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Physiological evidence suggests that sound onset detection in the auditory system may be performed
by specialised neurons as early as the cochlear nucleus. Psychoacoustic evidence shows that the
sound onset can be important for the recognition of musical sounds. Here the sound onset is
used in isolation to form tone descriptors for a musical instrument classification task. The task
involves 2085 isolated musical tones from the McGill dataset across five instrument categories. A
neurally-inspired tone descriptor is created using a model of the auditory system’s response to
sound onset. A gammatone filterbank and spiking onset detectors, built from dynamic synapses
and leaky integrate-and-fire neurons, create parallel spike trains that emphasise the sound onset.
These are coded as a descriptor called the onset fingerprint. Classification uses a time-domain
neural network, the echo state network. Reference strategies, based upon mel-frequency cepstral
coefficients, evaluated either over the whole tone or only during the sound onset, provide context
to the method. Classification success rates for the neurally-inspired method are around 75%. The
cepstral methods perform between 73-76%. Further testing with tones from the University of Iowa
Musical Instrument Samples collection shows that the neurally-inspired method is considerably more
robust when tested with data from an unrelated dataset.

PACS numbers: 43.75.Xz, 43.75.Cd, 43.64.Bt, 43.66.Jh

I. INTRODUCTION

Relating human perception of sound to quantifiable
acoustic parameters has driven much of the timbre re-
search over the past few decades. Studies have sought
spectral and temporal quantities which show promise
from a signal processing perspective, and which might
be relatable to evidence from psychoacoustic and phys-
iological research. Such studies can be traced back to
Helmholtz’s1 suggestion that human timbre perception
arises from the instantaneous spectral shape as decoded
by the cochlea. Timbre research remains a very ac-
tive field, with many applications such as voice recog-
nition, hearing disorder research and music information
retrieval.

An increasingly common application of timbre research
has been to build automatic classifiers that can dis-
tinguish between musical instruments using calculable
acoustic features. A related and larger branch of research
has been automatic speech recognition (ASR). ASR has
informed many musical instrument classifiers, most no-
tably through the use of mel-frequency cepstral coef-
ficients (MFCCs) as easily calculable acoustic features
with a degree of biologically-inspired motivation2.

We propose a musical instrument classification system
based exclusively upon a neurally-inspired description of
the sound onset, and we compare it to a more classical
system based upon MFCCs. The decision to work with
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the onset alone is based both upon the physiological ev-
idence of its prominence in the early auditory coding of
sound, and upon the psychological evidence of its impor-
tance for perception. The premise is not that the on-
set contains all the relevant information for musical tone
perception, but that a sound onset representation may
be useful for musical instrument classification.

Descriptions of the sound onset

The nature of the sound onset, for example its dura-
tion and spectro-temporal evolution, may be considered
either physically or perceptually. Often there is a strong
correlation between these viewpoints, but this need not
always be the case. For example, relative movement of
the listener and sound source may modify the perceived
onset without change to the onset’s physical production.
The physical sound onset results from the sound gen-

eration mechanism. At the start of a pitched trom-
bone note, for example, there is an initial injection of air
into the instrument, followed by a short period of time
when the player’s lips vibrate independently of instru-
ment feedback. The acoustic result of this is a mixture
of noise from the initial air pulse, and a periodic wave-
form from the autonomous lip vibrations. After some
time a steady state is reached where a pitched note due
to acoustically-reinforced lip vibrations dominates the in-
strument output3. The transition from onset to steady
state and/or offset is continuous, so that isolating the
physical onset from the rest of the sound requires some
calculable metric. In the example it could be argued
that the time between the start of the initial air injection
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and the commencement of acoustically-reinforced lip vi-
brations represents the physical sound onset. In musical
acoustics this interval is often referred to as the attack
transient4. Similar mechanisms exist for many of the
acoustic instruments.
Some sounds do not fit into such a clear onset - steady

state - offset regime. Impulsive sounds, for example, may
reach a maximum amplitude almost instantaneously, fol-
lowed by a rapid decay. Nonetheless, the concept of ‘on-
set’ remains important, regardless of the nature of the
steady state and offsets. This is because the onset al-
ways represents a transfer of signal energy from a lower
(possibly the noise floor) to a higher level, and there is
considerable evidence that the auditory system can ex-
tract significant information about the sound source from
the nature of this energy change. This leads to the con-
cept of a perceptual sound onset, which is broadly defined
as a significant increase in signal energy perceived by the
sound receptor, which in this case is the cochlea.
The onset is one of the most strongly represented sound

features within the early auditory system5,6, along with
amplitude modulation7. The auditory nerve responds
most intensely at the onset of sustained sounds. Within
the cochlear nucleus there are further neurons (octopus,
and some bushy and stellate cells) which are thought
to specifically code the stimulus onset8–10. The precise
mechanisms that govern these neural encodings, which
may include specialised ion channels, neuron leakiness
and synapse quality and/or innervation, remain unclear.
It is also unclear exactly how the low level onset coding is
used by higher-order parts of the auditory system. There
is, however, some evidence that the onset coding may
be important for certain sound recognition tasks11, and
that the onset plays an important role in direction find-
ing through representation of interaural time and level
differences10.

Psychoacoustic timbre studies and the sound onset

Numerous psychoacoustic studies have shown that the
onset provides an important cue for timbre perception
and thus musical instrument identification, particularly
in the case of isolated tones. In the mid 1960’s both
Saldanha & Corso12 and Clark et al13 found that the
onset transient was a salient feature for timbre percep-
tion. Risset & Mathews14 also showed that the temporal
properties of the onset transient were important for the
perception of trumpet tones.
Many other studies have investigated the relationship

between timbre perception and acoustical properties of
sound. Grey & Moorer15 and Charboneau16 presented
listeners with original and modified versions of musical
tones. Thresholds of timbral discriminability were eval-
uated which showed the negative effect of smoothing the
patterns of spectro-temporal variation within complex
tones. The removal of the onset transient also led to par-
ticularly high discriminability between the original and
modified sounds, and by implication suggested its impor-
tance in tone perception.
McAdams & Rodet17 demonstrated that vibrato could

be an important cue for certain types of musical sound,
while Kendall18 found that steady-state portions of the
sound could sometimes be as important as the onset tran-
sients. More recently, McAdams & Bigand19 concluded
in their thorough review of timbre research that it is likely
that the onset transient contains the most important cues
for identification.

