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Abstract

Speech consists of alternating voiced and unvoiced sections. Voiced speech consists of
multiple harmonics of some fundamental (#,); unvoiced speech consists of silence, or filtered
noise. Here, speech is wideband bandpass filtered into many bands (modelling the cochlea).
Each filter output is rectified (modelling the organ of Corti hair cell action), and bandpass
filtered by convolution with the difference between two causal Gaussian averaging functions.
This detects and emphasises the amplitude modulation resulting from unresolved harmonics
(and models the combined effect of the auditory nerve and certain cochlear nucleus cell types).
This output is compressed, summed across the bands, then used to discover glottal pulses.
The presence of glottal pulses signals voicing, and the time between glottal pulses is used
to find Fy. Results show good performance, particularly on male speakers. The system is
reasonably resistant to background noise.

1 Background

Speech sounds may be voiced or unvoiced: that is, the vocal cords may be oscillating, resulting
in the vocal tract being driven by an oscillating signal, or they may not, in which case the sound
produced has a noise-like spectrum. The presence of voicing in speech is an important feature for
interpretation. Determining whether speech sounds are voiced (and if so, what the fundamental
frequency of the voicing is) is a problem with a long history going back to 1949 [17]. Gruents [17]
used the dominant frequency in the low-passed signal, and techniques which process the cepstrum
are derivatives of this. Atal and Rabiner [3] use a pattern recognition approach based on the
energy, the zero-crossing rate, the autocorrelation function, the first predictor coefficient of a 12-
pole linear predictor output, and the prediction error of the linear predictor of the signal. This
gives about 4% errors, though it requires classifier training. A more recent version [2] gives less
than 0.5% errors. Siegel and Bessey [30] use additional features about the signal periodicity in



the more complex task of voiced/unvoiced/mixed excitation classification. Knorr [18] presents a
hardware implementation of a technique based on the relative energy of the low frequency and
high frequency parts of the signal, and claims < 1% errors.

The technique described here does not achieve this level of accuracy, achieving about 90% correct
on continuous speech from the TIMIT database. However, it does so using a technique which (a)
is simple, and easily incorporated into the other techniques, (b) has some basis in the biology,
(¢) does not require training, and (d) is reasonably resistant to noise. Further, we believe that
considerable further tuning of the technique is possible (see section 5).

Knowledge of the fundamental frequency, Fy, of voiced speech can be useful in speaker iden-
tification, in detecting intonation, and in the monaural streaming of concurrent speech sounds.
Estimation of Fjy in voiced speech has been attempted using many techniques: simple time-domain
analysis of a low-passed signal [17, 13, 16], autocorrelation techniques applied to bandpass filtered
speech [19, 31, 22], techniques based on Goldstein’s theory of pitch detection (in essence, looking
for an Fy which best explains the partials present in the signal) [14, 10, 8, 6, 9], using derivatives of
short-term power spectra [11], or most recently, using measures of instantaneous frequency [1, 27].

The aim of the work reported here is to show how an additional factor, namely the presence of
amplitude modulation caused by unresolved harmonics in wideband bandpassed speech can be
used for both voicing detection and Fj estimation. Like the autocorrelation techniques, we use
bandpass filtered speech from an auditory front end [26], but instead of autocorrelation, we seek
amplitude modulation. This appears to fit with the neurobiology, in which certain cells (chop-S
and onset-C) in cochlear nucleus are particularly responsive even to small amounts of amplitude
modulation [15, 23, 25], and with work suggesting an amplitude modulation map in the inferior
colliculus [20]. The use of amplitude modulation is thus neurally plausible. Indeed, Sachs et al [29]
suggest that second and third formants cannot be found using only rate coding in the auditory
nerve, but can be found using temporal information. Amplitude modulation has been used in
computational models of early auditory processing [21, 34]. Although we do not model chop-S
and onset-C cells directly, we model their effect by enhancing amplitude modulation present. Some
aspects of this work have been filed as a patent [33].

