
Memory Efficient On-Line Streaming for Multichannel Spike Train
Analysis

Bo Yu, Terrence Mak, Leslie Smith, Yihe Sun, Alex Yakovlev and Chi-Sang Poon

Abstract— Rapid advances in multichannel neural signal
recording technologies in recent years have spawned broad
applications in neuro-prostheses and neuro-rehabilitation. The
dramatic increase in data bandwidth and volume associated
with multichannel recording requires a significant computa-
tional effort which presents major design challenges for brain-
machine interface (BMI) system in terms of power dissipation
and hardware area. In this paper, we present a streaming
method for implementing real-time memory efficient neural
signal processing hardware. This method exploits the pseudo-
stationary property of neural signals and, thus, eliminates
the need of temporal storage in batch-based processing. The
proposed technique can significantly reduce memory size and
dynamic power while effectively maintaining the accuracy of
algorithms. The streaming kernel is robust when compared
to the batch processing over a range of BMI benchmark
algorithms. The advantages of the streaming kernel when
implemented on field-programmable gate array (FPGA) devices
are also demonstrated.

I. INTRODUCTION
Brain-machine interface technology offers an exciting

means to study and to communicate with the brain [1]. As
one neurophysiological signal measuring technique, multi-
electrode arrays (MEAs) provide extremely high resolution
neuronal signals and enable studies on large neural network
ensembles [2].

The large data bandwidth and data volume associated
with MEA’s recording requires a significant computational
effort for data filtering and analysis. Most neural signal
analysis algorithms are highly computationally expensive. As
a result, software based approaches for multichannel neural
signal analysis require off-line processing. Modern Field
Programmable Gate Arrays (FPGAs) embedding massive
hardware computing resources provide an ideal platform
for sophisticated real-time neural signal processing and data
mining for multichannel neural recording systems.

When designing FPGA based multi-channel recording
systems, large size on-chip memories are always required
to allow neural signal processing on a batch of neural
data recorded by each channel. As the number of channel
increases, the memory requirement grows drastically. In this
paper, we present an online streaming kernel to mitigate the

This work is supported by EPSRC Knowledge Transfer Account. Bo
Yu and Yihe Sun are with Tsinghua National Laboratory for Information
Science and Technology, Institute of Microelectronics, Tsinghua University,
Beijing 100084, China. Terrence Mak and Alex Yakovlev are with School
of Electrical, Electronic and Computer Engineering, Newcastle upon Tyne,
NE1 7RU, UK. Terrence Mak is also with the Institute of Neuroscience,
Newcastle Biomedicine, at the same University. Leslie Smith is with
department of Computing Science and Mathematics University of Stirling,
Stirling, FK9 4LA, UK. Chi-Sang Poon is with Harvard-MIT Division of
Health Sciences and Technology, MIT, Cambridge, MA 02139, USA.

problem associated with large memory size requirement, and
thus to make real-time processing of multi-electrode signals
more practicable. The online streaming kernel exploits the
pseudo-stationary characteristic of neural spikes and, thus
eliminates the need for long-term storage in signal pro-
cessing, leading to more efficient hardware implementation.
This design principle is exemplified by several commonly
used neural signal analysis algorithms. The accuracy of the
stream-based kernels is evaluated by comparing them with
their batch-based computational counterparts. The improve-
ments in memory size and power consumption are rigorously
evaluated using FPGA devices.

The paper is organized as follows: Section II introduces
the principle of streaming method. Section III software and
hardware evaluation results are presented and discussed.

II. STREAMING METHOD

A. Pseudo-stationary property

Neural signals recorded during in vivo experiments have
non-stationary nature which is mainly due to the rela-
tive movements between the recording electrodes and the
recorded neurons [3]. However, neural signal can be regarded
as pseudo-stationary in considering of a short recording
window and relatively stable conditions, simply because the
chance of disturbance is small. Although this paper applies
online streaming method on algorithms for stationary spike
sorting and neural signal processing, this method still has
chance to be used in conjunction with algorithms for non-
stationary neural signal processing.

During a short period of time, in which pseudo-stationarity
of neuronal signal exists, the shape of a neuronal spike stays
relatively fixed and only can be disturbed by various noises.
This similarity in recorded neuronal signals implies that the
same operation performed on signals picked from different
sub-windows can lead to similar results due to the similarity
of signals. The physical memory can be reduced or removed,
because similar data can still be obtained from the signal
source again even though the original data is discarded.
Our streaming method is based on this similarity of neural
signals.

B. Streaming principle

Batch processing requires pre-storage of data to be pro-
cessed. The same set of data is processed by all the opera-
tions. Because spike characters are similar under the assump-
tion of pseudo-stationarity, operations can be employed on
different data sets to yield approximated results. We refer the
methods that need to store a batch of data for processing as



Fig. 1. (a) Batch based processing. (b) Stream based processing.

batch based methods in this paper. Taking the advantage of
the pseudo-stationary property in neural recordings, stream-
ing methods allow operations to be performed on the data
sets piece by piece. As a result the need for a large memory
is reduced.