Musical instrument classifiers based on timbral considerations

There have been numerous prior attempts to build in-
strument classifiers, some using onset descriptors along-
side others from the steady state. Typically the approach
has been to calculate a vector of descriptors for each tone
based upon its spectro-temporal evolution. Large num-
bers of tones are analysed and used to train and test a
classification system such as a neural network.
An early attempt to use neural networks to classify

musical sounds can be found in De Poli & Tonella20. The
concept of a ‘timbre space’ first suggested by Grey15 was
replicated within a neural network, and clustering was
used to categorise sounds. A similar approach involving
a self-learning neural network was adopted by Cosi et
al21, capturing tone quality with MFCCs.
Feiten & Günzel22 used supervised neural network

learning to map timbral qualities to human verbal de-
scriptions. Spevak & Polfreman23 studied the suitability
of a range of auditory model sound representations, in-
cluding MFCCs, as timbral descriptors using neural net-
works. Both studies used the sound descriptors to build
temporal representations of the dynamic sound develop-
ment. Similar neural networks were used with a nearest
neighbour classifier by Kaminskyj & Materka24 to distin-
guish between four types of musical instrument.
In a widely cited conference paper Martin & Kim25

described 31 acoustic parameters, including the average
pitch, the average spectral centroid and the onset slope.
A corpus of 1023 sounds, over five instrument families
(classes), were used to build a Gaussian classifier model.
The instrument families were identified with about 90%
success.
Brown26 used 18 cepstral coefficients as tone descrip-

tors in a two-class musical instrument classification prob-
lem. A k -means algorithm was used to cluster training
data, in combination with a Bayesian decision rule for
assigning instrument class. Success rates of around 85%
compared favourably with human trials based on a sub-
set of the data. A further study27 based on the same
cepstral tone descriptors also showed promising results.
Herrera et al28 classified impulsive drum sounds using

a variety of acoustic descriptors and classifiers. Partic-
ular attention was paid to descriptors that captured de-
tails of the onset transient. Success rates between 90-99%
were reported.
Recently Barbedo & Tzanetakis29 described a system

based upon the mapping between individual partials in
a complex sound mixture. The system calculated fea-
tures based upon key partials and provided a proba-
bility for the most likely source instrument. Reports
of numerous other musical instrument classifiers can be
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found, mostly from conference proceedings. See the re-
view publications30,31 for a detailed summary.
This study investigates the suitability of using the

sound onset in isolation to form descriptors useful for
musical instrument classification. This was achieved by
constructing two competing musical instrument classifi-
cation systems, and testing them with a common task
based on sounds from the McGill dataset32 (section II).
Further testing involving sounds from both the McGill
and University of Iowa Musical Instrument Samples33

collection provided an even more challenging task.
The novel classification system was called Strategy A,

and used a biologically-inspired neural-like coding of the
perceptual sound onset to form sound descriptors (sec-
tion III). The key feature was that the descriptors re-
mained as time-domain signals, and so required the use
of a temporal recurrent neural network, the echo state
network, as a classifier. Strategy B was a more classi-
cal instrument classifier based upon MFCCs, either over
the whole tone or the onset alone (section IV). A stan-
dard multilayer perceptron neural network was used as
a classifier. This approach was broadly similar to pre-
vious systems described by Brown26,27 and others34–36,
and provided context to the novel strategy. Results and
discussion of both classifiers are provided in section V.

II. THE CLASSIFICATION TASKS

The main classification task was based upon a corpus
of 2085 tones drawn from the McGill dataset. All were
sampled at 44.1kHz with 24 bits resolution. The tones
were split equally across five broadly hierarchical musical
instrument families, or classes, over octaves 1-6 (Table I).
The instrument classes were sorted according to the

physics of the initial tone generation mechanism. Each
class involved a unique, though often related, set of tone
generation physics. For example, while both the brass
and reed classes involve vibrating air valves, the stiffness-
dominated behaviour of the reed instruments contrasts
with the variable stiffness-mass dominated behaviour
of the brass (lip-reed) instruments3. For the bowed
and plucked string classes, although both groups in-
volve the same instruments, the method of playing differs
(bowed versus pizzicato). The sound generation physics
thus differ, leading to markedly different tone qualities.
Broadly similar hierarchical grouping approaches have
been adopted by several previous studies15,25,37.
The classification task was the same for both Strate-

gies A and B. The dataset was randomly split into train-
ing (70%) and test data (30%), a method known as
bootstrapping38. The training data was used to train the
appropriate classifier (different for each Strategy), which
was then tested with the unseen test data to give suc-
cess rates for each class, expressed as a confusion matrix.
Multiple independent randomisations of the train/test
split were computed for each classifier configuration, and
a mean overall score calculated. The classification sys-
tems were thus tested for generality, rather than their
ability to simply classify known data. Both strategies
are summarised in Table IV.

TABLE I. Summary of instrument classes used in the classi-
fication task. There were 2085 tones in total (417 per class).
The mean onset duration interval as detected by the auditory
model used by Strategy A (see section III) is shown.

Class
label

Class descrip-
tion

Instruments included
in class

Mean onset
duration

Bs Brass Cornet, trumpet,
french horn, trombone,
tuba

80ms

Rd Reed Clarinet, bassoon,
oboe, saxophone

110ms

SB Bowed string Cello, viola, violin,
double bass (bowed)

120ms

SP Plucked
string

Cello, viola, violin,
double bass (pizzicato)

45ms

SS Struck string Piano 46ms

An additional classification task, described in section
V.D, was designed to further test the generality of the
classification systems. This was achieved by training each
Strategy using all 2085 sounds from the McGill corpus,
and testing the trained classifiers using 1000 sounds (200
per class) drawn from the publicly-available University
of Iowa Musical Instrument Samples collection33. This
equated to a 67.6%/32.4% train/test split. These new
sounds were also of good quality, sampled at 44.1kHz
and 16 bit depth, but were obtained under completely
different conditions (microphones, recording space, out-
board gear, etc.) than the McGill sounds. They thus
provided an ideal test of the ability of each Strategy to
deal with genuinely new data.

III. CLASSIFIER STRATEGY A

A. Biologically-inspired tone descriptor based on the onset

For the Strategy A tone classification system a neural-
like coding of the perceptual sound onset39,40 was used as
the tone descriptor. The onset detection technique was
based on a simple model of the mammalian auditory sys-
tem, illustrated in Fig. 1. The cochlea response was mod-
elled with the ubiquitous passive gammatone filterbank41

(part A in Fig. 1, and section III.A.1). The output from
each gammatone filter was then spike-encoded to give a
low-level simulation of the auditory nerve’s (AN) early
response to sound stimuli (part B, and section III.A.2).
The strong spiking onset response observed by certain
neurons within the cochlear nucleus8–10 was then mod-
elled using an array of leaky integrate-and-fire neurons,
stimulated by the simulated AN signal (part C, and sec-
tion III.A.3). Example outputs from each of these pro-
cessing stages are shown in Fig. 2, and further details are
provided below. Finally, the raw onset spikes were coded
into ‘onset fingerprints’, a reduced space for use with the
classifier (part D, and section III.A.4). The key auditory
model parameters are summarised in Table II.
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FIG. 1. Schematic of the auditory model used to form tone
descriptors for Strategy A. AN spike generation is shown for
one channel (of 15) and four sensitivity levels (of 20), and
onset neurons/depressing synapses for one sensitivity level (of
20).

