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Abstract—The extraction of relevant lip features is of con-
tinuing interest in the speech domain. Using end-to-end feature
extraction can produce good results, but at the cost of the results
being difficult for humans to comprehend and relate to. We
present a new, lightweight feature extraction approach, motivated
by glimpse based psychological research into facial barcodes. This
allows for 3D geometric features to be produced using Gabor
based image patches. This new approach can successfully extract
lip features with a minimum of processing, with parameters that
can be quickly adapted and used for detailed analysis, and with
preliminary results showing successful feature extraction from
a range of different speakers. These features can be generated
online without the need for trained models, and are also robust
and can recover from errors, making them suitable for real world
speech analysis.

Index Terms—image processing, barcodes, gabor, lip-reading,
word features

I. INTRODUCTION

Lip features are an important part of speech communication
[1]. One particular topic of interest is the use of lip features
for speech processing [2], [3], [4], [5]. A variety of methods
have been developed, including 2D-DCT [6], which was
found to correlate highly to audio vectors [7], [3], optical
flow [8], [9], [10], shape and/or appearance models [11],
and active contour models [12]. Active Appearance Models
[11] require significant offline training, some approaches [13]
are capable of online training, but sometimes lack precision.
Recent research has successfully used shape models as part
of an overall visual feature vector [14], and adaptive online
trackers can track a region of interest (ROI) [15].

Geometric features (the width and height of the mouth
[5]) can be calculated, but require the mouth to be correctly
identified, which uses various shape and appearance models
[11], [13], or markers [5]. However, geometric features are
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generally 2-dimensional, and detection requires other mod-
elling techniques.

In recent years, one increasingly popular approach has been
to use Convolutional Neural Networks (CNN) for end-to-end
lipreading. These use the image directly [16], but do not allow
us to establish direct relationships explaining how words are
created, and does not output features in a useful form for
analysis. Another approach is to use a trained CNN to extract
features. This is done by applying the trained CNN to the
image and then using the weights of the last layer as an
input into another network, such as an LSTM [17]. Another
approach that has been used is LipNet [18], which is a trained
CNN that has produced very good results, reporting 93.4%
accuracy on sentences from the Grid corpus. However, other
research has attempted to use this work, with limited results
[19], possibly due to the non-explainable nature of the LipNet
features..

It should be noted that some of these CNN based approaches
deliver very good results, and increasingly, the trend, as seen
in other fields is to use very large datasets and trained CNNs
to produce good results, as shown by LipNet producing 93.4%
on sentences from the Grid corpus, using only the lip features,
far beyond human lipreading performance. However, there
are problems with this approach. Using end-to-end learning
with CNNs means that they learn their own features rather
than using features directly. This means that the results, while
good, can be very difficult to explain and justify. Although
the researchers behind LipNet apply saliency maps to identify
regions of the mouth focused on by the system, this still makes
it difficult to explain the results. This is also a problem with
other approaches such as DCT. The features do not easily map
to human perception, and are not easy to explain.

This is important for the concept of explainable AI (XAI)
[20], where as well as producing the results, we also wish
to be able to justify our decision. It is also important for
psychological and linguistic speech research, where being able



to explain and map the results, as well as gain insights, is
as important as being able to generate excellent results. This
means there is a requirement for visual features which are fast
to generate, do not need complex training, are lightweight,
and can be both used for machine learning, and can also be
interpreted by human experts.

In this paper, we therefore propose a fast, lightweight ap-
proach for generating three-dimensional lip features, which is
less reliant on accurate mouth modelling, and creates features
in a format that can be analysed. We use psychologically
motivated Gabor filtering that can identify a range of useful
features for further analysis. Gabor features have been used
previously for lip feature work, notably by Hursig et al.
[21], who used Gabor features for identifying the lip region
correctly. The key difference is that we aim to obtain speech
vectors, rather than region identification. Feature extraction is
quick and robust and has been successfully applied to a variety
of faces. It can provide simple and understandable mouth
movement information, including mouth opening area, and
depth. This new approach has many potential applications, in-
cluding speech recognition, synthesis, tracking, and linguistics.
For example, the simple and quickly calculated outputs of this
system could be used to determine changes in speech effort,
or identify different accents (by identifying unique speech
features that are easily visually distinguishable, such as saying
the same word in different ways). They could also be used to
inform mouth movements with regard to the generation of
synthetic talking heads. We demonstrate the potential of our
approach with word analysis using our extracted features, and
represent a potential new feature-set to be used with machine
learning.

