Using a Framework to Specify a Network of Temporal Neurons.

Leslie S. Smith
Centre for Cognitive and Computational Neuroscience
Department of Computer Science
University of Stirling, Stirling FK9 4LA, Scotland
telephone (44) 1786 467435 fax (44) 1786 464551 email: 1ss@cs.stir.ac.uk

Abstract

We discuss the use of frameworks (or formal models) for networks of temporal neurons,
that is, neural networks using neurons in which precise signal timing matters. After
discussing why one might require a framework at all, we review existing frameworks, and
discuss the limitations of existing frameworks for their application to this more general
form of neural network. With the aid of an example (a recurrent network of integrate-and-
fire neurons) we show how one framework can be applied to this general form of neural
network.

1 Background: who needs frameworks or formal models for
neural networks?

Whether one believes that neural networks need frameworks for their specification or not
depends on what one believes a neural network is. If one’s view of a neural network is that it
operates using one of a small number of standard algorithms (for example it is either a simple
backpropagation network, or a Kohonen network. or a Hopfield network). then investing
energy in producing frameworks or formal models seems wasteful. On the other hand, if one
sees neural networks as a broader discipline, going from the simulation of biologically realistic
neural networks, through to modelling parallel systems which communicate by passing scalar
values (such as the network types mentioned above) then a framework for expressing the
specification becomes more important. Further, if one wishes to consider networks in which
the precise timing of the signals passing between processing elements matters then formal
frameworks for their specification become more important.

So, who does need frameworks or formal models? Neural networks are viewed by different
groups in different ways: for example, they are seen as

a form of pattern recognition system This is the view of neural networks commonly
found amongst those developing them for industrial and commercial applications. Often
these people believe that this is the only viewpoint!

a (perhaps idealized) model of a real neural system This view is more commonly found
amongst computational neurobiologists. They are attempting to simulate parts of real
neural systems to see if the simulation outcome follows that of their theories.

a form of parallel computer architecture This view is found amongst those who are
trying to see how Neural Networks fit in with other developments in Computing. It
is also found amongst some proponents of VLSI implementations - particularly digital
VLSI Neural Network implementations.

a form of model/parameter computing system This view is common amongst those
who have come to Neural Networks from other branches of pattern recognition, and who
see the architecture choice as model selection, and weight manipulation as parameter
estimation.

and there are other valid viewpoints as well. For the development of the field, it is important
that people holding differing views talk to (rather than at) each other. Frameworks for neural
networks which are not grounded in any one view of the field can provide a method for
allowing different researchers to interact.

In this paper. section 2 discusses existing frameworks, and how they cope with recurrent
networks of time-based neurons. Section 3 describes one framework in detail, then uses it to
specify a particular network of temporal neurons, namely a recurrent network of integrate-
and-fire neurons.

2 Models, frameworks, and formalizations for neural net-
works.

Given the above, it is hardly surprising that there is a body of work on frameworks for
neural networks. However, many of these frameworks are aimed at specific aspects of neural
networks, rather than being general. The nature of the formal models and frameworks in
the literature varies very considerably: primarily they are concerned with description of a
network, rather than with the proof of fundamental theorems about classes of networks, the
only exception being Golden [12]. He produces a statistical framework for neural nets by
seeking Maximum A Posteriori (MAP) estimates from the dynamical system made up of a
neural network and its learning rule under the influence of a training regime. He evaluates
these MAP estimates for a range of standard neural network types. However, we are still a
long way from being able to develop theorems about the behaviour of general adaptive neural
networks that allow their emergent properties to be discovered. In this paper, we will restrict
ourselves to descriptive frameworks, though we will briefly comment on formal proofs at the
end.

Descriptive frameworks range from programming-language based to equational, from frame-
works attempting to unify a number of existing neural network approaches to those which
attempt to be much more general, from those concerned purely with neural networks to those
which are formal models of general systems with many interacting entities. The earliest work

on this area appears to date from the nEuro 88 conference in Paris: four papers [24, 16, 2, 5]
presenting different frameworks or formal models were published and these led on to further
work ([25. 13, 27, 3] respectively).