1. Gammatone filtering

The first order response of the basilar membrane
was modelled with a 15-channel gammatone filterbank.
Channel centre frequencies were spaced between 200Hz
and 5kHz. Using only 15 channels was a clear abstrac-
tion from the 3000 or so inner hair cells (IHCs) that make
up the cochlear filter. The purpose was to obtain a tone
descriptor dimensionality and frequency range that was
broadly comparable to the 15 MFCCs used for Strategy
B. This allowed a more reasonable comparison between
the two methods which was not skewed by a frequency
resolution advantage, and so better isolated the novel na-
ture of the onset coding of Strategy A.

2. AN-like spike encoding

The outputs from the filterbank channels were coded in
a manner inspired by the phase-locked spiking behaviour
observed in low-to-mid frequency sensitive neurons which
innervate the cochlea’s IHCs42. The output from each
channel was encoded as 20 spike trains (sensitivity levels),
resulting in 300 spike trains to describe each sound.
Spikes were produced at positive-going zero-crossings

of the filtered signals. For each zero-crossing i, the mean
signal amplitude during the previous quarter cycle Ei

was calculated and compared to the values Sj=1:20 of 20
sensitivity levels with a difference δlevels of 3dB between
levels. Sensitivity level 1 was the most sensitive level,
with a low signal amplitude required to produce a spike.
If Ei > Sj then a spike was produced at the sensitivity
level j. For any spike produced at level k, a spike was nec-
essarily produced at all levels j < k. This representation
was similar to that employed by Ghitza43 where it was
noted that it led to an improvement in automatic speech
recognition in a noisy environment. The use of multiple
sensitivity levels per channel allowed both temporal and
dynamic level information to be retained.
There was information redundancy due to the paral-

lel nature of the spike coding, but this was necessary
for the onset detection system. Redundant spikes were

TABLE II. Summary of parameter values and variables used
in the spiking auditory model and perceptual onset detector
used for Strategy A.

Symbol Description Value

nchannels Number of filterbank channels 15

nlevels Number of sensitivity levels 20

δlevels Inter-sensitivity level difference 3dB

Sj=1 Lowest sensitivity level (sampled at 24bits) 0.002

nadj Number of co-innervating AN channels on
each onset neuron

3

α Rate constant, neurotransmitter reservoir C 100

β Rate constant, neurotransmitter reservoir R 9

γ Value during an AN-spike 1100

w Synapse weight (all synapses) 1

later removed by a reduction to the 15 sensitivity-level-
normalised channels of the onset fingerprint coding (sec-
tion III.A.4).

3. Onset detection

The AN-like representation above does not emphasise
onsets in the encoded sound signal, unlike the real mam-
malian auditory nerve6. However, its parallel coding
makes it suitable for use with a secondary onset detection
system39,40. This system was inspired by the onset re-
sponse behaviour exhibited by octopus, and some bushy
and stellate cells10 cells within the cochlear nucleus.
The AN-like spike trains were passed through depress-

ing synapses to a leaky integrate-and-fire (LIF) neuron
layer. There was one LIF neuron per filterbank channel
per sensitivity level, giving 300 onset neurons in total.
Each encoded the behaviour of a specific spectral and
dynamic range of the sound signal during the onset.
The synapse model was based on the 3-reservoir model

used by Hewitt & Meddis44 in the context of IHC-to-AN
fibre transduction. A similar model has also been used by
Tsodyks & Markram45 to model rat neocortex synapses.
The model employed three interconnected reservoirs of
neurotransmitter. Reservoir M represented the available
presynaptic neurotransmitter, reservoir C was the neu-
rotransmitter currently in use, and reservoir R contained
neurotransmitter in the process of reuptake (i.e. used,
but not yet available for reuse). The reservoir quantities
were related by the following three first order differential
equations

dM

dt
= βR−γM

dC

dt
= γM−αC

dR

dt
= αC−βR

(1)
where α and β were rate constants, and γ was positive

during an AN-spike, and zero otherwise.
The differential equations were calculated for each time

sample as the AN spike train signals were fed to the on-
set layer through the depressing synapses. The loss and
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FIG. 2. Example raw sound signal, AN-coded spikes and
onset spikes, clustered near the start of the signal, for an
isolated trombone tone at sensitivity level 5 (15 also shown
for onset spikes). The onset spikes over multiple sensitivity
levels are coded into a single 15 channel time-series signal
called the onset fingerprint (see Fig. 3, and section III.A.4).

manufacture of neurotransmitter was not modelled, and
the amount of post-synaptic depolarisation was assumed
to be directly proportional to the value of C.
Innervation of each onset neuron in channel b and sen-

sitivity level j from nadj adjacent channels resulted in a
total input to the neuron of

Ib,j(t) =

h=b+nadj
∑

h=b−nadj

wCh,j(t) (2)

where w was the weight of each synapse (the same for all
inputs) and Ch,j was the neurotransmitter currently in
use in the cleft between the AN input from channel h, at
sensitivity level j and the onset neuron. An nadj value of
1 was used, so that each onset neuron was innervated by
3 parallel AN channels at the same sensitivity level.
Assuming the signal in a given bandpass channel b was

strong enough to produce AN spikes at sensitivity level
j, the corresponding onset neuron for channel b, sensi-
tivity level j, would receive at least Fb spikes per sec-
ond (where Fb was the centre frequency of the channel).
This rate would normally be larger due to contributions
from adjacent channels. However, depletion of the avail-
able neurotransmitter reservoirM , in conjunction with a
slow reservoir recovery rate, meant that an evoked post-
synaptic potential (EPSP) would only be produced for
the first few incoming AN spikes. The recovery rate was
purposefully set low to ensure that synapses did not con-
tinue to produce EPSPs much beyond the initial sound
onset.
The synapse weights w were set to ensure that a single

FIG. 3. Example onset fingerprint signals for brass (trom-
bone, 64ms duration) and bowed string (violin, 200ms dura-
tion) classes. Signal intensity is normalised to the lowest sen-
sitivity level used for the AN spike coding (section III.A.2).

EPSP was insufficient to cause the onset neuron to fire.
Thus multiple ESPSs from adjacent synapses were re-
quired for the onset neuron to fire. The neurons employed
were also leaky40,46, meaning that the ESPSs needed to
be close to concurrent for an action potential, or ‘onset
spike’, to be produced. The overall aim was to ensure
that onset spikes were only produced by sudden, cross-
frequency rises in signal energy.

