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Abstract

Onset clustering (which we use as part of a system for sound seg-
mentation) uses integrate-and-fire neurons to perform across spectrum
and across time clustering of increases in sound intensity in different
parts of the spectrum. We show that a network of recently developed
analogue VLSI integrate-and-fire neurons can perform this task in real-
time, and compare its performance with a simulated network.

Background

sound wave 1is a pressure wave, that is a variation in air pressure over time.

Virtually all attempts at interpreting sound start by separating the sound
out into its constituent frequencies. The mammalian ear [4] is no exception
to this, and the cochlea in the inner ear of mammals performs a mechanical
filtering of the sound, resulting in a pattern of vibrations on the basilar
membrane, a membrane which runs the length of the cochlea. Vibrations at
high frequencies are much stronger at the basal end of the cochlea, and low
frequencies at the apical end. Transduction of these vibrations into signals
on the auditory nerve is performed by the inner hair cells of organ of Corti
(which stretches along the length of the cochlea) and the neurons of the
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spiral ganglion. This results in a pattern of neural spikes on the auditory
nerve (AN).

The auditory nerve contains a large number of nerve fibres in mammals
- about 30000 in man. Because of the nature of transduction, spikes are as-
sociated with movement of the basilar membrane in one particular direction.
Further, the pattern of firing on an AN fiber in response to a pure tone of
constant amplitude is not constant, but starts off high then falls off over a
period of time. The auditory nerve innervates the cochlear nucleus, and the
response types of many different classes of cells there have been characterised
[4].

In [7] we showed (i) that simulated integrate-and-fire neurons could be
used to behave like certain of the globular bushy cells in the cochlear nucleus,
and provide an onset response (that is, to spike when the sound intensity in
some part of the spectrum increased rapidly), (ii) that by using a simple
excitatory network, these responses could be clustered across channels and
time, producing volleys of spikes which correlated well with broadband bursts
of energy in speech, even when the speech was in a considerable amount of
(non-speech) noise, and (iii) that this clustering could be used to provide a
useful segmentation of a speech signal.

One of the problems with computer simulations of cochlea-based ap-
proaches to sound interpretation is speed: cochlear filtering results in mul-
tiple channels of sound, and serial processing of multiple channels is slow.
We are therefore interested in direct hardware implementation of parts of
the system, and have produced a hardware implementation of the network of
integrate-and-fire neurons [1].

2 Techniques used

For the work reported here, we used the basilar membrane module of the
Gammatone cochlear filterbank [3]. We used parameters which resulted in
29 or 31 channels of data being generated, with centre frequencies (approxi-
mately) logarithmically distributed between 60 and 6000Hz. The bandwidth
of these channels was set to a value which results in the channel response
being similar to that shown by the ear for moderate levels [2]. The output
from each channel was then rectified, roughly corresponding the the trans-
duction action of the inner hair cells of the oran of Corti. This results in
29 or 31 channels of positive-going data, each with the same sampling rate,
22050 (claps data) or 16000 (TIMIT data) samples/second.

The number of channels is far fewer than the number of fibers in the
AN. The run-time and size of the simulation depend strongly on the number
of channels, limiting the number usable to about 120 with the computing
facilities available; in addition, we wanted to compare the simulation results
with those from the hardware integrate-and fire neural network, and this
network consisted of 4 chips, each containing 8 neurons, limiting the number
of channels to 32.



The output from each channel was convolved with a difference of Gaus-
sians operator to accentuate onsets, and to model the onset response of real
AN fibers. A balanced filter (convolution function) was used, so that the
output would eventually fall to zero for a signal of fixed intensity. The filter
used was causal, that is, the output depended only on the current and pre-
vious values of the input. Where the output was negative, it was replaced
by 0. Details are in [7]. The filter output was then downsampled to 4000
samples/second, for use as input to the simulated neurons, and to 1000 sam-
ples/second for use as input to the hardware neurons. This lower update rate
was necessitated by the requirement to update each channel independently
because input to the hardware neurons was multiplexed.

The neural network has one integrate-and-fire neuron per channel. Be-
tween spikes, the activity (voltage) of a leaky integrate-and-fire neuron is
governed by

dV—(t) = _m +17
dt RC

where the leakiness is measured by the dissipation (= %) The neuron fires
when the activity reaches some predefined threshold. The leakiness of each
neuron can be varied in both the simulated and hardware neurons (although
the range of leakiness is smaller in the hardware neurons). Each neuron has
an excitatory connection to its five neighbours in either direction. In the
simulation, the strength of this connection can be varied, but it is of fixed
strength in the hardware neurons. In the simulation, the spike output arrives
at its target at the next simulated instant - that is, 0.25ms later. In the hard-
ware network, the spike output arrives at its target almost instantanously. In
both cases, the strength of the connection is such that one excitatory spike
results in the post-synaptic neuron increasing its potential immediately by
10% of the total potential required to make the neuron reach threshold. In
both simulated and hardware neurons, the refractory period was set to 50ms.
Details of the implementation of the silicon neurons are in [1].

3 Results

We report the results of testing the systems with two different sound sig-
nals, namely a (locally generated) series of handclaps (sampled at 22050
samples/second) and an utterance from the TIMIT database (drl/fsjk1/sal)
(sampled at 16000 samples/second). Both the simulated and the hardware
integrate-and-fire neural networks give similar results, as can be seen in fig-
ure 1. The primary difference in the two onset volleys generated from the
claps data occurs at the first clap: the hardware appears to have been af-
fected by some noise. In the onset volleys generated from the utterance, the
low frequency channels are less in evidence in the hardware implementation.
However, increasing the strength of the input so that more of these appear
results in too many pulses appearing. This may have been due to variations
between the chips.
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Figure 1: (a) envelope of the claps sound. (b) onset volleys found by the
simulated system. Low frequency channels are at the bottom, and high fre-
quency channels at the top. (dissipation = 50) (¢) onset volleys found by the
hardware system. (dissipation = 40). (d) envelope of the TIMIT utterance.
(e) onset volleys found by the simulated system (dissipation=50). (f-h) onset
volleys found by the hardware system (f) input at quarter of full strength,
dissipation=15 (g) input at half full strength, dissipation = 50 (h) input at
full strength, dissipation = 120.