II. PSYCHOLOGICALLY MOTIVATED GABOR FEATURES

Humans can recognise faces using distinctive facial features.
Independent perceptual attributes of faces can be encoded
using the concept of face space [22] [23], where distinctiveness
is encoded as the difference from an overall average. The
biological approach to face recognition provides evidence that
humans use early-stage image processing, such as edges and
lines [24]. Dakin and Watt [23] examined this with Gabor
filters. They used different filter orientations, and found that
horizontal features were the most informative, that distinct
facial features could be robustly detected, and that vertical
slices of the centre of the face could form a distinctive
“barcode”. This was developed further by [25].

Based on the motivation behind these barcode based fea-
tures, the coarse distinctions between facial features can also
be similarly applied to much finer detailed features [23].
There are clear differences between the features, such as the
lips, teeth, philtrum, and mentolabial sulcus. The contrasts
present in different mouth openings allows for quick and
accurate mouth feature information to be obtained, with a three
dimensional representation of the mouth opening possible.
Therefore, the principle of horizontal Gabor features can also
be applied to lip specific feature extraction.

Fig. 1. Key stages of lip feature extraction.

III. PROPOSED APPROACH

A. ROI Identification and Tracking

The key steps of our approach are shown in Fig. 1. Given
a sequence of images In(n = 1 . . . N) extracted from a video
file, the lip region must be tracked. As ROI identification is not
a key contribution of this paper, we follow previous research
[2], [26] and use a Viola-Jones detector and an online shape
model [15], similar to previous Gabor feature lip research
[21]. This outputs a coarse 2-dimensional lip region for each
image frame, represented as the four x and y coordinate pairs
(Ln

x(1, 2, 3, 4) and Ln
y (1, 2, 3, 4) respectively). From these, we

can identify Cn
L, the ROI centre point for each frame.

B. Gabor Feature Generation

Similar to Dakin and Watt [23], we calculate horizontal
Gabor features, using a Fast Fourier Transform. This generates
positive and negative going real and imaginary components,
and here we use the real component. Each image is converted
to greyscale, and Gabor filtering is applied, see Fig. 2 (b). To
reduce small values such as background noise and regulate
the size of the image patches, threshold is applied to the
initial transform, as shown in Fig. 2 (c). Several parameters
are required. These tend to only need to be adjusted when a
different corpus is used, if for example, video frames are very



Fig. 2. The lip patch generation process, showing (a) the original greyscale
image, prior to processing, (b) the real component of the Gabor features, (c)
the thresholded image, (d) the resulting Gabor image patches, (e) the image
patches and the tracked ROI box for that frame, and (f) the final chosen lip
patch.

differently sized, or a speaker is sitting at a prominent angle,
or at a different distance from the camera:

Wavelength λ - The individual Gabor wavelength. This can
feasibly be between 2 and 20+. The exact parameter
depends on image size.

Threshold t - The filtering threshold, to ignore minor face
features and background noise. The range is 0 to 1,
and a value between 0.05 and 0.3 has been found to
be effective.

Orientation Θ - The face angle in degrees. If the speaker
has their head straight, then 0 (horizontal) is suitable,
but a slight angle, commonly Θ = 5, may be needed.

Min. Patch Area PMIN - The minimum size needed for a
region patch. This can be useful when speakers have
(for example) a prominent chin or teeth. Generally,
a value of around 50 to 100 is suitable.

C. Image Region Patches and Relevant Patch Identification

After filtering and thresholding, the most prominent regions
(i.e. the local extrema in the filter outputs) are calculated,
and these regions are grouped and represented by rectangular

image patches. These are calculated using the filtered real
component of the transformed image, shown in Fig. 2 (c).