4. Onset fingerprint coding

It would be possible to use the raw onset spike trains
as a time-domain tone descriptor. However, a condensed
form was used which reduced the number of inputs, and
computational load, to the classifier (see section III.B).
It also made the coding dimensionality more comparable
to the 15 MFCCs used by Strategy B. The 300 onset
spike trains, each of which coded a specific frequency
channel and signal level over time, were converted into
15 spike trains (one per frequency channel) normalised
by the highest sensitivity level.

The single onset feature which corresponded to the
start of the musical note was first identified. Certain
sounds, such as some bowed instrument (SB) tones, pro-
duced secondary onset spikes during the steady state due
to large amplitude variations caused by vibrato. Groups
of onset spikes separated by more than 25ms were treated
as separate onset events. Only the first onset event
grouping was picked out as the tone descriptor.

The onset grouping was further processed to reduce the
sample rate and the number of parallel spike trains. To
do this the raw onset signal was time-sliced into 1ms win-
dows. For each channel, each time-sliced signal portion
was examined to find the highest intensity onset spike sj ,
and the value of the sensitivity level j used to label the
time slice, normalised by the highest possible spike in-
tensity Sj=20. If no spikes occurred, a zero was recorded.
Thus each 1ms time window of the signal was described
by a single 15-element vector, with one element per chan-
nel. The signal over all time-slices we call the onset fin-

gerprint, T . Two examples are shown in Fig. 3.
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B. Temporal recurrent reservoir network classifier (echo
state network)

To investigate the usefulness of the onset fingerprint
coding a suitable classifier was required. A range of clas-
sifiers have been used in previous musical instrument
classification systems. An early study by Cosi et al34

used neural networks with timbral descriptor vectors.
Martin and Kim25 used Gaussian models in combina-
tion with Fisher multi-discriminant analysis. Brown26

used a broadly similar method, building a classifier
from Gaussian probability density functions acted upon
by a Bayesian decision rule. Agostini et al47 experi-
mented with classifiers built from support vector ma-
chines (SVM). Many other approaches can be found in
the literature30.
The temporal onset coding of Strategy A called for a

classifier capable of operating in the time domain. There
are a range of tools available for performing such tasks, a
number of which have been subsumed under the general
category of reservoir computing.

1. Reservoir computing

Reservoir computing represents a general category of
recurrent neural networks, within which there are a num-
ber of related implementations48. Jaeger’s echo state
network49 was used here. Such networks have commonly
been used for time-series prediction. Recently they have
also been applied to time-series classification in areas
such as speech recognition50–52, and it is within this
framework that the current application resides.
Reservoir computing networks are related to SVMs,

where an input signal is more easily separated by trans-
lation to a higher-dimensional space. The basic structure
of most reservoir networks is broadly the same, with three
principal layers as illustrated in Fig. 4.
A large, sparsely interconnected mass of simulated neu-

rons, the reservoir layer, is stimulated by one or more
input layer nodes. Each neuron in the reservoir has
a nonlinear activation, the most common varieties be-
ing sigmoidal and LIF functions. The interconnection
weights are randomised at the start of the task (most of
them being set to zero) and do not change. Output layer
nodes are connected to each reservoir node via a train-
able weight. These weights form the network’s learning
framework.
Reservoir networks are designed to receive time-

varying signals. At each time step the current value of
the input signal is projected through the reservoir layer
to the output layer. However, the new reservoir neuron
activations depend both upon the new input stimulation,
and upon a (tuneable) number of their previous states.
The network thus has a memory, which is sensitive to
both the amplitude and timing of input stimulations.
The principle is that there may exist some characteristic
set of reservoir layer activations that better distinguish
different types of input signal than can be found in the
space of the raw input signals themselves.
The echo state network used here was intended to ex-

FIG. 4. Schematic of the structure of the echo state network53

used as a classifier for Strategy A. An input layer of 15 nodes
(one per onset fingerprint filterbank channel) connects into
a large, interconnected and untrained reservoir layer. Only
connections from the reservoir layer to the output layer, which
has one node per instrument class, are trained (dashed).

ploit both the spectral and the temporal information con-
tained within the onset fingerprint of Strategy A. The hy-
pothesis was that the unique generation physics of each
instrument class, encoded by the onset fingerprinting,
could excite the nonlinear reservoir in some characteristic
manner, regardless of pitch or individual instrument. By
training the network on 70% of the dataset the learned
connections to the output classification layer would be
optimised so that when presented with a new tone (be-
longing to one of the previously observed classes) the
network would reach an appropriate characteristic state.
Projection of the reservoir state to the output layer nodes
would then indicate the appropriate instrument class.

2. Echo state network setup

The echo state network (ESN) implementation of reser-
voir computing was used to build a classifier for Strategy
A. An open-source Matlab toolbox released by Jaeger et
al54 was adapted to suit this application.
A number of parameters and configuration choices

were required to configure the echo state network. The
first configuration choice was the type of neurons to use
within the reservoir: leaky sigmoidal neurons were cho-
sen. There were then five key network parameters to
assign, summarised in Table III. Parameter sweeps were
performed to explore network classification performance.
The reservoir size determined the size of the space into

which the input signal was projected, as well as the num-
ber of trainable output weightings. The ESN principle
depends on a suitably large reservoir with appropriate
temporal dynamics, but it should not be so large as to
permit overfitting. The reservoir sizes of between 500-
2000 units used here were typical of similar implemen-
tations in speech recognition55. Connections between
reservoir neurons were randomly assigned using a sparse
weighting matrix, with the connectivity fraction set to
10/R where R was the reservoir size.
The spectral radius was a critical parameter which de-
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TABLE III. Summary of echo state network parameter ranges
investigated for Strategy A. The optimal configuration is
based on the mean of ten repetitions (see section V.A). Pa-
rameter explanations in section III.B.2.

Parameter Range explored Optimal value

Reservoir size 500 - 2000 1000

Spectral radius 0 - 1 0.18

Neuron leakage 0 - 1 0.14

Input scaling 0.5 - 10 1

Ignored states fraction 0.1 - 0.9 0.7

fined the time scale of the reservoir dynamics53. Values
closer to zero are useful for short sequences, values closer
to one for tasks requiring longer network memory. A
compromise value suitable for both short (e.g. plucked
string) and long (e.g. bowed string) onset fingerprints
was sought.
The neuron leakage parameter determined the leaki-

ness of the reservoir neurons. The input scaling acted
between the input and reservoir layers, either enhancing
or reducing the amplitude of input stimulation received
by the reservoir. This had the effect of increasing or
decreasing the degree of nonlinearity displayed by the
reservoir neurons.
The initial portion of each onset fingerprint was disre-

garded as the reservoir layer required a period of warm-up
time to overcome statistical fluctuations caused by start-
ing from zero activation53. The ignored states fraction
determined this split (extension to the ESN toolbox54).