2 Techniques Used

Figure 1 shows the stages of the algorithm used. Digitised sound (sampled at 16Ksamples/second
or faster) was input to the AIM gammatone digital wideband bandpass filterbank [26]. This
digitally filters the sound into a number of wideband bandpassed channels. Each channel follows
the bandpass characteristic of the cochlea, with equivalent rectangular bandwidth (ERB)

ERB, = 24.7+ F./Q (1)

for centre frequency F.. Auditory nerve response is characterised by = 9.265 [12]. However,
this value of @ is for pure tones at low sound pressure level (SPL), and the selectivity broadens
(i.e. Q decreases) for higher SPLs, and for wideband sounds [24, 29]. Pure voiced sounds have the
form

M
s(t) = Z A;sin(2imFot + ;) (2)
=1
so that each filter output will consist of zero or more adjacent harmonics of the fundamental
frequency Fy. For speech Fy generally lies between 100 and 250Hz. For harmonics to be unresolved,
we require ERB. > Fy so that
F,> (Fy—24.7)Q (3)
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Figure 1: Outline of stages in algorithm.
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Figure 2: Minimum F,. for unresolved harmonics plotted against Fy for varying Q.

and this is plotted in figure 2. Where F. is in the middle of a number of reasonably strong adjacent
harmonics, the (real) @ value will fall; however, the AIM software keeps @ constant throughout
the frequency range. Because we seek amplitude modulation (AM) from unresolved harmonics,
we adjusted the lowest F. depending on () and the speaker gender (i.e. approximately expected
Fy). The highest F. used was 3KHz (males) or 4KHz (females), and these were chosen to reflect
the frequency at which the energy decreased considerably.

Channels were adjusted to compensate for the delay associated with each channel using the formula

n—1

2rERB )

Dela;yERB =



where n is the filter order (here 4) [7]. This corresponds to the group delay, rather than the onset
(or signal front) delay. The amplitude modulation information is contained in the envelope of the
filter output. AM detection was achieved by rectification of each channel. This approximately
models the effect of a population of inner hair cells [28]. To enhance amplitude modulation the
rectified filter output was convolved with a difference of Gaussian averages convolving function. To
reduce computational overhead, the data was first resampled to 4Ksamples/second. Rectification
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Figure 3. Bandpass filter characteristic for half-difference of Gaussian filter for varying values of
k. r = 1.2 for all cases.

and convolution partly model effects found in the auditory nerve, but more importantly they model
the amplitude modulation amplification provided by the onset-C cells of the cochlear nucleus [25].
At the same time, the convolution smooths the rapid signal fluctuations, reducing the i Fjy content.
The effect of the convolution is to perform a digital bandpass filtering operation on the signal: the
bandpass characteristic is shown in figure 3.
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Figure 4: Onset/offset convolving function used (r = 1.2, k& = 150000).

The convolving function, g(t, k,7), (shown in figure 4) is

gt k,r)= f(&, k) — f(E, k/7) (5)



where k > 1 and f(z,y) = /y exp( —yz?). The convolution applied is

Ci(t) = /0 si(t —1)g(r, k,r)dr (6)

where s,(t) is the rectified output of the j’th filter. Since 7 > 0, this is a causal filter (and therefore
suitable for real-time implementation), and we are applying the difference between a short-termn
and a longer term Gaussian average both with peak at ¢. Since [ﬂx g(t, k,r)dt =0, Cj(t) =0 for a
signal of constant amplitude. When applied to a non-constant signal, C;(¢) goes positive when the
signal is increasing, and negative when the signal is decreasing. The choice of £ and r determine
the duration of pulses to which the transform is most sensitive, as can be seen in figure 3. For
the work reported here, we used v = 1.2 and k& = 70000 (males) or k& = 150000 or & = 300000
(females).

Figure 5: Response of one channel, with F, = 3200Hz, Q@ = 9.265 to 100 ms of vowel sound
/a/ (from TIMIT database, drl/fsjk1/sal). (a) shows the original filterbank output. (b) shows
the compressed onset signal, (¢) shows the compressed offset signal, and (d) shows the amplitude
modulation pulses found.

The C;(t) were separated out into an onset signal (the positive-going part) and an offset signal
(the inverted negative-going part). These were compressed logarithmically, but maintaining both
as non-negative signals by taking log(z) = 0 for 0 < x < 1. This models compressive nonlinearities
found in neurobiological systems. For the compressed onset signal the resulting output consists of
a pulse due to the rapid rise in the envelope of an amplitude modulated signal; for the compressed
offset signal, the pulse is caused by the rapid fall in the envelope. Thus, for an amplitude modulated
signal, onset pulses and offset pulses alternate. These onset and offset signals were searched for
pulses, allowing as pulses only those whose maximum value reached a threshold (generally 3 or
4), and whose duration was between 1.9ms and 8s (females), or between 3ms and 11ms (males).
The occurrence of a pulse in the onset signal followed within a short time by a pulse in the offset
signal was taken to mark an amplitude modulation pulse: see figure 5. In this way, we produced an
amplitude modulation (or voicing) map, with each pulse marking the occurrence of an amplitude
modulation pulse at a particular time in a particular channel. The amplitude modulation caused
by the summation of a number of unresolved adjacent harmonics with varying strengths and
phases can occur at Fy, 2Fy, 3F), etc., depending on the exact phase and the relative strengths
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of the partials [32]: however, we found that the Fy component was much the strongest. Thus, the
inter-pulse interval can be used to estimate Fjy. Figure 6 shows the voicing map produced for 257
ms of one utterance.
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Figure 6: Sound /s ux/ from TIMIT utterance drl/fsjkl/sal, 1.013-1.270 seconds. Parameters
used were ) = 3.25, and F from 504Hz (bottom) to 4000Hz (top), 50 chanuels, & = 300000 and
r = 1.2. (a) shows compressed onset map, (b) shows compressed offset map, (¢) shows the voicing
map, (d) shows the summary compressed onset (top) and summary compressed offset (bottom)
signals.