2.1 A taxonomy of descriptive frameworks.

The descriptive frameworks in the literature fall into four categories:

languages for describing real neural networks There are a number of simulation pack-
ages which are intended for modelling real neural systems. such as SWIM [8], and
there are packages which are intended for general continuous system modelling, such as
SABER [4] or SPICE [28]. These can be used to model any continuous system. and this
includes modelling neurons or neural networks.

languages for describing artificial neural networks AXON [13] is primarily concerned
with defining layers (or slabs, in AXON parlance), connections between slabs, the pro-
cessing element function, and the order of updating of the slabs. Other language based
techniques such as CONNECT [17] are concerned with providing a very-high level lan-
guage from which C++4 will be generated, or are systems for programming neural net-
work simulation systems, such as nC or N [27]. Many other simulation packages have
special-purpose languages for describing the network to be simulated to the simulator.
ANSpec [23] and NACRE [6] are both special-purpose languages based on ACTORS
[14], and again, are used in specific simulation systems. MENTAL [3] and MIND [18]
are CSP-based [15] and use an occam-like syntax to describe neural networks. Both are
intended as specification techniques for a broad range of implementations. Dorffner et
al [7] develop a C++ like syntax for describing networks, their environment, and the
input/output interface between them.

mathematical notations for any form of neural network Both Fiesler and Caulfield
[10] and Smith [25] develop a formal neural network specification using a mathematical
notation. Fiesler and Caulfield’s notation is oriented towards existing algorithms for
artificial neural networks, whereas Smith’s is more general.

general formal models for specifying parallel systems There are three formal models
for parallel system which have been influential on formal models for neural networks.
Hewitt’s ACTORS [14] has influenced the design of ANSpec, and both Hoare’s CSP
[15] and Milner’s CCS [22] influenced Smith [25] and Dorffner [7].

Given this array of techniques, how can one choose which are the most appropriate? If one
wants to work with neurons at the level of ionic channels, or compartments, then SWIM or
SABER are best. On the other hand, if one is simply attempting to define a network to a
particular simulator, one needs to use the language defined by that simulator. However, if one
would like the same network to be implemented on a different simulator, or programmed up
in a general programming language, one would like to have some more general form of formal
description. For this, it would seem as though AXON, Nc¢, CONNECT or ANSpec would be

appropriate. CONNECT has problems with defining the precise dynamics of a simulation,
and so it should be ruled out.

If one wishes to simulate one of the network types which requires the interpretation of pat-
terns of neuron outputs over time (as for example in Abeles synfire chains [1], or McGregor'’s
sequential configuration model [21]), then most of the above frameworks would need con-
siderable extension. Indeed, language based approaches require some form of semantics for
considering accurately synchronisation and near—synchronisation between neural outputs, and
few existing neural network specification languages permit this. The difficulties become even
more visible if one is considering temporal neurons, as may be required for either a hardware
implementation, or a realistic neural network simulation. One then needs to consider the
neural network as a set of interacting entities: indeed, one may wish to consider each neuron
as a set of interacting entities. For this, one needs something more powerful than these lan-
guages for defining neural networks. What we seem to want is something that has some of
the facilities more often associated with real neuron simulation, but with abstraction facilities
permitting work at a higher level as well.

It can be argued that one should use one of the very general techniques for specifying parallel
systems. These provide an additional advantage: they can be hierarchical. This is useful if
one wishes to develop a network by specifying the neurons as being composed of functional
parts, and then building up the network hierarchically. Timing can still present problems:
interaction between entities in ACTORS and CSP is event-based, so that although the order
of signals between entities may be well specified, their exact timing may not be.

Restating the above question: if one wants to specify a neural network which is recurrent,
and whose units are temporal neurons, and if one would like the specification not to be tied
to any single simulation package - perhaps because it may be implemented in hardware at
some point - how should one set about specifying the network?

2.2 Which framework should one use for networks of temporal neurons.

Most of the frameworks discussed above were not designed with neurons which exhibit any
behaviour over time. The primary exceptions are those frameworks intended for modelling
real neurons: these (SABER, SWIM, and SPICE) are tools for simulation which cope well
with time. However, they are not really frameworks for artificial neural networks at all, but
simulation tools. ACTOR-based systems (NACRE and ANSpec, MENTAL, and MIND) and
CSP-based systems (MENTAL, and MIND) can usefully specify event ordering, but not the
precise timing of events. Fiesler’s approach does not mention time at all.