Fig. 1 illustrates the differences between the streaming and
batch based methods. In batch based processing, input data
is stored for all the operations. Without storing input data,
the streaming algorithm uses data from input directly and
discards it when an operation finishes. The pseudo-stationary
property implies that similar results can be obtained even
using later data. As a result, the streaming method is a
processing flow where minimal data storage is required.

C. Benchmark algorithms and hardware

Several neural signal processing algorithms including gen-
eral Hebbian algorithm (GHA) [4], k-means algorithm, co-
variance calculation and Bell and Sejnowski algorithm [5] are
taken as benchmarks for stream based software and hardware
evaluation.

1) Stream based algorithm: General Hebbian algorithm
(GHA) is an unsupervised neural network algorithm based on
a certain form of auto-associative learning. Synaptic weights
of the feed forward network in GHA evolves into principal
components of input data if a specific weight updating rule,
Oja’s rule [4], is followed. As a result, GHA can be used for
principal component analysis (PCA) that is a well-known
spike feature extraction method.

The stream based GHA is shown in Table I. x⃗(i) =
[x1(i), x2(i), . . . , xm(i)]T represents the ith m × 1 input
vector. W⃗ (j) = [W⃗1(j), W⃗2(j), . . . , W⃗l(j)] is the l × m
synaptic weight matrix and initialized to W⃗ (1), “j” is the
learning step. “η” is the learning rate and initialized to a
small positive value. “µ⃗” is the m× 1 mean vector. y⃗(j) is
a l × 1 vector. LT [y⃗(j)y⃗T (j)] sets all the elements in the
matrix above the diagonal to zero. For a large learning step,
j, W⃗ (j) converges to the first l principal components of the
input data.

The difference between stream based GHA and batch
based GHA is whether the same input vectors are used for
both mean operation and zero-mean transformation. In batch
based algorithm, the two operations are performed on the
same data. Memories are required to cache these data for the
two sequential operations. In stream based algorithm, data

TABLE I
ALGORITHM OF STREAM BASED GHA

1. Initialize synaptic weight W⃗ (1) and learning rate η.
Select the number of data, N, for estimating mean value

2. Mean operation
µ⃗ =

∑N
i=1 x⃗(i)/N

3. Zero-mean transformation
x⃗(i) = x⃗(i)− µ⃗ i > N

4. Perform learning on mean centered data
y⃗(j) = W⃗ (j)x⃗(i)

L⃗T (j) = LT [y⃗(j)y⃗T (j)]
⃗dW (j) = η(y⃗(j)x⃗T (i)− L⃗T (j)W⃗ (j))

W⃗ (j + 1) = W⃗ (j) + ⃗dW (j)
j = j + 1, i = i+ 1

5. If convergent is not achieved, go to step 3
Otherwise stop algorithm.

Note: 1. x⃗(i) is input vector, W⃗ (j) is synaptic weight, η is the learning
rate, LT [·] sets all the elements in the matrix above the diagonal to zero.
2. In batch based algorithm mean operation and zero-mean transformation
are performed on the same data i.e. {x⃗(i)}, i ∈ [1, N ].

used by mean operation is different from data used in zero-
mean transformation. Notice that the stream based algorithm
does not change the algorithm kernel of original algorithm.
It only change the way of utilizing data.

For the similar reason to the general Hebbian algorithm,
the other benchmark algorithms need to store a batch of input
data. For these benchmarks, based on the pseudo-stationary
property, the streaming algorithms can be obtained from their
batch based counterparts.

2) Stream based hardware: Hardware Hebbian eigenfilter
is taken as an example to illustrate the difference between
stream based and batch based structure. Fig. 2 shows the
structure of hardware Hebbian eigenfilter. It is an example
where the first three principal components are filtered. It
consists of “learning kernel”, “system controller”, “mean
calculator”, “interface” and “memory”. Memory block only
exists in batch based structure. “System controller” controls
the operation of the whole system. “Learning kernel” per-
forms learning operations and consists of arithmetic units,
storing units and switchers. “LT” stores the result of L⃗T =
LT [y⃗y⃗T ], “score” stores result of y⃗ = W⃗ x⃗, “Weight1,2,3”
stores the three synaptic weights. “Mean calculator” cal-
culates mean of data before mean is ready. After mean is
ready, “mean calculator” subtracts mean from data and sends
mean centered data to “learning kernal”. In batch based
Hebbian eigenfilter, “interface” write the input streaming
data to the memory and read data from memory for mean
calculation and Hebbian learning. In stream based Hebbian
eigenfilter, “interface” directly forwards the input data to
“mean calculator”.