The way in which the integrate-and-fire neural network clusters the data
can be seen if we examine a 50ms section of the claps data: see figure 2.
Looking at the 50ms section starting just before the second clap, we can turn
off the excitatory weight in the simulation, and alter the dissipation of the
integrate-and-fire neuron whilst adjusting the input strength to ensure that
the neurons still fire. With the current chip, we cannot adjust the excitatory
weights; however, we can alter the strength of the input to the chip, adjusting
the dissipation to ensure roughly the same number of spikes are generated.
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Figure 2: Results for a 50 ms section of the claps sound using the simula-
tor. (a) Integrate-and-fire output with dissipation = 0 (i.e. no leakage), high
input attenuation (weight = 0.001), and no excitatory weights between neu-
rons. (b) as (a), except that excitatory weights are on (c¢) integrate-and-fire
output with dissipation = 50, lower input attenuation (weight = 0.0025),
and no excitatory weights between neurons. (d) as (c), except that excita-
tory weights are on. (e) integrate-and-fire output with dissipation = 500, low
input attenuation (weight = 0.0175), and no excitatory weights. (f) as (e)
except that excitatory weights are on.

The results of this are shown in 3.

Applying the same techniques to the TIMIT utterance, we see some
changes occurring as the strength of the input increases and the dissipa-
tion decreases: this can be seen in figure 1f, g, and h. In figure 4 we show an
enlargement of a 50ms section of the TIMIT spikes.

4 Discussion

It is clear from figure 1 that the hardware integrate-and-fire neural network
can perform the same spatiotemporal clustering as the simulated network.
From figure 2 one can see that the excitatory connections in the network are
responsible for the across-channel clustering.

The input to each neuron is level-based, rather than pulsatile. Firing
occurs only when the neuron’s activity has built up to the threshold level.
Decreasing the dissipation means that less of this activity leaks away over
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Figure 3: Results for a 50 ms section of the claps sound using the silicon
neurons. (a) input attenuated to quarter original strength, dissipation =
10 (b) input attenuated to half original strength, dissipation = 20 (c) full
strength input, dissipation = 40.
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Figure 4: Results for a 50 ms section of the TIMIT sound using the silicon
neurons. (a) input attenuated to quarter original strength, dissipation =
15 (b) input attenuated to half original strength, dissipation = 50 (c) full
strength input, dissipation = 120.

time: however, one result of this is that small (e.g. noise) inputs can build
up and cause extra unwanted spikes. This is why we reduce the strength of
the input as we decrease the dissipation: we have attempted to keep the total
number of spikes approximately constant. From figure 2 the latency of the
first spike depends on the connection strength and dissipation: the stronger
the connection, the earlier the spike occurs. Close examination of this figure
shows that the timing of the first spike is independent of the inter-neuron
excitatory connections, but that these excitatory connections cause the rest
of the spikes to occur much more rapidly after the first spike. With the silicon
neurons, we are unable to turn off the excitatory inter-connections, but the
decrease in latency, and the increase in clustering as the input strength and
dissipation increases is clear from figure 3.



Although the decrease in latency with increase in input strength is also
visible for the TIMIT speech data in figure 4, the improvement in clustering is
not visible. Indeed, looking at the spikes produced from the whole utterance
in figure 1f-h, there is little visible difference in the clustering produced.
Similar results have been found in simulation, varying the dissipation even
up to 1000. We believe this i1s due to the actual distribution of the increases
of energy in cochlear filtered speech. These tend to be of longer duration
and skewed across channels, rather than of very short duration and nearly
co-incident across channels as was the case for the percussive hand-clap. The
expected improvement in clustering as the dissipation increases is offset by
the rapid leakage of subthreshold excitation. Whatever the mechanism, the
clustering defined by the spike volleys is not sensitive to dissipation.

Even with such such a simple model and network, there are two clustering
processes running simultaneously. At the single neuron level, there is the
temporal clustering of the input. This is sensitive to the dissipation of the
neuron: a considerable amount of input must occur within a short time-
period to make the neuron fire when the dissipation is high. At the network
level, the excitatory connections result in one neuron’s spiking making its
neighbour neurons more likely to fire almost immediately. This results in
across channel clustering.

5 Conclusions and Further Work

Both the hardware and software neural network perform similar clustering of
the sound onsets. We have shown that the silicon integrate-and-fire neuron
can cope with such relatively slow-varying data. A new design is under way
in which the inter-neuron weight will be variable, allowing experimentation
with more complex networks, for example networks which support lateral
inhibition, allowing the spectral location of onset clusters to be found.

The integrate-and-fire neuron remains a very simple neural model. One
result of using a simple model is the variation in latency of the onset spike
depending on the input strength. Real globular bushy neurons use large
(and fast) synapses, and low and high threshold potassium ionic channels to
achieve rapid onset responses [6, 5], whose latency is very low, and (relatively)
independent of input strength. This is of importance for estimates of sound
direction based on inter-aural time differences. We intend to continue ex-
periments with more sophisticated (and biologically realistic) neurons, while
maintining the real-time response of the network.
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