3. Echo state network training and testing routine

Fig. 5 shows a flowchart of the main steps involved
in creating, training and testing the echo state network
for Strategy A. Each sound file was first analysed to pro-
duce its onset fingerprint T . An training input signal
RTr was then created by randomly sorting together 70%
of the fingerprints. The remaining 30% of the data were
used to form the test signal RTe. Matching output train
(GTr) and test (GTe) signals were then formulated which
recorded the instrument class of each of the onset finger-
prints in the input signals.
For each parameter combination (see Table III) a new

echo state network was initialised. The training input sig-
nal RTr was run through the network and the reservoir
activations recorded. At the start of each onset finger-
print within RTr the reservoir layer activations were reset
to zero to prevent overlap between network states belong-
ing to consecutive fingerprints (this was an extension to
the default ESN toolbox functionality). After the reser-
voir activations for all training fingerprints were recorded
the weights to the output layer were trained against the
target output signal GTr.
The test input signal RTe was then passed through the

trained network. For each onset fingerprint in the test
signal the predicted output signal GObs was compared to

FIG. 5. Flowchart showing the principal steps involved in
training and testing an echo state network with onset finger-
prints as input signals. The upper half shows the formation of
the train/test input/output signals from the individual tones
in the dataset (each tone produces an onset fingerprint T

i).
The lower half shows the network training and testing routine.

the target output signal GTe. The most commonly pre-
dicted class in GObs, indexed by the output node with the
highest signal amplitude, was taken as the classification
decision. This was compared the the actual class stored
in GTe to deduce the classification success.
The routine was performed independently ten times for

each ESN parameter set. This corresponded to ten differ-
ent initial reservoir layer randomisations and train/test
input signal randomisations. The mean and standard de-
viation success rates were recorded in a Strategy A con-
fusion matrix C

McGillx
A , where x recorded the network pa-

rameters and dataset description. This ensured that the
classification results were robust for each network con-
figuration, and were not simply a fluke of a particularly
well-matched network and dataset.

IV. CLASSIFIER STRATEGY B

A. Classical MFCC-based tone descriptor

A separate musical instrument classification system,
Strategy B, was sought for comparison with Strategy A.
The most common tone descriptors used in the litera-
ture, in line with speech recognition research, have been
MFCCs26,27. These describe the spectral content of a
tone in a manner inspired by the roughly logarithmic
coding used by the cochlea.
The MFCC implementation used for Strategy B is

summarised in Fig. 6. The onset portion of the audio
signal, yonset was first identfied from the overall signal,
y. The onset timing determined by the auditory model
used for Strategy A (see section III.A) was used to set

Onset transient for sound classification 7



the timing of the onset duration. The whole tone and the
onset section were then processed separately to produce
two alternative MFCC descriptor vectors, MB1 (used in
Strategy B-1) and MB2 (used in Strategy B-2).
The MFCC calculations were based on the formula-

tion of Slaney56, and were performed independently for
each signal portion/sub-strategy (y or yonset). The signal
was first Hamming windowed into 23ms chunks, with an
inter-chunk overlap of 11.5ms. Windowed signals with
a mean amplitude of less than 0.2% of the peak were
ignored (16000 units at 24bits). For each remaining win-
dowed signal portion the discrete Fourier transform was
calculated, the output of which was passed through the
filterbank array. There were 40 filters, the lower 13 of
which were linearly spaced at 66Hz intervals, starting at
133Hz. The upper 27 filters, all located above 1kHz with
an upper limit at 6854Hz, were logarithmically spaced
at interval factors of approximately 1.07. The filterbank
outputs were logarithmically compressed to give set of
parallel signals Xi where i indexed the filterbank chan-
nel number. Finally, the signals Xi were passed through
a discrete cosine transform to reduce dimensionality and
provide the vector of MFCCs Mj for the windowed signal
segment. The cosine transform was computed as

Mj =
C
∑

i=1

Xi · cos

[

j ·

(

i −
1

2

)

·
π

C

]

, for j = 1, 2, 3...J

(3)
where specifying J = 15 resulted in 15 MFCCs, and C =
40 was the total number of filterbank channels.
The sound signal (y or yonset) was thus described by

an array of 15 MFCC vectors, with each vector calcu-
lated from 23ms of the signal. The final step was to
reduce this down to a single, mean MFCC vector that
represented the average distribution of MFCCs over the
whole tone (MB1), or over the onset section of the tone
(MB2). This averaging was somewhat less subtle than
the clustering method used by, for example, Brown26,
but was justified as a straightforward approach suitable
for forming a functional comparison system.
Two alternative sub-strategies were specified for two

reasons. Firstly, it was important to have a descriptor
vector formed in a manner reasonably comparable to pre-
vious studies26,27,34–36, in this caseMB1. This provided a
broadly standardised classification score for the dataset.
Secondly, an MFCC based descriptor vector MB2 was
sought which was more directly comparable to the on-
set fingerprint coding of Strategy A. The overall aim was
to ensure that the dataset was thoroughly explored with
a variety of methods to provide a clear context for the
novel contribution of Strategy A.

B. Multilayer perceptron neural network classifier

The two varieties of Strategy B used a multilayer per-
ceptron neural network38 (MLP) as a classifier. This clas-
sifier has been used in many machine learning tasks, in-
cluding for musical instrument classification58. The MLP
implementation used the open-source Weka toolbox57.

FIG. 6. Flowchart showing the calculations used to form the
15 element MFCC descriptor vectors required for the two dif-
ferent versions of Strategy B.

The processing and classification methodology was the
same for both strategies, but was performed indepen-
dently to produce two alternative MFCC-based classifi-
cation systems, B-1 and B-2 (see section IV.A).
For each strategy the sounds from the corpus of 2085

isolated tones were first analysed to produce feature vec-
tors of 15 MFCCs. These vectors were randomly sorted

into a single large dataset array M
B1/B2
i=1:2085 for each strat-

egy, together with a note of the corresponding instru-
ment class of each entry. The dataset arrays were then
split into train (70%) and test (30%) dataset arrays, and
passed to the MLP classifier.
A range of MLP sizes (10-1000 units), configurations

(1-5 layers) and training rates were explored with param-
eter sweeps. It was found that a single layer arrangement
with 100 neuron (hidden) units was generally optimal for
both versions of Strategy B. An MLP with only 50 units
performed approximately 3% below this level.
Ten differently randomised train/test splits were thus

run through a 100 unit MLP for each version of Strategy
B, and mean and standard deviation success rates calcu-
lated. These provided optimal mean confusion matrices
for each Strategy, CMcGill

B1 and CMcGill
B2 .