III. RESULTS

A. Evaluation Methodology

Both clinical spike trains [6] and synthetic spike trains are
used for evaluation. In this paper, synthetic spike trains are
generated through the spike time generating tool [7] and the
spike train synthesis tool [8]. The spike time generating tool
is used to generate neurons’ firing times through specifying



Fig. 2. The structure of Hebbian eigenfilter.

number of neurons, each neuron’s firing rate and correlations
among these neurons. Using generated spike firing times, the
spike train synthesis tool generates noisy spike train through
specifying the number of neurons, neuronal spike shapes and
signal to noise ratio of spike train.

B. Stream based algorithm evaluation

1) The general Hebbian algorithm: Clinical data [6] is
used to evaluate the stream based general Hebbian algorithm.
In stream based routine, we use M aligned spikes to calculate
the mean vector. The following N spikes are used for iteration
learning and batch based general Hebbian algorithm. In
principal component analysis, the direction of each principal
component affects the projection results. Generally, the first
three principal components capture most variances in the
data. As a result, the accuracies of the first three principal
components are defined as,

accuracy = |P⃗Ci,stream · P⃗Ci,batch| i = 1, 2, 3 (1)

where P⃗Ci represents the ith principal component. A value
of 1 represents that stream and batch based principal compo-
nents have identical direction. Fig. 3(a) shows the relation-
ship between the number of spikes for mean calculation in
streaming calculation and the accuracy of the stream based
algorithm. The accuracy increases with the growth of the
streaming window.

Fig. 3(b) shows projection results in principal component
space using both Matlab function (princomp, which is batch
based) and our streaming Hebbian eigenfilter. In stream
based method, the streaming window size is 200.

2) Bell and Sejnowsk algorithm: In the stream based
algorithm, we use M samples for mean calculation and the
following N (N is streaming window) samples for iteration
learning defined in the algorithm. The batch based algorithm
is performed on the same N samples as the streaming
algorithm.

N synthetic spike trains, X⃗ , are generated through the
spike train synthesis tool. The spike trains in X⃗ are mixed by
an N×N matrix W⃗ (N is 3 in this evaluation). An un-mixing

0 50 100 150 200
0.7

0.8

0.9

1

Streaming window (number of spikes for mean calculation)

A
cc

ur
ac

y

(a)

 

 

principal component 1
principal component 2
principal component 3

0.5 1 1.5 2
−0.5

0

0.5

1

Principal component 1

P
rin

ci
pa

l c
om

po
ne

nt
 2

(b)

 

 
batch based method
stream based method

Fig. 3. (a) Accuracy of stream based Hebbian eigenfilter for spike sorting.
(b) Projection score in principal components space (with streaming window
of 200).

matrix, B⃗, is the result of Bell and Sejnowski algorithm.
If un-mixing matrix B⃗ can accurately infer source signals,
B⃗i·W⃗
|B⃗i·W⃗ |

should have the same direction of a unit vector, u⃗,

where B⃗i is a row vector of matrix B⃗, u⃗ is [100]T or [010]T

or [001]T . We use B⃗i·W⃗
|B⃗i·W⃗ |

· u⃗ to evaluate accuracy. With a
correct un-mixing weight matrix, this value equals one. Fig.
4 shows the accuracy of both streaming and batch processing
methods. The stream based algorithm can finally get the un-
mixing weight matrix if the number of iteration steps is large
enough.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

Streaming window(the number of data for streaming learning)

A
cc

ur
ac

y

 

 
B

1
 streaming

B
1
 non−streaming

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

Streaming window(the number of data for streaming learning)

A
cc

ur
ac

y

 

 
B

2
 streaming

B
2
 non−streaming

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

Streaming window(the number of data for streaming learning)

A
cc

ur
ac

y

 

 
B

3
 streaming

B
3
 non−streaming

Fig. 4. Accuracy of streaming Bell and Sejnowski algorithm.

3) Covariance matrix calculation: In stream based co-
variance calculation, N (N is a variable) aligned spikes are
used for mean calculation. Using mean value, other M spikes
(M is 1024 in our experiment) are used to calculate covari-
ance matrix. Clinical data is used to evaluate the streaming
method. Results in Fig. 5(a) compare the covariance matrix
computed by streaming method and batch processing. The
error is the root mean square error of differences between
the streaming and batch processing covariance matrix.