The two frameworks which do discuss precise timing are those of Dorffner et al, and Smith.
Dortlner’s NSpec specification language has signals whose timing can be used at neurons.
Smith shows how his specification technique can be used to model systems with continuous
dynamics: that is. including (real) time in the specification. In what follows, we will use the
framework advanced by Smith, as it is illustrative of the problems involved, but powerful
enough to allow expression of time-based networks. The author believes that Doffner et al’s
approach could also be used, but that the other approaches described in section 2.1 would

need considerable extension.

3 Specifying a network of integrate-and-fire neurons

3.1 Integrate-and-fire neurons.

In this section, we will specify a network of interconnected integrate-and-fire neurons. Such
neurons have been used for slightly more realistic neural simulation for a long time, and are
well described in [11]. Their power has been explored by Maass [19, 20], and applied, for
example by Smith [26]. The essential characteristics of an integrate-and-fire neuron are as
follows:

Each neuron has a number of inputs. Each input is weighted, and the weighted input alters the
internal (voltage—like) activation. At the same time, the activation is leaking away towards 0.
If the activation reaches some threshold, the neuron outputs a pulse and resets the activation
to 0. After this, it may completely ignore its input for some time (the absolute refractory
period) and possibly reduce its sensitivity to input for some further time (the relative refractory
period).

3.2 The framework.

We will use the framework set out by Smith [25]. For completeness, we restate the framework
here.

Informally, a network consists of nodes and directed arcs connecting pairs of ports each asso-
ciated with a node. The network exists within an environment, which is treated as a special
case of a node. With the exception of the environment, nodes are described by instantiation
of a generator.

3.2.1 The specification technique

More formally, we start from a number of sets, from which we will build up the notation.
These sets are

NODENAMES: the set of names for nodes. (e.g. strings of bounded length).
GENERATORNAMES: the set of names for generators.

PORTS: the set of ports on nodes.

STATESPACES: the set of possible state spaces for nodes.

FUNCTIONS: the set of functions that a node may implement.

The set PORTS consists of two disjoint subsets, INPORTS and OUTPORTS, corresponding
to the direction of information flow at that port.

<t

All input to and output from the network is from or to the environment, £. The environment
has ports p(E) C PORTS, and this set consists of input ports p;,(E) C INPORTS and output
ports pout(E) C OUTPORTS. Nothing else about the environment is defined.

We now define generators and nodes. Logically, one should start with the generators, since
nodes are generated from these. However, in a network, the fundamental entities are the
nodes: though the generator concept allows the construction of a number of nodes from a
common startpoint, as well as allowing hierarchical net construction, it is secondary. We
therefore start with the node. It is defined as a tuple:

n € NODENAMES x set(PORTS) x STATESPACES x FUNCTIONS (1)
where set(PORTS) is the set of subsets of PORTS. We write
n = (name(n). p(n), STATE(n). F,) (2)

where name(n) defines the node’s name, and p(n) = pi, (1) Upoyi(n), as with the environment,
defines the set of ports. We will write pi,(n) or p,,(n) for each port. STATE(n) is the set
of possible or reachable states for node n. F, defines the function of the node, that is, how
the outputs (i.e. values placed on output ports) are computed, and how the state updates.
Where it is useful, we separate out the state update part of F,, calling it F'", from the port
output part, calling it F°"".

Nodes exist over time: indeed, they may evolve over time. The name of the node and the
ports do not change, but the state, the values on the ports, and possibly the function do
change. We write state(n,t) € STATE(n) for the node state at time ¢ > 0, state(n,0) being
the node’s initial state, and we write pi, (n,t) (or p,,(n,t)) for the value on port pi,(n) (or
pfmt(n)) at time t. Where the node to which the port belongs is clear, we drop the parameter
n. Since the function F, may adapt, we write F,, ; for the function implemented by the node
at time 7. This defines the values to be placed on the p,y(n) ports at time ¢, and how the
state is updated at time ¢. This will depend on the initial function, F), o, on what has been
received on the p;,(n) ports up to time ¢, and on the initial state of the node.