Given a filtered image, patches are then created from
these components. Firstly, using the Matlab “bwconncomp”
function, with 8 degrees of connectivity, and the “regionprops”
function, creates R groups of connected pixels. The result is
a matrix of pixel locations, QX and QY , and values QV for
each grouping, Gr. For each Gr, the area Ar is defined as the
number of pixels in each Gr, so Ar. The mass is calculated
using each pixel value as,

Mr =

P∑
p=1

QV
p (1)

The centre coordinates of each patch, Xr and Yr are
calculated using both pixel coordinates (px, py) and pixel
values. As some of the pixels at the edges of the regions may
not be as strongly connected, then this is taken into account,

Xr =

Ar∑
p=1

(px ∗QV
p )/Mr (2)

Yr =

Ar∑
p=1

(py ∗QV
p )/Mr (3)

The variance is calculated, σ2
Xr
, σ2

Yr
, as is the covariance,

which is given in equation 4,

σ(Xr, Yr) =

Ar∑
p=1

(px ∗ py ∗QV
p )/Mr −Xr ∗ Yr (4)

The patches are not always horizontal or vertical, and
they have an orientation, Θ, calculated using covariance and
variance,

Θ = tan−1
(
2 ∗ σ(Xr, Yr), (σ2

Xr
− σ2

Yr
)
)
/2 (5)

Θ can then be used to calculate width and height of each
patch. The width is calculated as,

Wr =
√

(abs(wr) + 0.5/π) (6)

where wr is defined as,

wr = (X2
r − (Xr)2) ∗ cos2Θ

+2 ∗ σ(Xr, Yr). ∗ (cosΘ ∗ sinΘ)

+σ2
Yr

∗ (sin2Θ))

(7)

This also requires the squared value,

X2
r =

Ar∑
p=1

(p2xQ
V
p )/Mr (8)

The height, Hr is calculated with a similar process,

Hr =
√

(abs(hr) + 0.5/π) (9)



hr = (Y 2
r − (Yr)2) ∗ cos2Θ

−2 ∗ σ(Xr, Yr). ∗ (cosΘ ∗ sinΘ)

+σ2
Xr

∗ (sin2Θ))

(10)

Y 2
r =

Ar∑
p=1

(p2yQ
V
p )/Mr (11)

These properties allow for the creation of patches. An
example is shown in Fig. 2 (d), showing all the resulting
patches generate from this image. It can be seen that there
are patches generated around the hair, eyes, nose, mouth
and shoulders. Of key interest in this paper is the patch
corresponding to the mouth opening.

For each patch, a number of values are generated. These
are quick to generate, and can be used for analysis. For this
work, the most relevant are:

Width The width of the lip region, Wr

Area The area is Ar. The height is constrained by λ, and
tends to only show big changes, but can be a good
measure of mouth opening.

Mass This is related to intensity, and is defined as Mr.
It effectively shows the mouth depth, providing 3D
representation. It can distinguish between a closed
mouth, an open mouth showing teeth (as in an ’ee’
sound), and an open mouth making an ’oh’ or ’ah’
sound.

Xpos The x position, Xr identifies the mean x-position of
the pixels in the patch, i.e. the centre position of the
x-co-ordinate. This can be useful, along with the y-
position, for tracking speaker movement.

Ypos The y position, Yr identifies the mean y-position of
the pixels in the patch, i.e. the centre position of the
y-co-ordinate. This can be very useful for tracking
speech. For example, with tonal languages, research
has identified [27] that during certain tones, speakers
dip their heads.

Θ As discussed previously, Θ is used to calculate the
orientation of each patch. This is different from the
orientation of the Gabor wave Θ. Here, Θ corre-
sponds to each patch orientation, so for example,
each shoulder in Fig. 2 (d) would have a different
orientation.

As discussed, to calculate the ROI centre point, Cn
L(x, y),

is calculated. This can be used to identify the lip region patch.
To do this, for each frame, the ROI centre point, Cn

L(x, y) is
compared to each r-th object of X and Y for each n-th frame
to identify the closest patch. This patch is then used for further
analysis. This is shown in Fig. 2 (f), showing the ROI as a
pink rectangle, and then the chosen patch (the mouth opening)
in blue. The complete process is shown in Fig. 2.

