43 11U VWAL T L LALIUULLL IV ULMIUTL \JITLCLaLVL UL LlalsSpuler

Systems

Leslie Smith and Frank Kelly
Department of Computing Science
University of Stirling
Stirling, Scotland, UK

Abstract

A hardware random number generator based round a noise generating diode is pre-
sented. Although-fast, the spread of numbers produced is not as smooth as hoped. Some
suggestions are made for its improvement.

Introduction

Research in Neural Networks at the University of Stirling has frequently required large num-
bers of random numbers for generating noise for signals and stochastic pseudo-neurons. In
simulations of neural nets processing time-varying signals, many thousands of such numbers
may be required each second, making fast random number generation important. There is
no requirement that precisely the same sequence of random numbers be repeated, so that we
need not be restricted to seed-based random number generation. Hardware random number

generation was perceived as a relatively straightforward task, something not really borne out
by later experience.

The Generator

Analog TTL : ‘ Transputer
VAN Noise
Noise Link
0.1uv .
PP 8 bits
Noise Amplifier Level Shift Register Link Interface
Generator Converter '

Figure 1: Noise generator block diagram.

~%




PR - B e = e T Ot TT T et s e e men TS ST —es mw swLaav Y WA M VA AW Y WAL

blassed noise generatmg diode (NCZO2) This is guaranteed to produce white noise from 20hz
to 25Mhz. This very small signal (about 0.1 uv) was then amplified by a four stage amplifier
based on the Signetics NE5539 wideband operational amplifier. The resulting analogue signal
is converted to TTL levels by 1 channel of a DS26LS32 line receiver, followed by a Schmitt
trigger. The resultant ‘digital’ noise signal is then fed to an 8-bit shift register clocked at 10
Mhz. This gives a theoretical limit to the time for number generation of 0.8 us. This part of
the circuit runs continuously.

The shift register is interfaced to a transputer link by a C011 link interface chip, running
as a parallel interface. It is set up so that the receipt of a byte on the link causes the generator
to send out a stream of random bytes, stopping only when another byte is received on the
link. When the C011 is ready to send out a new random byte, it waits for the shift register
to receive a new set of 8 bits, and then causes the output of the serial to parallel convertor to
be latched. The data is then sent out by the C011. Running the link at 10Mhz, it has been
found that the remote transputer receives a new random byte every 2.74 us. A more detailed
circuit description is available from the authors.

Testing the Generator

Three tests have been tried on the generator: frequency checks on single number generation,
simple frequency of 1’s and 0’s , and frequency of pairs of numbers rising, falling, or staying
the same. Additionally, the frequency of recurrence of single bytes, of pairs of bytes, and of
sequences of three bytes have been checked.

The generator performs worst on frequency of single number generation. Experimentally,
it has been found that certain numbers, notably those with strings of 1’s, occur more fre-
quently. This sort of systematic error results in very high values of x? when large numbers
of random bytes are produced. The actual effect is most pronounced on the number 255,
which occurs about 1.8 times as often as it should; the results for other numbers are much
less pronounced, with 127 being produced 1.2 times as often, though values for 63 and 191
vary widely.

The results for simple frequency of 1’s and 0’s are better; the system is slightly biassed
towards 1’s. On a sample of 100,000 bytes (i.e. 800,000 bits) the x? value produced varies
between 3.5 and 11.2, when it should be between 0.00016 and 6.635. Again, this value rises
on larger samples.

For the test of pairs of numbers rising or falling, or staying the same, the results are
better; using 2,560,000 numbers, values of x? of between 0.35 and 8.49 were found, when [1]
suggests 0.0201 to 9.21. We also looked at recurrence of numbers; these were found to occur
at about the correct frequency for single bytes (i.e. about 1 per 28 ), for double bytes (about
1 per 216) and triple bytes (about 1 per 224).

Comments and Conclusions

- Many difficulties were encountered in the construction of the equipment. Largely, these came
from an underestimation of what was involved in the mixing of sensitive analogue and standard
digital circuitry in one box. Eventually, the analogue circuitry was completely enclosed, and
used an entirely independent power supply. There were also problems with oscillation due to

~%




Te ST T mess Yo s TS TR s vt RAWMALLUD LGl WD AUDW WU VLT UUUL UL VUl

lack of experience in non-digital construction. Before trying the noise-generating diode, we
tried a number of ordinary and zener diodes. The magnitude of the noise signal generated by
these was an order of magnitude smaller, making the problems of amplification much greater.

The results are a little disappointing, although good enough for the application itself.
We believe the problems causing the systematic lack of randomness come from two sources:
the level conversion, and the bandwidth of the noise signal. The level conversion circuit is
originally a balanced line receiver: it is perhaps not as accurate in its detection of a Ov signal
as required. This could lead to the slight preponderance of 1’s over 0’s. The noise generating
diode is supposed to give out noise evenly over a very large band: however, we believe that the
noise falls away a little towards the high frequency end of the spectrum, leading to numbers
which contain strings of the same digit. We do find numbers with strings of 1’s, but do not
find numbers with strings of 0’s. Further, the imbalance between 0’s and 1’s is very small, so
we remain rather uncertain of the precise nature of this problem.

Since the results were good enough for the application, and since the primary aim of the
project is in neural net simulation, not random number generation, we have not pursued the
matter further. Were we to do so, we would try a higher bandwith noise generating diode,
plus some filtering to achieve an optimal spread of noise frequencies (though we note that we
are not certain of what that should be).

References

(1] D.E. Knuth Seminumerical Algorithms, 2nd Edition, Addison-Wesley, 1981.

~%