Arcs are defined as pairs:
a € OUTPORTS x INPORTS (3)
Thus, each directed arc @ joins one output port to one input port. Thus, if a = (f..t.).

writing N for the set of nodes,

fa € U pom‘(r)

reNUE

lqy € U pin(r)

reNUE

Writing A for the set of arcs, we can characterise the net, N, itself as

N = (N.4) (4)

Each node, n, is generated from a generator, g. The aim of introducing this secondary entity
is twofold: firstly, it provides a common startpoint for a number of nodes, and secondly, by

providing a method for producing a generator from a complete network, it allows networks
to be built up hierarchically. The generator must be able to define the name, ports and
statespace of the node, the initial state and initial function, and how these will evolve in
time. We have taken a parameter based approach: the generator provides a template for the
name and function of the node, and these are precisely defined using parameters. Each g is
a triple,

g = (gname(g), PAR(g), Fy) (5)

where gname(g) € GENERATORNAMES, PAR(g) is the parameter space for this generator,
and [is a template for the function F,,. Again, where this is useful, we may split this into
F, ;"T and F, (j’“t as for F,. This is not completely general: however, the functions used in nodes
are usually relatively simple, and generally fall into a small number of classes. We will write
G for the set of generators. The parameter space is used to specify all the other things that
need to be specified: that is, how name(n) is derived from gname(g), what the set p(n) should
be, what STATE(n) should be, how F, should be derived from F,, what state(n.0) and F, g
should be, and how they should evolve in time. This is accomplished in two steps: firstly the
actual parameters of g are set:

setparameters(g) = (gname(g), par(g), F,) (6)

(simply choosing par(g) € PAR(g)) and then the generator with its parameters set is instan-
tiated:

instantiate(gname(g), par(g), Fy) = n = (name(n), p(n), STATE(n), F},) (7)

This defines the name of the node n, its ports, its state space, and function. It also implicitly
sets up state(n,0) and F, o since these are defined by the selection of the parameters. We
have not precisely formalised the generation of STATE(n) from the parameters. In general,
we will use a subspace of PAR(g), one spanned by some of the parameters. The initial state,
state(n,0), will be defined by the actual value of these parameters.

This framework can be applied to many different types of interacting entities: clearly it is the
form of the elements (as defined by the g, and the mappings instantiate and setparameters)
and the pattern of interconnection which make the framework produce something which is
recognisably a neural net. Thus, for example, we sometimes identify part of the internal state
with the weights of a neuron. or with an activation level.

The restriction that each port may be an endpoint of at most one arc seems odd at first: we
are used to axonic outputs going to many other neurons. However, the arcs do not represent
either axonic or dendritic links; they are simply instant communication paths. All the active
elements including synapses will be contained in the nodes of the net. This restriction allows us
to make all the links identical whereas alternative approaches would require us to characterise
links as well as nodes. This approach permits both subdivision of each neural element (so
that nodes may be parts or compartments of a neuron) and clustering of neural elements (so
that nodes may be networks of neurons).

3.2.2 Using the specification technique hierarchically

Nets can be defined hierarchically by forming a generator from a whole net, and then instan-
tiating this as a node. Considering the net

N = (N, A)
we need to produce a generator for the new node which will replace N:

g = g(N) = (gname(g(N)), PAR(g(N)), Fy)) (8)

To produce the generator g(N) entails selecting a new name gname(g(IN)), defining the pa-
rameter space PAR(g(N)), and defining a template function F, ¢(N)- The name can be chosen
from GENERATORNAMES, but the parameter space and template function must be con-
structed. The parameter space can be constructed (for example) by considering its elements
to have the form

(S0, 81s.+.,8:): 8 €5;

where 5; is the range of parameters for the i’th parameter. We can use sg and s; to define
the ports. These come from the arcs of t e original net, specifically, from the subsets of A:

Ao={a€A:t,€pin(E)}and Ar ={a€ A: f, € pout(E)} (9)

which are the arcs between the net N and its environment E. Their endpoints in N (i.e. f,
in Ap and t, in A;) will generate the ports of the node. Let sy parameterise the input ports,
and s; the output ports. sy can be used to define how many input ports will be generated
from each t, in A;, and ;| how many output ports will be defined from each f, in Ap.
Note that some of the ¢, and f, may be left unused, while others may give rise to several
ports. The parameters so,..., s, parameterise everything we wish to be externally visible
(i.e. parameterisable) from the parameters used in the construction of all the nodes of the
original net. F N is defined implicitly by the F, where n € N. Working in this way, the
initial state of the new node nd the initial function may be determined by the initial states
and initial functions of all the nodes in the original network, or the parameterisation used in
setting up these states in the original nodes can be re-used in the setting up of the new node.
This construction can be nested to any desired level; however, circular definitions must be
avoided so that eventually all the nodes are defined in terms of elementary generators.