D. Extracted Features

The output can be visualised as a sequence of frames,
showing the ROI and the lip features, as discussed above.

Fig. 3. (a) Example of a wide open mouth, with a large box and dark colour,
(b) an open mouth, but without depth (due to the teeth being visible), reflected
by the lighter colour, (c) a closed mouth.

Fig. 3 shows an example from the Grid Corpus [28]. It is
notable, that as well as being able to quickly calculate the
mouth region, the mass can also be calculated, showing how
open the mouth is. To visualise this, the mass is used to adjust
the colour of the lip region patch, with a lighter blue being
used for a closed mouth, and an darker blue being used for
a closed mouth. Fig. 3 (a) shows a wide open mouth, with a
large box and dark colour, Fig. 3 (b) shows an open mouth, but
without depth (due to the teeth being visible), reflected by the
lighter colour. Finally Fig. 3 (c) shows a closed mouth. This
is reflected in the reduced size of the patch and light colour,
showing a quick and simple 3-dimensional representation of
the mouth features.

These outputs can also be visualised as vectors, as shown
in Fig. 4 (a), and (b), which show the change in width in Fig.
4 (a), and the change in mass in figure 4 (b). It can be seen
that in each frame, a single value is generated for each feature,
and that there is a natural flow over the course of a speech
sentence.

Fig. 4. Examples of (a) width change, and (b) mass change, over a single
speech sentence.

In Fig. 4 the x-axes corresponds to the number of frames,



with one data point for each frame, with the y-axes repre-
senting amplitude. The amplitude changes are of interest, as
they show the differences between individual frames, and also
between sentences and speakers, which is of interest for further
analysis. Here, the width shows that the mouth gets narrower
and wider depending on the word, and the mass also shows
the opening and closing of the mouth. This shows that we are
able to analyse speech in more detail, in a way that features
such as CNN or DCT features are unable to do.

IV. RESULTS AND DISCUSSION

This section focusses on a visual examination of results.
The aim is not to run a comparison with AAM, DCT, or
CNN features, because these features can not easily be used
for visual analysis. This paper presents the initial features,
and considers their relevance for speech analysis. Future work
will investigate these features for machine learning, when
comparisons can be more easily made to other approaches.

A. Tracking and Parameter Selection

We successfully tracked many (150+) videos from multiple
corpora, including Grid [28], and VidTIMIT [29], which were
chosen due to their wide use in speech processing research.
The tracker was found to be effective for our needs, although
could easily be replaced by other approaches. As discussed,
we used the tracker used in previous research, [2], [26], which
was a Viola-Jones detector, with a shape tracker. There are
known limitations with this approach, and future research will
investigate alternative methods.

In this paper, we chose to present the initial features, and
also perform some word specific analysis, as The GRID corpus
includes alignment files, which enables word specific analysis.
Due to space limitations, we cannot show detailed results,
but parameters were kept as consistent as possible, with only
slight adjustments. In almost all cases, the Gabor wavelength
λ was set to 5, with a slightly larger λ for higher resolution
frames, and in almost all cases, the patch area was set to
50. The threshold t varied between 0.14 and 0.25 depending
on experimentation, and Θ was generally set to 0, although
setting it to 5 is useful when the speaker is at a slight angle.
As an example, we present some specific parameters from two
established corpora in Table I.

Table I shows the parameters used for the different corpora.
We can see that for the majority of cases, the parameters are
fairly similar. The majority of Grid corpus videos use the same
parameters, with some variations for speaker s6, where one
video is further away from the camera than the others, which
required a change in the threshold. In speaker s7, the speaker
speaks with their mouth at an angle, as shown in figure 6.
This required a change in threshold, and also a slight change
in orientation to optimise results. Finally, speaker s26 was a
special case due to the specific combination of skin colour,
lip features, and facial hair (a prominent moustache). This
meant that the parameters were initially difficult to identify
successfully, and in 3 of the 4 videos, the system needed
to be customised to allow for the threshold parameter to be

TABLE I
SUMMARY SENTENCES USED FOR TESTING, WITH PARAMETERS USED.