TABLE II
AREA AND PERFORMANCE OF STREAMING AND BATCH PROCESSING METHOD

covariance matrix(10 bits) Hebbian eigenfilter(10 bits) k-means(10 bits) ICA(32 bits)
Device Parameter stream batch stream batch stream batch stream batch

Virtex6
Clock Freq.(MHz) 50 50 50 50 50 50 50 50

Power(mW) 5.8 12.6 5.4 11.3 7.2 10.5 43.6 52.3
Logic cost 142 217 496 565 2071 2106 19291 19288

Memory cost 5 23 5 23 0 3 0 6

Spartan6
Clock Freq.(MHz) 50 50 50 50 50 50 50 50

Power(mW) 5.1 7.4 2.4 7.3 14.3 15.6 111 122.8
Logic cost 142 291 488 628 2073 2117 19173 19175

Memory cost 6 42 5 41 0 3 0 12
note: Logic cost and memory cost are consumed LUT (look-up table, basic logic elements in FPGA) and BRAM (basic memory block in FPGA).

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

Streaming window (number of spikes for mean calculation)

E
rr

or
 o

f s
tr

ea
m

 m
et

ho
d

(a)

0 500 1000 1500
0.85

0.9

0.95

1

stream window (the number of data for stream iteration)co
rr

ec
t r

at
e 

of
 k

−
m

ea
ns

 c
lu

st
er

in
g

(b)

 

 

stream
no stream

Fig. 5. Accuracy of stream based covariance matrix (a) and k-means
algorithm (b).

4) K-means algorithm: Matlab function princomp
projects aligned spikes generated by spike synthetic tool into
feature space formed by the first two principal components.
The k-means algorithm is performed on the data in the
feature space. In our streaming k-means, we use N spike
points for each iteration. Centroids are updated after each
iteratoin. To avoid obtaining a local optimized results that
can lead to obvious clustering error, the centroids are re-
calculated every M (M is 3 in our experiment) iterations. We
use the correct rate of clustering to evaluate the accuracy of
the streaming method. The correct rate is defined as,

correct rate =
Numcorrect classified spikes

Numtotal spikes
(2)

where Numcorrect classified spikes is the number of correctly clas-
sified spikes and Numtotal spikes is the total number of spikes.
Fig. 5(b) shows the relationship between correct rate and
the streaming window size in streaming method. In the
streaming method, the more data used for streaming, the
more re-calculations can be done, so correct rate of k-means
clustering increases as the increases in the streaming data.
When streaming window is larger than 1000, the streaming
k-means algorithm achieves a relatively high correct rate
(around 0.99).

C. Stream based hardware

FPGA is used for evaluating memory and power reduction
on the benchmark hardware through utilizing streaming
method. Both stream based and batch based benchmark
algorithms are designed. Xilinx System Generator is the
hardware design tool. We employ Xilinx-ISE and Xilinx
XPower to obtain the resource and power estimation of the
design. Table II lists power and hardware resource. From the
result we can see that 16.6% to 54% power consumption can
be reduced by using our streaming method if implementing
algorithms on Virtex6, and 8.3% to 67% power can saved if
implementing algorithms on Spartan6. BRAMs usage in all
implementations can also be greatly reduced by using our
streaming approach.

IV. CONCLUSIONS

This paper presents a streaming method for analyzing
neural recordings from multi-electrode arrays. Several neural
signal analysis algorithms are adopted to exemplify the
design methodology and are implemented on FPGAs. Using
the streaming method, FPGA’s block memory usage and
power dissipation can be largely reduced when compared to
conventional batch processing. In the future, we will explore
the application of streaming design principle for developing
bi-directional brain-machine-interface systems.

REFERENCES

[1] M. Lebedev and M. Nicolelis, “Brain-machine interfaces: past, present
and future.,” Trends in Neurosciences, vol. 29, no. 9, pp. 536–546, 2006.

[2] U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann, “Micro-
electronic system for high-resolution mapping of ectracellular electric
fields applied to brain slices.,” Biosensors and Bioelectronics, vol. 24,
pp. 2191–2198, 2009.

[3] A. Bar-Hillel, A. Spiro, and E. Stark, “Spike sorting: Bayesian cluster-
ing of non-stationary data,” Journal of Neuroscience Methods, vol. 157,
pp. 303–316, 2006.

[4] S. Simon, “Neural networks and learning machines, 3rd edition,”
pp. 395–446, 2009.

[5] A. Bell and T. Sejnowski, “An information-maximization approach to
blind separation and blind deconvolution,” Neural Computation, vol. 6,
pp. 1151–1155, 1995.

[6] R. Quiroga, “Wave clus.” http://www2.le.ac.uk/
departments/engineering/research/bioengineering/
neuroengineering-lab/spike-sorting.htm, July 2009.

[7] J. Macke, P. Berens, A. Tolias, and M. Bethge, “Generating spike trains
with specified correlation coefficients,” Neural Computation, vol. 21,
pp. 397–423, 2009.

[8] L. Smith and N. Mtetwa, “A tool for synthesizing spike trains with re-
alistic interference,” Journal Neuroscience Methods, vol. 159, pp. 170–
180, 2007.


