and the rest of the [0,1) interval for the out-of-phase fixed point.

4 Discussion

This brief paper shows how delayed inhibitory interconnections can permit ei-
ther in-phase and out-of-phase oscillations, depending on the precise connection
strengths and delays. We have investigated only the simplest possible system,
that of two neurons: a detailed analytical discussion is in (Nischwitz 94). Fur-
ther work is required to investigate these effects in more complex systems.
Multiple stable phase effects in larger systems are described in (Nischwitz et
al 92), using varying T, and in (Nischwitz and Gliinder 94) for weakly coupled
systems. Because the system’s synchronization capabilities are limited, such
systems with weak inhibitory interconnections may be able to support multi-
ple simultaneous synchronous sets of oscillators, as suggested by (Shastri 89),
without falling into a single phase, as found in (Cairns et al 93).

References

Cairns D.E., Baddeley R.J., Smith L.S. (1993), Constraints on synchronising
oscillator networks, Neural Computation, 5, 260-266.

Gliinder H. and Nischwitz A. (1993), On spike synchronization, in Brain The-
ory, 251-258, ed Aertsen A., Elsevier.

Konig P. Schillen T. (1991), Stimulus-dependent formation of oscillatory re-
sponses, Neural Computation, 3, 155-166.

Nischwitz A. (1994) Impuls-Synchronisation in neuronalen Netzwerken, Disser-
tation, T.U. Muenchen, in preparation.

Nischwitz A., Glinder H. (1994), Local lateral inhibition: a key to spike syn-
chronisation, Biol. Cybern, submitted.

Nischwitz A, Gliinder H, von Oertzen A., Klausner P. (1992), Synchronization
and label-switching in networks of laterally coupled model neurons, in Ar-
tificial neural networks 2, 852-854, ed Aleksander I and Taylor J, Elsevier.

Mirollo R.E., Strogatz S.H. (1990), Synchronization of pulse-coupled biological
oscillators, STAM J. Applied Mathematics, 50, 6.

Rinzel J and Ermentrout G. B. (1989), Analysis of neural excitability and
oscillations, in Methods in neuronal modelling - from synapses to networks,
ed Koch C and Segev I, MIT Press,.

Schuster H.G., Wagner P. (1990), A model for neuronal oscillations in the visual
cortex, Biological Cybernetics, 64, 77-82.

Shastri L. (1989), From simple associations to systematic reasoning: a con-
nectionist, representation of rules, variables, and dynamic bindings, Tech
report, University of Pennsylvania.



a. B |
Aw; Aw,
\ 1 | 3 | 5_ | 7
A by 1
b. B \ | 2 | 4 | 8
| . | — ~v—
A 4 A A
B | 2 | 4 6

Figure 2: a. Behaviour of 2-unit system with inhibitory connections with 0
delay. The short horizontal lines show the delay caused by the arrival of an
inhibitory spike. Each inhibitory spike arrival is numbered. b. Behaviour of a
2-unit system with delay (of 0.2 x period). c. Behaviour of 2 unit system, with
the effect of the inhibitory connection halved.

(due to the delay). This causes the next spike at A to be delayed so that its
inhibitory effect on B does not occur until after B spikes (2). It therefore has
only a small effect. We call this crossover. The effect of the next spike at B on
A (3) is also small, since it arrives a little way through A’s cycle. Thus both
spikes have their effect near the start of the other unit’s cycle, making both
effects small. This relies on the delay being nonzero, but small relative to the
period. If A spikes again before B (as shown) the effect of B on A (3) will be
bigger than the previous effect of A on B (2), so that the units become closer
in phase. If B spikes again before A, the opposite happens, and the units again
become closer in phase. This continues until the units are in phase, at which
point the effect of each on the other is identical, and the synchronisation is
stable.

Figure 2c¢ shows the effect of a delay, but with a less strong inhibitory
connection. In this case, the effect of the first spike at B on A is large (1), but
small enough to permit the next spike at A to have its effect at B (2) before B
spikes. This spike’s inhibitory effect will be larger than the previous effect of
B on A, since it arrives nearer the end of the cycle. However, its effect is not
so large as to make the inhibitory effect of B’s next spike arrive after A spikes
(3), and this continues, forcing the units to remain out of phase.