Corpus Speaker Sent. ID λ t Θ PMIN

Grid

s1

bbaf2n 5 0.14 0 50
bbaf3s 5 0.14 0 50

swwv8p 5 0.14 0 50
swwv9a 5 0.14 0 50

s2

bbaf1n 5 0.14 0 50
bbaf2s 5 0.14 0 50

swwv7p 5 0.14 0 50
swwv8a 5 0.14 0 50

s6

bbae7n 5 0.14 0 50
bbae8s 5 0.14 0 50

swwv3p 5 0.25 5 50
swwv4a 5 0.14 0 50

s7

bbae6n 5 0.25 5 50
bbae7s 5 0.25 5 50

swwv3a 5 0.25 5 50
swwvzn 5 0.25 0 50

s15

bbad8n 5 0.14 0 50
bbad9s 5 0.14 5 50

swwu4p 5 0.14 0 50
swwu5a 5 0.14 0 50

s26

bbac7n 5 0.10 0 50
bbac8s 5 0.10 0 50
swwt3p 5 0.10 5 50
swwt4a 5 0.10 0 50

VidTIMIT mrjo1 sa1 5 0.14 0 50
fadg0 sa1 5 0.20 0 50

changed during the course of the video, which did not need
to be done for any other speaker. Although adequate results
could eventually be achieved, there were some limitations with
this work that require further investigation.

For the VidTIMIT corpus, some parameters needed to be
changed for speaker fadg0, as she enunciates clearly, and
so her mouth region was more prominent than other videos,
requiring a change in threshold. Otherwise, other videos used
standard parameters. Finally, a number of custom videos were
recorded to test the system in unpredictable environments,
as the existing Grid and VidTIMIT corpora tended to be in
optimal environments. It was found in these that there were
some issues identified. For example, if the speaker was close
to the camera, then the wavelength needed to be increased.
Other speakers had particularly prominent teeth when they
were close to the camera, and here, the minimum patch area
could be adjusted. In addition, the same limitation was present
with this feature extraction approach as for other approaches
in the literature. Fig. 5 shows two examples of this. The first
speaker has a moustache covering his mouth, making tracking
impossible. The second speaker has hair covering his face, is
looking down, rather than at the camera, and has a lot of facial
hair, also making feature extraction challenging.

However, this is an issue common to many other feature
extraction approaches, and as our approach is not reliant on a
model, recovery from a glitch is easy. So if an incorrect patch
is identified in one frame, or a patch is not identified, this error
is not compounded in subsequent frames, as each frame is
calculated individually. As an example of successful tracking,
Fig. 6 shows a number of frames from sentence bbae6n by
Grid speaker s7. Of most interest is that in addition to the



Fig. 5. Two examples of speakers recorded for trials that could not be easily
used for feature extraction.

conventional 2D information (lip widths, area), the colour
change shows when the mouth is wide open (bottom left),
when the mouth is totally closed (top left and bottom right),
and various transitional phases, which are clearly represented
by the colour change, with the lip tracker colour being lighter
for more closed mouths, and darker for more open mouths.
This is an important additional feature that helps to build a
3D representation of the mouth region.

Fig. 6. Tracking with Grid speaker S7 for a single sentence, showing change
in mouth opening size, and also the slight angle required due to the speaker
having their head at an angle.

Overall, we found that our approach could accurately track
lip features over a range of different speakers, genders, sen-
tences, and corpora. The parameters are flexible and mean
that it is straightforward to adjust for individual videos. In
this paper, we therefore focus on demonstrating preliminary
example results of the tracking process. In all cases, the
features were all extracted from the video file without any
offline training being required, although some videos had
their parameters adjusted and were re-run. These results are
intended to show that speech data can be analysed by the
human eye, and that our approach can produce consistent
results.

Fig. 7. 10 normalised sentences from speaker 12, showing from top, mass,
width, and area for the word ’blue’.