3.3 The example specfication

We will start by specifying the component parts of an integrate-and-fire neuron, then build a
specification for a single integrate-and-fire neuron and then the specification for a network of
these neurons.

3.3.1 Specifying the integrate-and-fire neuron

Environment

Figure 1: Arrangement and constituent elements of an integrate-and-fire neuron. A are
synapse elements, B activation element, and C output element. Numbered squares are output
ports, numbered circles input ports.

Figure 1 shows the component parts we have chosen. To specify a generator for the synapse
element, we set
YGsynapse = (Syﬂapsea PAR/Synapse: F, (10)

Ysynapse)

We then set PARgynapse up so that it contains the spaces for the parameters we may wish
to use inside the synapse. These control both the formation of ports and the definition of
the eventual functionality of the synapse. However, here, we can constrain the synapse to
have one input and one output port, so we need only consider what form we might want the
eventual function Fiypapse to take. For this we will use the convolution function

"t
Fipprc (1) = W [Clalpl(t =) (1)
0

(where W is the weight of the synapse, C(x) is a convolving function, and p%n(t) is the input
to the synapse) to be sufficiently general. Thus, PARgypapse s the space from which we can
choose W and C(x). For example

PAR ynapse = 1 (50,51, W, C) 150 € {1},51 € {1}, W € R.C € L*(R)}

where R is the real numbers, and where sg and s; define the number of input and output
ports. setparameters(gsynapse) Will then consist of selecting W and C (z), and instantiate of
providing this instance of the generator called synapse with a unique name, setting up the
two ports, and the initial state (in this case, null).

For the activation element, the situation is a little more complex. We start the same way:

(12)

YJactivation = (a‘Ctlva‘tlont PAR;ctivation: Fqutim“m,)

The parameter space will need to define the number of associated synapses, as well as how
the element will generate its output. For generality (and particularly because we do not want
to decide whether we will eventually implement this in a digital or analogue form) we define

implicitly as a differential equation:

YJactivation

dA so—1 .
r = Z pin(t) — DA (13)
i=1

(where sg is one more than the number of synapses and D is the dissipation (see [11]) of the
leaky integrator) subject to A > Ay, the minimum permitted activation. A(t) will be part
of the state of the instantiated element. and the output, p(l)ut(t)7 is simply A(t). In addition,
we have a reset signal (which occurs when the neuron fires) from the last input port, p;?, and
when this is set (i.e. is 1), A is reset to 0. This will be used to implement the refractory
period. The time when the reset signal returns to 0 is recorded as TRpenq. This will also be
part of the state of the instantiated element. To implement the relative refractory period, we
replace the p! (t) in equation 13 by t_f{jf‘%pfn(t) while Trpend < t < (Trpenda + RRP). We
can now describe PAR ctivation:

PAR;ctivation = {(30: Sl:Amin:D:RRP) 150 €1y,51 € {1}:AmintD € R+RRP € R} (14)

where 7, is the positive integers and sy is the number of input ports (sg — 1 is the number
of synapses, and p;° is the reset input port). s; is the number of output ports (fixed at
1), Anin is the minimum permitted activation, D is the dissipation, and RRP the relative
refractory period. setparameters(gactivation) Will then fix the values for (sg, 1, Apin. D, RRP),
and instantiate provide the instance with a unique name, set up the ports, and the initial
state. In this case, there is a non-null state, consisting of the initial activation, Aj,ia), and a
value for Trpeng. The former is likely to be set to 0, (or some other appropriate initial value),
and the latter to some value such that Trpeng + RRP < 0 so that the neuron is not in its
relative refractory period at ¢ = 0.