V. RESULTS AND DISCUSSION

A. Configuration of the echo state network for Strategy A

Parameter sweeps are essential to determine the most
suitable network configuration for an echo state network
and dataset55. The explored parameter space of the echo
state network is summarised in Table III.
It was found that a reservoir size of 1000 units pro-
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TABLE IV. Summary of tone descriptor and classification methods used by Strategies A & B (details in sections III & IV).

Method Tone descriptor Classifier technique Key features of the method

A Simulated neural onset coding
(the ‘onset fingerprint’) with 15
signal channels, 0.2-5kHz, 20-
60 time steps per channel, (de-
termined by onset duration).

Time-domain recurrent neural net-
work (echo state network, using open
source Matlab toolbox by Jaeger54,
customised for this application).

Tone descriptor captures spectral and
temporal information during onset.
Neurally-inspired classifier works in time
domain and allows tone descriptor to re-
tain spectral and timing information.

B-1 15 MFCCs, 133-6854Hz, single
descriptor vector per tone.

Multilayer perceptron neural net-
work (open source Weka toolbox57).

Mean MFCCs evaluated over whole sig-
nal. Classifier is non-temporal

B-2 15 MFCCs, 133-6854Hz, single
descriptor vector per tone.

Multilayer perceptron neural net-
work (open source Weka toolbox57).

Mean MFCCs evaluated during onset
only. Classifier is non-temporal.

FIG. 7. Plot of the mean correct classification rate against
spectral radius of the reservoir layer, for multiple reservoir
neuron leakage values and a reservoir size of 1000 units (Strat-
egy A). Test data is solid, train data is dashed. Data are the
mean of ten repetitions with the same network parameters.
The optimal test data configuration is listed in Table III.

vided optimal results for test data. Larger reservoir sizes
provided increased performance of up to 100% on train-
ing data, without increased success on test data. This
was likely due to overfitting caused by the higher learn-
ing capacity of such large networks. The smaller 500 unit
network performed approximately 3% below the level of
the 1000 unit system on test data.
The input scaling parameter is known to be quite

robust53, and indeed changing its value did not greatly
affect the classification rate. Optimal performance oc-
curred at a value of 1, that is, no additional input signal
amplification was applied. With the other parameters
set optimally, classification performance decreased by a
maximum of approximately 6% over the range of input
scaling values.
With the reservoir size and input scaling optimally set,

the key parameters were the spectral radius and reservoir
neuron leakage values. Both parameters were explored
between normalised values of 0 (short time scale, no neu-
ron leakage) and 1 (long time scale, large neuron leakage),
in increments of 0.01.

The spectral radius had to be tuned so that the net-
work memory time-scale was suitable for the duration of
a typical onset fingerprint (approximately 50 time steps).
The neuron leakage affected the time-scale of the individ-
ual neuron dynamics, and by implication the relative im-
portance of the input stimulation timing. Together these
parameters controlled the temporal properties of the net-
work, and thus its suitability for onset fingerprints.
Fig. 7 summarises the variation of classification suc-

cess as a function of the two timing parameters. Mean
classification success rate, averaged over ten repetitions,
is plotted against spectral radius, with multiple lines to
show different values of the neuron leakage. For both pa-
rameters the best results occurred between 0.1-0.3, with
the training data (dashed lines) quite robust around these
values. A maximum 75% mean success rate occurred on
test data at values of 0.18 and 0.14 respectively, with
a standard deviation of 1.8% between trial repetitions.
This optimal network configuration was used to pro-
duce a mean (over ten trial repetitions) confusion matrix
CMcGill
A to describe the best performance of Strategy A.

B. Comparison between Strategies A and B

Confusion matrices which describe the performance of
Strategy A and Strategies B-1 and B-2 are shown in Figs.
8, 9 and 10 respectively. Such matrices allow visualisa-
tion of not only the overall classification, but also the
confusion between classes. The scores have been scaled to
percentages, and standard deviations over multiple clas-
sification trials are included in brackets.

1. Onset fingerprinting vs. whole tone MFCCs

Strategy A used a tone descriptor derived from a simu-
lation of the perceptual sound onset. This ‘onset finger-
print’ encoded the timing and intensity of the spectral
energy changes during the onset transient. Strategy B-1
was based upon mean MFCCs evaluated over the whole
tone and was inspired by a number of previous musical
instrument classifiers21,26,30. It formed a reduced-space
representation of the average timbre of the tone.
The maximum mean classifier performance of Strategy

B-1 (76.4%) was marginally higher than that of Strategy
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FIG. 8. Normalised optimal confusion matrix C
McGill
A for

Strategy A, based on ten trials with different initial network
and data randomisations. All data from the McGill dataset.
Standard deviation over ten trials shown in brackets.

FIG. 9. Normalised optimal confusion matrix C
McGill
B1 for

Strategy B-1 (trials and data randomisations as for Fig. 8).

FIG. 10. Normalised optimal confusion matrix C
McGill
B2 for

Strategy B-2 (trials and data randomisations as for Fig. 8).

A (75%). However, taking into account trial repetitions
this difference was not statistically significant at a confi-
dence level of 5% (p=0.12).

2. Onset fingerprinting vs. onset-only MFCCs

Strategy B-2 was based upon mean MFCCs calculated
during the onset only. Its tone descriptors thus captured
the mean timbre of the onset transient, regardless of the
spectral energy change timing. Its performance was ap-
proximately 3% below that of Strategy A. This difference
was statistically significant over the multiple trial repeti-
tions at a confidence level of 5% (p=0.002).

3. Whole tone MFCCs vs. onset-only MFCCs

Comparing the results of Strategies B-1 and B-2 it
is clear that, overall, the whole tone version performed
slightly better. This is perhaps to be expected, as the
mean MFCC vectors for Strategy B-1 included more in-
formation about the tones. The principle reason for its
superior performance was better discrimination between
the plucked string (SP) and struck string (SS) classes. It
is interesting to note that Strategy B-2 in fact performed
slightly above Strategy B-1 for the bowed string (SB) and
brass (Bs) classes, but this was within the range of error
between the trial repetitions.

