Lin, S., B. W. Kernighan. 1973. An effective heuristic algorithm for the travelling-salesman

problem. Oper. Res. 21(2) 498-516.

McCollum, B., A. Shaerf, B. Paechter, P. J. McMullan, R. Lewis, A. J. Parkes, L. Di Gaspero, E. K.

Burke, R. Qu. 2010. Setting the research agenda in automated timetabling: The second international

timetabling competition. INFORMS J. Computing 22 120-130.

McMullan, P. 2007. An extended implementation of the great deluge algorithm for course

timetabling. Springer Lecture Notes in Comput. Sci. 4487 538-545.

Ninio, M., J. J. Schneider. 2005. Weight annealing. Physica 349 649-666.

Obit, J. H., D. Landa-Silva, D. Ouelhadj, M. Sevaux. 2009. Non-linear great deluge with learning

mechanism for solving the course timetabling problem. In Proceedings of MIC 2009: the VIII

Metaheuristic International Conf., Hamburg, Germany, July 2009, id-1-10.

Osman, I. H. 1993. Metastrategy Simulated Annealing and Tabu Search Algorithms for the Vehicle

Routing Problem, Ann. Oper. Res. 41 421-451.

Qu, R., E. K. Burke, B. McCollum, L. T. G. Merlot, S. Y. Lee. 2009. A survey of search

methodologies and automated system development for examination timetabling. J. of Scheduling 12

55-89.

Ozcan, E., M. Birben, Y. Bykov, E. K. Burke. 2009. Examination timetabling using late acceptance

hyper-heuristics. In Proceedings of the 2009 IEEE Congress on Evolutionary Computation (CEC

2009), Trondheim, Norway, May 2009, 997-1004.

Schaerf, A. 1999. A survey of automated timetabling. Artificial Intelligence Rev. 13(2) 187-127.

Taillard, E. D., L. M. Gambardella, M. Gendreau, J.-Y. Potvin. 2001. Adaptive memory

programming: a unified view of metaheuristics. Eur. J. Oper. Res. 135 1-16.

Thompson, J. M., K. A. Dowsland. 1996. General cooling schedules for simulated annealing based

timetabling system. Springer Lecture Notes in Comput. Sci. 1153 345-363.

Verstichel, J., G. Vanden Berghe. 2009. A late acceptance algorithm for the lock scheduling

problem. Logistic Management 2009 (5) 457-478