B. Individual Word Analysis

We aim to produce simple data that can demonstrate word
relationships and then be used for future feature extraction. As
discussed previously, we extracted a number of sentences from
the Grid corpus. As speakers have different speech rates and
mouth sizes, we normalise over time and amplitude, and use
word alignment data (provided by the Grid corpus) to identify
individual words. Obviously, as these were manually identified
by the authors of the Grid corpus, this means that the words
do not start at the exact same time (for example, some words
may start immediately, where others may have a small pause).
As the alignment data is not fully precise, we adjust the x-axes
slightly where appropriate to match peaks. It should be noted
that this type of analysis is hard to compare to other features,
such as DCT or CNN features, as these features can not be
simply and clearly visualised.

To demonstrate these results, we have chosen some example
words. The first 3 plots in Fig. 7 show 10 sentences from Grid
speaker 12, showing the mass, width, and area of the word
’blue’. Fig. 7 (top) shows the mass (the 3D feature). The mouth
closes on the ’b’ plosive which is shown in the minima, and
then gradually opens. Fig. 7 (2nd) and (3rd) show the width
and area changes. They are very similar, but the width has a
smaller rate of change, with increased width during the closed
mouth of ’b’, and a slight reduction over time. Of great interest
is the consistent pattern that can be seen for all 10 sentences.

In Fig. 7, we used speaker 12 as a representative example.
Other speakers were also found to exhibit very similar patterns.
We demonstrate this in a single word with limited changes.



Fig. 8. Different words from the same speaker, showing mass (top) and area
(bottom) for 6 different words.

Fig. 9 shows the word ’eight’ said by 6 different speakers. It
can be seen that there are clear patterns, with one exception,
in a single sentence, where the word was found to be a little
different, possibly due to pre-voicing the next word. The word
’please’ in Fig. 7 (4th) is similar. The mass peaks when the
mouth opens during pre-voicing, followed by a closing for the
plosive of ’p’. The area and width are again very similar, with
only the area being shown here, with the narrowest area before
the ’p’ is formed, which expands around the ’ee’ stage, before
closing slightly for the ’s’ part. Again, all 10 sentences here
show a similar pattern, showing a pattern for all 10 speakers.

Finally, we plotted 6 different words from the same speaker
in Fig. 8 , showing ’at’, ’bin’, ’blue’, ’now’, ’nine’, and ’q’. As
we can see, despite the normalisation, there is no clear pattern,
unlike the other examples above, showing that our approach
can identify individual words very simply.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a very lightweight and quick approach to
generating 3 dimensional lip features. Example results showed
that these features can represent words in a way that can be
distinctly and consistently visualised, and can be applied to
a wide number of different speakers. However, as with many
similar approaches, there are limitations, although due to space
limits, we were unable to discuss these in detail. We found that
speakers with facial hair could cause problems, as did head
turning and looking away. However, as there is no model used,
the tracking can easily recover from short term errors.

The results presented in this paper focused on speech anal-
ysis and how to use the speech features to carry out a manual

Fig. 9. 6 normalised sentences from Grid speakers 15, 16, 17, 18, 19, 23,
showing (from top) mass, width, and area for the word ’eight’. We also show
examples from 10 different speakers for the word ’please’, showing mass and
area.

analysis. This is the initial presentation of these features, and
the key difference is that using the human eye, key differences
between words can be identified, which are consistent across
the same speaker saying the same word several times, and also
across different speakers. The identification can be carried out
visually, and the features can be explained to non-experts. The
features are also quick to calculate and lightweight.

The next step with these features is to experiment with
deeper machine learning. The aim is to run deeper compar-
isons for speech processing, considering word recognition,
frame based speech estimation [26], or speech filtering [30].
This will involve using LSTM (Long Short Term Memory)
based machine learning, and running comparisons with other



approaches. The key benefit of this approach is the simplicity
of calculation, and the explainable nature of the features. This
work has a number of practical applications, such as linguistic
(pronunciation) training and further speech analysis. Further
future work will further investigate these features, carry out
speech recognition tests, and improve the system to prevent
glitches.
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