For the output element, we have again

Youtput = (Olltpllt; PAR/output: Fg (15)

output)

The parameter space has to define the number of input and output ports (1, and 2 respec-
tively), the threshold and refractory period for the neuron, and the shape of the pulse output
by the neuron. We can characterise the parameter space by

PARoutput = {(50, 81, . Limax. RP, s) : s9 € {1}, 51 € {2},
¢, RP, Lo € RT. s € S C L*([0, Lina))} (16)

so that the threshold ¢, the refractory period. RP, and the maximum pulse length are positive
real numbers, and S defines the set of possible pulse shapes on the interval [0, Ly,.«]. The two
output ports have different outputs: pl . outputs a 1 for time RP starting when p%n(t) > ¢,
and p2,, outputs a pulse of shape s starting when pi (t) > ¢. setparameters(goytput) then
selects valid values for (s, s1,®. Limax, RP, s). and instantiate provides the instance with a
unique name, and sets up the ports.

To combine these elements to produce an integrate-and-fire neuron, we require to instantiate
elements by applying setparameters() and instantiate() to the appropriate generators, and to
set up the arcs between the instantiated elements. In order to set up an integrate-and-fire
neuron with M inputs, we (a) apply repeatedly (M times) instantiate o setparameters to

10

Jsynapses setting the appropriate initial weights and convolving function, and setting up M
different names, say synapsei, for 1 < ¢ < M, (b) apply instantiate o setparameters once to
Jactivations setting so to M + 1. and the other parameters in equation 14 appropriately, and
setting the instantiated element’s name to activatel, and (c¢) apply instantiate osetparameters
once to goutput» setting the parameters in equation 16 appropriately and setting the instanti-
ated element’s name to outputl. We then need to join these elements together by appropriate
arcs. Writing pfn(xyz) for the i’th input port of an element named xyz. we create the arcs
(see figure 1)

(pl, (synapsei) ., p!, (activationl)):1<i<M

(pli(activationl) . pl (outputl))

(plyi(outputl) . plf*(activationl)) (17)

In addition, we need to define the arcs between the environment and the neuron: these will

be

(p! i (environment) , pi (synapsei)),1<i <M
(p2, (outputl) . pi (environment)) (18)

This completes the specification of an integrate-and-fire neuron with M inputs.

In the construction of this specification we have made choices. For example, we could have
chosen to have implemented both RP and RRP at the output element. This could have
been achieved by setting ¢(t) = oo during the refractory period, then reducing ¢(t) back to
@Pinitial gradually during the relative refractory period. This would remove the need for the arc
from the output element to the activation element. The resulting integrate-and-fire neuron
has differences from the one specified here, and one can use the specification technique to
investigate these differences. The primary difference is that pi (activation),i = 1...s9 — 1 is
ignored during the refractory period in the original specification, but is accumulated in the
alternative one, so that the activation level at the start of the relative refractory period will
be different in the two cases.

3.3.2 Specifying the network

To specify the whole network, we will need to produce two elements, an integrate-and-fire
neuron, formed from the specification in section 3.3, and a delaying distributor element to be
used for interconnecting the neurons. In addition, we will need to specify the arcs connecting
these elements.

For the integrate-and-fire neuron, we start by setting

F,

9landF

= (IandF: PAR1andr, FglandF) (19)

Following the technique outlined in section 3.2.2, we set up PAR,,qr from the parameter
spaces of the elements making up the neuron, and from the arcs. If the neuron is to have M
inputs, then we will be able to define the ports by applying equation 9 to the ports defined
in equation 17 and equation 18: that is, we will require M input ports, and one output port.

11

All the arcs in equation 17 will be internal to the generator of the neuron. The rest of the
spaces in PAR |, qr come directly from the parameter spaces of the elements of the neuron.

The elements of the neuron will be: M synapse elements, one activation element, and one
output element. Thus,

PARIandF‘ - PARLM X PARactivation X PARoutput (20)

synapse

We can use a subspace without losing generality by noting that

Szynapse c {1} and siynapse c {1} (21)
for all the synapses, and can be subsumed into the sbﬂndF. We also note that Sf}“’timtion =

M4+1= s}]andF 4+ 1, and thus does not need to be specified separately.