In addition to the voicing map, we also produced a summary voicing map. A suminary compressed
onset signal D(t), and a summary compressed offset signal, E(t) were produced by simple averaging
of the compressed onset or offset signals from all the channels. The effectiveness of simply averaging
the onset and offset signals relies heavily on the correction of the delays introduced by the cochlear
filtering. Both the summary compressed onset and the summary compressed offset signals were
searched for pulses, as above. The occurrence of a pulse in D(t) followed within a short time by a



pulse in E(t) was taken to mark a glottal pulse. The presence of a train of such pulses was taken
to mean that the sound was voiced. Again, the inter-pulse interval can be used to estimate Fj.

3 Results

We present results for detecting voicing, and then for estimating Fy in the sections of speech
classified as voiced.

3.1 Detecting Voicing

To illustrate the techniques described above, we first applied them to one of the female TIMIT
utterances, namely dr6/fsbk0/sal. Figure 7 shows the voiced segments found using the summary
onset /offset technique for a range of parameters. The lowest F. used has been determined from
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Figure 7: Voiced segments found in dr6/fsbk0/sal (She had your dark suit in greasy wash water
all year). Backgrouud is the phoneme structure supplied with the TIMIT database, with lines
indicating voiced sections (found by ear). Parameters were (a) 1434-3000Hz, ) = 9.265, density =
4 (24 bands) (b) as (a), but 500-3000Hz. (c), (d) 717-3000Hz, Q = 4.6, density = 8 (48 bands), (e)
504-3000Hz, @ = 3.25, density = 8 (43 bands), (f) 358-3000Hz, @ = 2.3, density = 8, 37 bands.
Other parameters: all: Onset/offset filter & = 300000, r = 1.2, voicing pulse sizes 0.0019, 0.008,
(a)-(¢) pulse threshold 3. (d)-(f) pulse threshold 4.
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Figure 8: Classification errors for male and female utterances for varying (). Y axis is percentage
of utterance time.

equation 3 (excepting figure 7b). The density (i.e. number of channels per ERB) was chosen to
keep the number of bands used manageable. With @ = 9.265, (figure 7a) many voiced sections
are missed, and part of the /s/ in "suit” classed as voiced. This probably reflects the loss of
formant information below 1434 Hz. However, although simply reducing the lowest F. to 500Hz
removes the misclassification of the /s/, it does not improve the missing voiced sections (figure 7b).
Reducing Q to 4.6 (figure 7c¢) improves performance by correctly classifying more of the voiced
sections, although the /s/ in ”suit” remains misclassified unless the threshold is increased to 4
(figure 7d). Reducing @ further to 3.25 (figure 7e) with the threshold at 4 gives better results:
reducing @ to 2.3 (figure 7f) results in some misclassification being reintroduced. Using @ = 3.25
has been found to be a good compromise in this case.

The techniques above were applied to 15 male and 15 female utterances from the TIMIT database.
The utterances were also segmented by hand into voiced and unvoiced sections based on the
phonemic classification, adjusted by listening. Most of the transitions between voiced and unvoiced
were on the phoneme boundaries provided, although many phoneme boundaries were between pairs
of voiced or pairs of unvoiced sounds. Thus there were fewer voiced and unvoiced segments than
phonemes. The summary onset/offset technique was used to find the voiced sections, and these
were compared with the hand-segmented versions.

The results are shown in figures 8. The computer segmentation was considered to be in error
whenever the voiced /unvoiced boundary computed was greater than 10ms away from that found
by hand. The () value of the filter was varied from 2.3 to 9.265. The lowest value for F. used was
calculated using equation 3, and an assumed fundamental of 100Hz for males, and an assumed
fundamental of 180Hz for females. For males, the @) value is much less critical than for the females.
For all the utterances the concentration of energetic partials caused by the existence of a formant
(and thus leading to amplitude modulation) occurs at only slightly lower frequency frequencies
for males than for females since both male and female vocal tracts have similar dimensions (the
difference is about 3 semitones [5], p480). However for high @ values, the lowest F. used is so high
for females that important concentrations of partials are missed.
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Figure 9: Classification errors for male utterances in noise for two values of Q.
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Figure 10: Classification errors for female utterances in noise for two values of Q).
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Figure 11: Unvoiced classed as voiced errors for female and male utterances in noise for varying
SNR. Male utterances used ) = 3.25 and female utterances used ) = 2.3. Results for different )
values are similar.