4. Analysis and discussion

For all Strategies the most common confusion was be-
tween the plucked string (SP) and struck string (SS)
classes. This confusion was highest, 33% of all errors,
for the onset-only based technique of Strategy A. It was
21% for Strategy B-1, and 23% for Strategy B-2. Given
N percent correct classifications made, the chance rate
for confusion pairs such as SP-SS was ((100−N)/4)× 2.
This was approximately 12.5% for Strategy A, meaning
that the actual SP-SS confusion was almost three times
the expected chance rate.
The significant SP-SS confusion, particularly for

Strategies A and B-2, can be attributed to the close simi-
larity in the tonal excitation mechanism. For both classes
a tensioned string was impulsively brought into vibration.
This represents the most similar pair of excitation mech-
anisms for the instrument classes studied here, evidenced
by the similarity in mean onset duration detected by the
auditory model, shown in Table I. The result suggests
that discrimination between these classes is significantly
aided by tonal information after the sound onset.
The second most common confusion for Strategy A

was between the brass (Bs) and reed (Rd) classes. This
accounted for 17% of all errors. Once again, this con-
fusion likely reflected the broad similarity in excitation
mechanism between these classes, whereby an air valve
was brought into periodic vibration by interaction with
an airflow and instrument bore.
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It was interesting to note that the two most com-
mon confusions for Strategy A accounted for over 50%
of all errors, more than four times the expected chance
rate. Recalculation of the Strategy A performance by
consecutively excluding these confusion errors increased
the classification success rate to 83.3% and 88.3% re-
spectively. For Strategy B-1 the corresponding calcu-
lations produced success rates of 81.3% and 86.0% re-
spectively. For Strategy B-2 the results were 78.6% and
81.7%. These modified values reveal the extent to which
the overall success rate of Strategy A was impeded by
its relatively poor performance in distinguishing between
tones with very similar excitation mechanisms. However,
they also show that such an onset-based technique, based
upon only 2-10% of the whole tone, performs rather well
as a classifier for instrument families where the tone gen-
eration mechanisms are more distinct.
It should be further noted that the design of the audi-

tory model for Strategy A used only 15 filters, a rather
coarse frequency resolution, in order to produce a tone
descriptor dimensionality broadly comparable with the
15 MFCCs of Strategies B-1 and B-2. It is possible that
a larger filterbank and finer-resolution onset coding may
have captured some of the more subtle differences be-
tween very similar class pairs such as SP-SS.

C. Results compared to other studies

Results reported by Martin and Kim25 attained clas-
sification rates of around 90% for five instrument fami-
lies. Their tone descriptors involved numerous spectro-
temporal features not captured by any of the techniques
presented here, and the hierarchy of the instrument
classes did not distinguish between plucked and struck
string instruments.
In this work as in previous studies MFCCs have proven

to be a rather robust technique for capturing salient fea-
tures from musical sounds, and the MLP useful as a clas-
sifier. Brown’s study26 based on MFCCs examined a
two class problem and achieved success rates of around
85%. A more sophisticated MFCC processing routine
than the overall mean calculation used for Strategies B-1
and B-2 was employed. This identified the most useful
MFCC time-slices to use for classification. Considering
the larger number of instrument classes in this study, the
MFCC success rates between 73-76% suggest that the
technique was well-suited to the dataset.
Despite the relative success of tone descriptor tech-

niques such as onset fingerprints and MFCCs, care must
be taken when making comparisons between them and
the actual function of the human auditory system in per-
ceiving and classifying sounds. In particular it is not rea-
sonable to draw a direct comparison between the design
and implementation of Strategy A and the real neural
mechanisms involved in processing sound onsets.
Rather, it has been shown that the use of a tone de-

scriptor broadly based on the neural processing of the
sound onset can capture sufficient information for use in
a successful instrument classifier. While such a descrip-
tion is not literal, it is closer to the underlying physiology

TABLE V. Summary of the classification performance of all
Strategies and train/test data combinations. Standard devi-
ationS over ten trial repetitions with the same network con-
figuration, but different initial randomisations, are shown in
brackets.

Strategy Training
data

Testing
data

Train/test
split

Score

A McGill McGill 70%/30% 75.6% [1.75%]

B-1 McGill McGill 70%/30% 76.3% [1.96%]

B-2 McGill McGill 70%/30% 72.1% [1.72%]

A McGill Iowa 67.6%/32.4% 76.8% [1.63%]

B-1 McGill Iowa 67.6%/32.4% 47.9% [0.69%]

than more conventional tone descriptors based on stan-
dard signal processing metrics, and so provides a viable
alternative framework. As with the auditory system, this
framework is readily expandable to include other tonal
features.
The time-domain approach of the echo state network

classifier is also somewhat closer in design and function
to some neural circuitry59 than standard techniques such
as the MLP and Gaussian classifiers. The results show
that a combination of these systems can be used to cre-
ate a classifier capable of performing at least as well as
the more established methods such as MFCCs. In so do-
ing they further demonstrate the capacity of the onset
transient to encode useful information about the sound
source.

D. Further Strategy testing with an alternative dataset

1. Salient features across different datasets

In machine learning tasks involving multiple degrees of
freedom it can be difficult to determine which aspects of
the given input signal coding are most salient for a par-
ticular classification result. One of the most dangerous
pitfalls in this regard is the possibility that the learning
algorithm may clue in to unexpected, and sometimes per-
sistent, features contained in the dataset. In the worst
case, such features may be coded according to class so
that the algorithm may appear to learn a dataset very
well. However, when presented with data from a different
dataset which does not contain such unseen but persis-
tent features, the classification success will likely suffer
considerably.
Any consistent factor which affects the dataset could

cause such an effect. In the present study such fac-
tors would likely be related to the nature of the origi-
nal sound sampling. They could include, for example,
the imprinting of a particular frequency response on the
recorded sound due to the characteristics of the micro-
phones, recording environments, outboard gear, or even
some factor relating to the particular set of instruments
used in the McGill corpus. Livshin and Rodet60 have
previously drawn attention to this problem for the case
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FIG. 11. Normalised optimal confusion matrix C
McGill/Iowa
A

for Strategy A, based on training with all 2085 McGill sounds
from the main task outlined in section II, and testing with
1000 new and unseen sounds from the University of Iowa col-
lection. Figure shows the mean (standard deviation in brack-
ets) of ten repetitions with different initial network randomi-
sations.