PARIandF‘ — {(S%)andb" SlfmdF,W, C, S?CtivationaAlniIl;
D.RRP, 50" 0" P) Lo, RP, 8)
Sbandb‘ e {M}q Sﬁandh" Szlmtivationﬁ Sgutput c {1}
W e RM.C e LA(R)M, Apin, D, RRP € R, s{"P" € {2},
¢, Linax, RP € RT, s € S} (22)

JandP

is the number of inputs to the neuron, sj is the number of outputs of the

where s}]andF

neuron, W is the weight vector and C is vector of convolving functions associated with each
neuron. FqlandF
setparameters provides valued for these parameters, and instantiate provides the instance with

is defined by the composition of the Fiynapse: Factivation annd Fouiput- As before,

a unique name, and sets up the initial state of the neuron.
For the delayed distributor element, we write
Gdelay = (dela._Y: PARdelay: ngela‘y) (23)

The parameter space has to define the number of places the (single) input is to be transferred
to, and the delay associated with each link. Thus we write

PARGelay = {(50.51.T) : 590 € {1},s1 € ;, T €e R™} (24)
where T = (T, ..., T*') is the delay vector. The element function Fyyoay 18 & vector-valued

function with elements p! . each defined by

Pha(t) = 0for 0<t<T
piln(t - TZ) for t > CZWZ (25)

setparameters selects the number of output ports, s1, and the associated delay T. instantiate
provides a unique name.

To produce a network, we first set the parameters for and then instantiate the elements in
pairs of landF and delay elements. We arrange that there is an arc from the output of the
IandF unit to the input of the delay element. The other arcs are specified will define the
toplogy for the network. As an example, we will consider a network in which the environment

12

Environment

Figure 2: One possible network of 3 integrate-and-fire units. A’s are integrate-and-fire units,
B’s are delay elements. Each delay element makes synapses with all the other integrate-and-
fire units.

provides one input to each IandF unit, and each TandF unit has (delayed) synapses with the
other units. This network is recurrent, and was the form of the neural network in [26]. For
this network, we set the parameters for and then instantiate N neurons and delay elements,
and give them names IandF: and delay:. The arc from the TandF unit to its delay element
will be

(Do (TandFi). pi, (delayi)) (26)

The other internal arcs are
(péllt(delayi),p'iin(IandFj), i,je{l...N},i#j (27)
and the arcs connecting to the environment are
(p , (environment), pi (TandF7)) and (p’,(delayi), pi (environment)),i € {1... N} (28)
Figure 2 shows this network for sf*"¥" = M = 3.

The network specified is not adaptive: however this can be added straightforwardly. To main-
tain locality, information used in altering whatever adapts must be brought to the element

13

in which the adaptation occurs. Here, this would mean an arc from the output element of
a neuron back to the synapse elements of that neuron so that Hebbian adaptation could
be implemented. One could have a variety of different types of synapse: for example those
receiving input from delay elements might be adaptive, and those receiving input from the
environment not be adaptive. This could be implemented by using more than one generator,
or by a more complex parameterisation of a single generator.

4 Conclusions and further work.

We have demonstrated that the framework in [26] can be used to specify a network of temporal
neurons. This form of specification provides a method for describing neural networks without
needing a decision about how they will eventually be implemented. The results of making
different choices can be considered at specification time, and their effects on the system
investigated. Although the framework has been used as a basis for a functional language
implementation [9], current work is concentrating on the use of the framework purely for
investigating the network in a formal way. The framework permits neural networks to be
expressed formally in a mathematical notation. This helps to provide a basis for mathematical
reasoning about neural network systems. The parameter space of the elements of the network,
and hence of the network itself is expressed in the formalism, and this can be used to help
define the range of parameters over which some assertion holds.

References

[1] M. Abeles. Corticonics. Cambridge University Press, 1991.

[2] B. Angéniol, J-Y. Le Texier, and J-B. Mateu. SLOGAN: an object—oriented language for
neural network specification. In L. Personnaz and G. Dreyfus, editors, Neural Networks
from Models to Applications: nEuro 8§ Conference Proceedings, pages 641-652. IDSET,
Paris, 1989.

[3] P. Bessiere, A. Chams, and P. Chol. MENTAL: A virtual machine approach to artificial
neural networks programming. Technical report, ESPIRIT BRA Project 3049, 1991.
Final Report.