The same techniques were used in sound with white noise added: the results for some different
values of () are shown in figure 9 for male speakers and in figure 10 for female speakers. In both
cases, using a low value of ) gives better results when noise is present.

Both in the presence and absence of noise, errors due to voiced sections being classed unvoiced
are much more frequent than errors due to unvoiced sections being classed voiced. Further, the
addition of white noise hardly increases the likelihood of unvoiced sections being classed voiced
at all until the SNR. is very low: see figure 11. Thus, most of the errors consist of voiced sections
failing to be identified as such, and the frequency of this type of error increases monotonically
with decreasing SNR.

Many of the voiced classed as unvoiced errors occur entirely inside voiced sections. Closer exam-
ination of the amplitude modulation in different channels shows that precise pulse timing varies
between channels, resulting in degradation of pulses formed by simple cross-channel summation.
This can be seen in figure 12: the amount of jitter seems reasonably constant, but it causes more
problems when Fj is higher, accounting for the poorer performance on female voices.

3.2 Estimating F

Since the voicing detection technique uses the amplitude modulation pulses caused by unresolved
adjacent harmonics, we can estimate the instantaneous Fj using the time between these pulses.
Reasonable results were obtained using the same summary technique as that used for detecting
voicing. Figure 13 shows the estimates of the fundamental frequency, along with the original
speech signal. The estimates follow the speech signal envelope periodicity.

Because the speech sounds were resampled at 4Ksamples/second between rectification and on-

set /offset convolution, the accuracy of Fy estimation is reduced. The discrete jumps in Fy esti-
mation are clearly visible in both figures 13 and 14. This effect is stronger for higher Fp, so that
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Figure 12: Response to 50ms of TIMIT utterance drl/fsjkl/sal (female), 2570-2620ms. The
phoneme /aa/ has a short section classified unvoiced caused by the small summary onset pulse
at 2592ms. a: summary onset signal. b: summary offset signal. c¢: glottal pulses found in each
channel (67 channels, 800-6000Hz, Q@ = 9.265).
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Figure 13: Fundamental frequency estimates for a short piece of voiced speech (/ao/ from
dr2/mjhi0/sal in the TIMIT database).

better results are obtained for lower Fy. This, in addition to the jitter problem already described
makes the system considerably better at Fy estimation for male speech than for female speech.
This can be seen by comparing figures 14A and C.

There are three different types of error present in figure 14: (i) errors at the start of a voiced
segment, due to the way in which the amplitude modulation begins in different channels, (ii) errors
due to jitter across channels resulting in the simple summation giving an incorrect estimate, and
(iii) errors due to pulses not being strong enough to be detected, leading to an estimate of Fj
which is a fraction of the correct value. The type (iii) errors cause the four low outliers in figure
14A: all of these are half the correct value for Fy, and all occur at the ends of segments. The type
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Figure 14: A: fundamental frequency estimates for TIMIT dataset dr3/mklsl/sal (male speaker)
("She had your dark suit in greasy wash water all year”). Paramneters used were @ = 3.25,
k = 70000, = 1.2. B: as A, but with white noise added to give a SNR of 10dB. C: fundamental
frequency estimates for TIMIT dataset dr2/feac0/sal (female speaker): parameters were Q = 2.3,
k = 300000, and r = 1.2.

(ii) errors result in either a high estimate for Fy being followed by a low one, or vice versa. This
occurs 6 times in figure 14A, at times 0.441s, 1.326s, 1.618s, 1.662s, 2.280s, and 2.757s. All of
these except the 1.662s one occur at the start of a segment, and so are errors of type (i) as well. In
addition, there is one other type (i) error, at time 2.135s. When noise is added, some more errors
occur although the basic movement of Fj remains visible. The same types of errors occur in figure
14C: some of the type (iii) errors are one third of the correct Fy. Sections of speech mistakenly
classified as voiced still give values for Fy, and this occurs ar time 0.999-1.018s here. Again, even
with these errors, the movement of Fy is quite visible.