FIG. 12. Normalised optimal confusion matrix C
McGill/Iowa
B1

for Strategy B-1, based on the same data split as Fig. 11.
MLP network parameters were the same as for Figs 9 and 10.
Figure shows the mean (standard deviation in brackets) of
ten repetitions with different initial network randomisations.

of sound classification.
It was thus important to further test the classifiers

built in this study with data obtained under completely
different environmental conditions. The extensive and
publicly-available University of Iowa Musical Instrument
Samples33 corpus formed an ideal dataset for this pur-
pose.
From the Iowa dataset 1000 new sounds, split evenly

over the five instrument classes, were obtained and pro-
cessed exactly like the McGill sounds for Strategies A
and B-1. Only version B-1 of Strategy B was considered
as it had proven the most reliable during the main clas-
sification task. To provide the Strategies with the great-
est challenge only the McGill data was used for training

the classifiers, with the new Iowa data exclusively form-
ing the test set. These conditions meant 2085 training
sounds (67.6% of the new combined dataset) and 1000
testing sounds (32.4%). It would thus be highly unlikely
that a given classifier score was attributable to unforseen
but salient features unique to the McGill dataset.
The two Strategies were optimised using parameter

sweeps as for the main classification task (see sections
III.B.2 and IV.B). Optimal confusion matrices were ob-

tained for each Strategy, C
McGill/Iowa
A and C

McGill/Iowa
B1 ,

each of which was the mean result of ten classification tri-
als using the same network parameters but different ini-
tial network randomisations. These matrices are shown
in Figs. 11 and 12 respectively. It is important to note
that fixing the training and testing data as described
meant that the dataset could not be randomly sorted
for each trial as for the main task. Thus the variation in
classifier performance between trial repetitions was re-
latable only to the different initial network randomisa-
tions. A summary of the results for the various Strategies
and datasets, both McGill and McGill/Iowa, used in the
study is presented in Table V.

2. Onset fingerprinting vs. whole tone MFCCs tested with the

Iowa data

The key result from the additional testing was that
the onset fingerprinting and ESN classifier approach of
Strategy A was much more robust when presented with
the new and unlearned Iowa data than the MFCC and
MLP-based approach of Strategy B-1. The overall per-
formance of Strategy A was in fact slightly higher than
during the main testing with the McGill data. This could
be attributed to the 30% increase in the quantity of train-
ing data from 1460 to 2085 sounds. Not evident from
the confusion matrix is the peak individual performance
which was 80.4%.
Conversely, Strategy B-1 shows a dramatic drop in per-

formance, appearing to be much poorer at generalising to
the new data. It should be noted that increasing the size
of the MLP used for Strategy B-1 beyond the established
100 neurons in a single layer, as used in the main task,
did not greatly improve the performance with the Iowa
data. Trials involving up to three layers, each with 100
neurons, and with a resulting increase in the network’s
number of degrees of freedom by a factor of 105, did not
increase the overall score beyond 50%. However, when
the standard 100-unit MLP was trained and tested on a
randomised 70%/30% mixture of both datasets, it was
able to recover back to around 78% overall success.

3. Analysis and discussion

Fig. 13, which shows the classification performance as
a function of reservoir neuron leakage and spectral ra-
dius, provides an important insight into the behaviour of
the ESN classifier of Strategy A when trained and tested
with the McGill and Iowa data respectively. The optimal
performance was achieved, as with the main classification
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FIG. 13. Plot of the mean correct classification rate against
spectral radius of the reservoir layer, for multiple reservoir
neuron leakage values and a reservoir size of 1000 units
(Strategy A). Train data exclusively from the McGill dataset
(dashed), test data exclusively from the Iowa dataset (solid).
Data are the mean of ten repetitions with the same network
parameters.

task, using a reservoir size of 1000 units, with no further
performance increase obtained from using larger reservoir
sizes. Apparent from the Figure is the similarity in the
peak classifier performance as a function of the crucial
network parameters, spectral radius and neuron leakage,
when compared to the results obtained in the main classi-
fication task (see section V.A and Fig. 7). The absolute
difference between the optimal values for each of these
parameters was low (a few hundredths of a unit) relative
to the broad range over which the scores for both clas-
sification tasks were above 70% (more than a tenth of
a unit). The broadly consistent values of the optimised
network parameters, together with the consistently high
classification score with the Iowa data, suggests a reason-
able degree of underlying robustness in the technique.
As with the main task it is possible that further im-

provement could be gained from using a finer-resolution
(in both time and frequency) onset fingerprint coding.
This would probably require a corresponding increase
to the network size and a further dramatic increase in
computational load in order to take advantage of the in-
creased number of degrees of freedom in the input signal.
It is emphasised that the degree to which such an im-
provement might be achived is out-with the scope of the
current paper, where the fundamental principle of the
technique is the point at stake.

VI. CONCLUSIONS

The aim of this study was to explore the usefulness
of a neurally-inspired representation of the sound on-
set for musical tone classification. This was achieved by
constructing a musical instrument classification system
based upon an auditory model of the perceptual sound
onset. A time domain neural network, the echo state

network, acted as classifier. The system was trained and
tested using 2085 tones drawn from the McGill dataset.
Within trial repetition error this system, Strategy A, per-
formed as successfully (75% mean success rate) as a more
conventional system, Strategy B-1 (76.4%), based upon
mean MFCCs evaluated over the whole tone and clas-
sified with a multilayer perceptron. The key feature of
Strategy A was that the tone descriptor was derived from
the onset transient alone, an interval which lasted for 2-
10-% of a typical isolated musical tone. A further strat-
egy, B-2, based upon MFCCs evaluated only during the
onset transient, performed slightly more poorly than ei-
ther Strategy A or B-1.

Further testing of the Strategies was carried out with
tones obtained from the University of Iowa Musical In-
strument Samples collection. This provided a more rig-
orous test of the classifier performance, as there was
no chance that the resulting classification score was
only attainable with the particularly high quality McGill
dataset. It was important to evaluate this as any clas-
sification system can be susceptible to persistent, un-
expected features buried within a particular dataset.
The results of this testing showed that Strategy A
performed significantly better (76.8%) than the MFCC
based method of Strategy B-1 (47.9%). It did so with
optimised network parameters which were almost identi-
cal to those required for the main classification task based
exclusively on the McGill dataset. The classification suc-
cess rate of Strategy A did not increase by using a larger
neural network, suggesting that the neurally-inspired ap-
proach adopted was robust within the limits of the onset
fingerprint coding resolution used in the study. This re-
sult is broadly in line with other neurally-inspired signal
processing systems used as speech front ends which tend
to be rather robust to noisy input data. It thus provides
a useful framework for tone description and classification.

There remain numerous possible further directions of
study for the technique. An obvious enhancement of the
onset fingerprinting method would be to include infor-
mation about the steady state and offset. Numerous
improvements could also be made to the MFCC based
approaches, such as incorporating temporal information
by retaining the original 23ms MFCC time slices and us-
ing them directly with a classifier like the ESN. This ap-
proach was not tested in the current work as the method
of combining a single MFCC vector and classifier was
closer to what has appeared previously in the literature.
It would also be interesting to test the classifier systems
on deliberately, and perhaps extremely, noisy data.

While an ultimate goal could be to fully replicate the
human sound processing and perception system, this is
not within the scope of the current work. Rather, we have
simply sought to explore the use of a neurally-inspired
signal processing technique for the practical application
of musical tone classification. The work has demon-
strated that, as has been shown in the literature through
psychoacoustic and physiological evidence, the onset can
be a very useful cue for musical sound identification.
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