[4] N.T. Carnevale, T.B. Woolf, and G.M. Shepherd. Neuron simulations with SABER.
Journal of Neuroscience Methods, 33, 1990.

[5] P. Chol and T. Muntean. NEURAL: Towards an occam extension for neurocomputers.
In L. Personnaz and G. Dreyfus, editors, Neural Networks from Models to Applications:
nEuro 88 Conference Proceedings, pages 653—662. IDSET, Paris, 1989.

[6] B. Derot, P. Escande, and C. Moulinoux. NACRE: a neuron-oriented programming
environment. In Neuro-Nimes ‘89, pages 183-199, 1989.

14

[7]

[10]

[11]

[12]

[13]

[14]

[18]

[19]

[20]

[21]

[22]

G. Dorffner, H. Wiklicky, and E. Prem. Formal neural network specification and its
implications on standardization. Technical Report OFAI TR-93-24, Austrian Research
Institute for Artificial Intelligence, 1993.

O. Ekeberg, M. Stensmo, and A. Lansner. SWIM - a simulator for real neural networks.
Technical Report TRITA-NA-P9014, Royal Institute of Technology, Stockholm, 1990.

J.E. Exton. A functional prototyping system for neural networks. Master’s thesis, Uni-
versity of Stirling Depertment of Computer Science, March 1992,

E. Fiesler and H.J. Caulfield. Neural network formalization. Computer Standards and
Interfaces. 16(3):231-239, 1994.

W. Gerstner. Time structure of the activity in neural network models. Physical Review
E, 51(1):738-756, January 1995.

R.M. Golden. A unified framework for connectionist systems. Biological Cybernetics,
59:109-120, 1988.

R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1990.

C. Hewitt. Viewing control structures as patterns of passing messages. Journal of
Artificial Intelligence, 8, 1977.

C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8),

1978.

M. Koéhle and F. Schénbauer. CONDELA — a language for neural networks. In L. Per-
sonnaz and G. Dreyfus, editors, Neural Networks from Models to Applications: nFEuro 88
Conference Proceedings, pages 634—640. IDSET, Paris, 1989.

G. Kock and N.B. Serbedzija. Artificial neural networks: from compact descriptions to
C++. In M. Marinaro and P.G. Morasso, editors, ICANNY/: Proceedings of the Inter-
national Conference on Artifictal Neural Networks, pages 1372-1375. Springer-Verlag,
1994.

P. Koikkalainen. MIND: A specification formalism for neural networks. In T. Kohonen,
K. Makisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks, pages 579—
584. North-Holland, 1991.

W. Maass. Lower bounds for the computational power of networks of spiking neurons.
Neural Computation, 8(1):1-40, 1996.

W. Maass. On the computational power of noisy spiking neurons. In D.S. Touretzky,
M.C. Mozer, and M.E. Hasselmo, editors, Advances in Neural Information processing
Systems 8, pages 211-217. MIT Press, 1996.

R.J. MacGregor. Theoretical Mechanics of Brological Neural Networks. Academic Press,
1993.

R. Milner. Flowgraphs and flow algebras. Journal of the ACM, 26(4), 1979.

[23]

[24]

Science Applications International Corporation, San Diego, California. ANSpec!™ User’s
Manual, 1989.

L.S. Smith. Formalizing neural networks. In L. Personnaz and G. Dreyfus, editors,
Neural Networks from Models to Applications: nEuro 8§ Conference Proceedings, pages
140-150. IDSET, Paris, 1989.

L.S. Smith. A framework for neural net specification. TEEE Transactions on Software
Engineering, 18(7):601-612, 1992.

L.S. Smith. Onset—based sound segmentation. In D.S. Touretzky, M.C. Mozer, and M.E.
Hasselmo, editors, Advances in Neural Information processing Systems 8, pages 729-735.
MIT Press, 1996.

P.C. Treleaven. PYGMALION: Neural network programming environment. In T. Koho-
nen, K. Makisara, O. Simnula, and J. Kangas, editors, Artificial Neural Networks, pages
569-578. North-Holland, 1991.

A. Vladimirescu, K. Zhang, A.R. Newton, D.O. Pederson, and A. Sangiovanni-
Vincentelli. SPICE Version 2G UsersGuide. University of California, 1981.

16