If we assume that the potential is not allowed to become negative, it is
possible to derive the basins of attraction of these fixed points (see (Nischwitz
94)). The derivation rests on the strictly decreasing nature of P(z,z), and on
finding exactly when crossover can occur. For small £, and large /T, so that
the initial gradient of -1 lasts for a short time, the basin of attraction of the
in-phase fixed point is

wel0,7—Ple,w+ 7)]U[Ll—(7— Plsg,w+1)),1)
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Figure 1: Phase response graph for the neuron, with an inhibitory input of
varying strength (). w is the point in the cycle of the arrival of the (inhibitory)
input where 0 and 1 are identified with each other, and are the point at which
the spike is produced. The Y axis shows the resultant change in phase, P(z, w).
The effect is always to extend the cycle, and the strength of the effect is smallest
just after spiking, and largest just before spiking. T = 20, 6 = 19.96 and
~ = 0.95.

One key to the behaviour of the system is the phase response function (Rinzel
and Ermintrout 89), P(e,z), the change in phase at one unit caused by an
impulse from the other arriving at phase point x. Figure 3 shows this for
a single neuron for a number of varying negative coupling strengths, . The
graph shape depends on whether the unit can have a negative potential: if
so then P(£,0) < 0, and if not the graph starts with a line of gradient —1
from the origin as shown. P(z,z) is strictly decreasing in z on [0,1), and
P(z,2) = P(g,x+ k) for integer k. An informal analysis of the main behaviour
is presented: a detailed analysis can be found in (Nischwitz 94) and is the
subject of ongoing work.

Figure 2a shows the behaviour of the system with a delay (7) of 0. If the
units start off out of phase, they become antiphase with the period extended
due to the inhibition. If B leads A by Aw;, then the phase difference at A’s
next spike is

A;ui+l = Aw; + P(&Aw‘l) — P(t‘, 1— Aw; — P(:‘,A,ul)) (2)

For Aw; < 0.5, the effect on B is larger than that on A, so that Aw;4; > Aw;.
As (Mirolla and Strogatz 90) suggest, and is proven in (Nischwitz 94) for units
with a refractory period, two fixed points exist, in phase, and antiphase, and
the basin of attraction of the antiphase one is all initial Aw; except 0.

Figure 2b illustrates one possible result of a delay. The effect of the first
spike from B on A (1) is larger, since it arrives nearer the end of the period
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1 Introduction

Integrate-and-fire (leaky integrator) neurons are both mathematically tractable
and have a degree of biological plausibility. Systems of two neurons, interacting
via symmetric pulsatile coupling with zero delay and zero absolute refractory
period have been studied by (Mirolla and Strogatz 90). For positive coupling,
they found two fixed points, an unstable one with the units out of phase, and
a stable one with the units in phase. For negative coupling, the stable and
unstable fixed points are reversed, if a refractory period is assumed.

We show that for delayed symmetric pulsatile inhibitory coupling, a pair
of integrate-and-fire neurons can synchronise. (Gliinder and Nischwitz 93) and
(Nischwitz et al 92) observed this in simulations of ring-shaped networks of
such units. Delayed inhibitory connections have been used by (Kénig and
Schillen 91), but using a non-spiking unit, and (Schuster and Wagner 90) use
an activation dependent (rather than pulsatile) coupling.

2 The Network

The network examined here consists of two symmetrically connected integrate-
and-fire neurons, with equation

dw;
dt

where x; is the voltage-like state variable of the neuron (i € {0,1}), T is the
constant tonic input, v is the dissipation, ¢ the coupling strength, and 7 the
coupling delay. On the potential #;(t) reaching threshold, 8, the output, Y;(¢)
becomes instantaneously d(t), resulting in a sudden change in potential of the
other unit by = a (short) time 7 later. a; is then reset to 0. The unit will

oscillate with period bg—(lw for 6 <T and £ = 0.

=T —ya;+eYi_y(t—7) (1)

3 Analysis and Results
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