In addition to these relatively major errors in Fj estimation, there is an interaction between
the jitter across channels and the resampling at 4Ksamples/second. The jitter across channels
causes the amplitude modulation peak to move depending on the exact strength and time of the
amplitude modulation pulse in each channel: the resampling rate forces movement in Fy to be
discrete. Thus, the estimated Fy varies discretely and quickly between adjacent glottal pulses.
This problem is worse for higher Fjy, and results in the rather thick lines in figure 14C.

Methods for tackling all of these problems are discussed in section 5.
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4 Conclusions

An effective biologically motivated technique for detecting voiced sections of speech has been
demonstrated. A method for finding Fj using ideas based on cochlear nucleus cell responses has
been produced.

The system works better for male voices than for female voices. Best overall results were obtained
using a higher value for @ for male voices than for female voices, in the absence of noise. However,
the system is relatively insensitive to @ for male voices, as can be seen in figure 8. In the presence
of white noise, better results were obtained using a lower value for Q). Using a high value for Q
means ignoring much of the low to middle frequency content of the signal, particularly for speakers
with a high Fy. Although the estimates for Fy do contain some errors, the estimates are correct
more than 90% of the time.

Although the technique does not provide such good results in voicing detection as, for example,
[2], it does so without the need for training. The system retains its effectiveness in an SNR of
10dB, both for voicing detection and Fyy estimation: the effectiveness of earlier algorithms in noise
is not stated. The voicing detection technique is relatively simple and (so far) unoptimised: it
could be added to the set of techniques used in the pattern recognition approaches of [3, 2, 30].

The Fy estimation technique is believed to be more immune to noise than techniques based on
simple time-domain analysis of the low-passed signal [17, 13, 16] since extrancous low-frequency
sounds will not affect this method, as it ignores low-frequencies altogether. Indeed, this technique
and simple time-domain analysis of a low-passed signal can augment each other as they are inde-
pendent. The technique here is simpler than autocorrelation based techniques since channels are
analysed directly instead of seeking peaks in the autocorrelation function (ACF) in each channel
as [31, 22] do. Tt is also more biologically plausible, since no evidence has been found for biological
computation of the ACF. The technique described here has most similarity to techniques based
on finding partials present in the signal [14, 10, 8, 6, 9]: precise computation of the frequency of
partials is not biologically plausible, because it requires very high frequency resolution. We infer
the difference in frequency between adjacent partials from the amplitude modulation it produces.
By requiring that the same amplitude modulation frequency be present over a range of channels,
we are in essence making an assertion about the set of partials present, namely that they are
harmonically related to a fundamental at the amplitude modulation frequency. It is difficult to
tell which technique is best: we believe that this technique represents a useful addition to the set
of Fy estimation techniques.

5 Further Work

Further development work planned includes improving voicing detection by using a more sophisti-
cated technique for combining the information in different channels. This would entail combining
information across a number of adjacent channels, rather than simply summing them all. Similarly,
better Fjy estimates can be achieved by combining the information on the presence of amplitude
modulation in the different channels more effectively. This should help resolve the type (ii) and
(iii) errors discussed in section 3.2: estimating Fy using a number of adjacent channels should
overcome problems due to jitter, and working with subsets of the set of channels should reduce
the likelihood of pulses being omitted. This would also supply information on exactly which bands
AM is present in, and this should be useful for identifying particular voiced sounds.

To model the cochlea and organ of corti more accurately would require a filterbank whose @ was
not fixed across the whole spectrum, but varied according to the input to the system. Thus, for
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an input consisting of a spoken vowel, we might have ) = 2.3 in a channel whose F, was near
a number of energetic partials, rising to 9.265 where the SPL was low. The work here suggests
that this could permit both accurate frequency location of the formants (lost when @ is low: see
figure 6 in which voicing pulses are found across the whole spectrum), and sensitivity to amplitude
modulation caused by the interaction of relatively low-numbered (i.e. low values of i in equation
2) harmonics which is lost when @ is high. If this was found to be effective, it could influence the
design of the bandpassing for future cochlear implants.

The techniques described can be extended to permit sound streaming [4]. Cues such as common
onset of amplitude modulation, common frequency of amplitude modulation, common onset of
energy across a number of (not necessarily adjacent) channels could be used to group a number
of channels. Thus, for example, if the energy in some channels shares a common onset time with
co-frequency amplitude modulation, we would assume the energy in these channels came from the
same source.

The systemn described is entirely data-driven. Clearly, it could be embedded in a larger system
which included top-down information.

The current system, is a purely software implementation. Even although it uses downsampling
after rectification it is slow. The technique described is suitable for parallel implementation, and
this could be accomplished either using aVLSI or DSP technology. Either of these could be used
to make the system work in real-time.
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